Wykład Podstawy astrofizyki i astronomii

Konsultacje: Pokój D-2.60/D-2-17, WTO 10-11, ŚRO 11-18

Wykłady
  1. Wykład 1: cel, metody, materiał, literatura; zarys kosmografii
    [PDF] (1 marca 2016)

  2. Wykład 2:
    [PDF] (8 marca 2016)

  3. Wykład 3:
    [PDF] (15 marca 2016)

  4. Wykład 4:
    [PDF] (22 marca 2016)

  5. Wykład 5:
    [PDF] (5 kwietnia 2016)

  6. Wykład 6:
    [PDF] (12 kwietnia 2016)

  7. Wykład 7:
    [PDF] (19 kwietnia 2016)

  8. Wykład 8:
    [PDF] (26 kwietnia 2016)

  9. Wykład 9:
    [PDF] (10 maja 2016)

  10. Wykład 10:
    [PDF] (17 maja 2016)


  11. Wykład 11:
    [PDF] (24 maja 2016)

  12. Wykład 12:
    [PDF] (31 maja 2016)

  13. Wykład 13:
    [PDF] (7 czerwca 2016)

  14. Wykład 14:
    [PDF] (14 czerwca 2016)

Wykłady z ubiegłego roku (2015).

UWAGA: zajęcia odbywają się w sali A-1-13 (III Kampus, nowy budynek Wydziału Fizyki, Astronomii i Informatyki Stosowanej, 30-348 Kraków, ul. prof. Stanisława Łojasiewicza 11, mapa). Zaczynamy o 8:15

Lista zadań na 2016 rok

Lista zadań do pobrania: [PDF]

Lista podręczników wykorzystywanych podczas przygotowania wykładu:

Egzamin ustny

21 czerwca 2016, wtorek, od godz. 11:00 oraz 29 czerwca, środa, od godz. 9:00. Pokój D-2-17/D-2-13.

Warunki zaliczenia

Podstawowym warunkiem jest zdanie egzaminu ustnego, na który będą składać się 3 pytania:

Dodatkowe kryteria (aktywność, obecność na wykładzie itp.) wpływają na ocenę końcową w wyjątkowych sytuacjach w zakresie od -0.5 do +1 stopnia w stosunku do oceny z egzaminu.

Questions

  1. Enumerate common astrophysical structures starting from the Earth. Give typical relative and absolute sizes.
  2. Derive parameters of the elliptical orbit given energy and angular momentum of the body in orbit.
  3. Describe typical perturbations of the elliptical orbit and common case studies.
  4. Enumerate assumptions of the restricted circular planar three-body problem. Derive equations of motion in the corotating system.
  5. Define: Lagrangian points, Hill region, Roche limit, Roche sphere.
  6. Discuss stability of the orbit in the N-body problem. Use motion in the L4 point as an example.
  7. Derive formula for tidal force. Explain, why tidal forces on Earth, resulting from the Sun and the Moon are similar in magnitude.
  8. Describe important examples of the resonant orbital effects in the Solar System.
  9. Derive formula for equilibrium temperature for a planet heated by the central star.
  10. Explain difference between Bond albedo and geometrical albedo.
  11. Enumerate important periodic variations of the Earth's orbital elements (with timescale and amplitude) and effects on the climate.
  12. How cosmic events influenced evolution, climate and development of civilizations?
  13. Enumerate properties of the Solar System believed to be ,,standard'' before discovery of extrasolar planets.
  14. How observational BIAS shadows true statistics of extrasolar planetary systems?
  15. Give a few known examples of the exoplanetary systems radically different from Solar System.
  16. Where in the Solar System life is expected to be found and why?
  17. Write the Drake's equation for a number of tech civilizations in the Galaxy. Give and explain your choices for numeric values of the ,,coefficients'' in the equation. Calculate and comment on final result.
  18. Derive and discuss barometric formula for Earth's atmosphere.
  19. Derive equation for the hydrostatic equilibrium for self-gravitating body with assumption of spherical symmetry.
  20. Derive equation for the hydrostatic equilibrium for self-gravitating body without assumption of spherical symmetry.
  21. Give or derive Lane-Emden equation. Enumerate known elementary solutions.
  22. Give formula for photon transport in the LTE approximation. Explain value of the diffusion coefficient for photons.
  23. Discus convective energy transport and derive necessary conditions.
  24. Enumerate assumptions and discuss standard Eddington model of the stars.
  25. Derive formula for matter ionization.
  26. Derive virial theorem.
  27. Estimate dynamic and Kelvin-Helmholtz timescales for the Sun.
  28. Write four equations of the stellar structure. Discus boundary conditions and standard solving procedures.
  29. Explain notation [Fe/H]=+0.3.
  30. Write on a blackboard reactions of the ppI cycle. Explain why some nuclear reactions are excluded from the network.
  31. Calculate energy produced in the ppI cycle.
  32. Write system of equations for time evolution of the abundances for protons, deuterons, helium-3 and alpha particles in the ppI cycle. Check conservation of the baryon number.
  33. Explain Gamov peak.
  34. Sketch energy spectrum of the solar neutrinos.
  35. Write formulae for energy spectrum of the solar neutrinos.
  36. Discus ,,solar neutrino problem''.
  37. Describe, using HR and Kippenhahn diagrams, evolution of the random star with initial mass between 0.01 and 100 solar masses. z przedziału 0.01 do 100 mas Słońca. Enumerate essential stages of the evolution.
  38. Describe modern observational and physical classification of the supernovae: types, environment, progenitors.
  39. On the basis of the Burger's equation explain mathematical theory of the shock waves. Calculate speed of the discontinuity.
  40. Describe mechanism of the core-collapse supernova.
  41. Describe mechanism of the thermonuclear supernova.
  42. Enumerate properties of the rotating sequences: Maclaurin, Jacobi and Poincare. Explain Dedekind and Riemann ellipsoids. Discuss the role of self-gravity and surface tension.
  43. Calculate shape of the critical surface of the rotating body in the Roche model.
  44. Discuss N-body modelling of the globular clusters (Plummer sphere) and important results.
  45. Enumerate types and properties of the galaxies.
  46. Enumerate assumptions for the standard cosmological models. Give or derive evolution equations including Lambda. Discuss possible solutions. Which one is best for our Universe?
  47. Give and analyze formula for a scale factor, Hubble ,,constant'' and density in the flat, dust Lambda-CDM Universe.
  48. Enumerate main observational facts supporting standard cosmological model.
  49. Enumerate 10 essential physical processes from Big Bang until Dark Ages.
  50. Describe evolution of the cosmic structures in the Lambda-CM model, starting from Dark Ages until now.

Lista ocen

Warto zajrzeć: