>   Faculty of Physics, Astronomy and Applied Computer Science   >   Institute of Theoretical Physics   >   Department of Condensed Matter Theory and Nanophysics (ZTMSiN)   >   Prof. Adam Rycerz

All my UJ pages > This site > Page for students (PL) > USOSweb > ZTMSiN Page > RUJ search

Publications (co)authored by Adam Rycerz

For some some citation metrics visit: https://www.webofscience.com/wos/author/rid/F-6253-2014.

Journal articles:

  1. J.Spałek, R.Podsiadły, W.Wójcik, and A.Rycerz, Optimization of single-particle basis for exactly soluble models of correlated electrons, Phys. Rev. B 61, 15676-15687 (2000).
  2. J.Spałek, R.Podsiadły, A.Rycerz, and W.Wójcik, Exact Diagonalization of Many-Fermion Hamiltonian Combined with Wave-Function Readjustment: Application to One-Dimensional Systems, Acta Phys. Polon. B 31, 2879-2898 (2000).
  3. A.Rycerz and J.Spałek, Exact Diagonalization of Many-Fermion Hamiltonian with Wave-Function Renormalization, Phys. Rev. B 63, 073101 (2001), pp. 1-4.
  4. J.Spałek and A.Rycerz, Electron localization in one-dimensional nanoscopic system: A combined exact diagonalization-an ab initio approach, Phys. Rev. B 64, 161105(R) (2001), pp. 1-4.
  5. J.Spałek, A.Rycerz, and W.Wójcik, Exact Diagonalization of Many-Fermion Hamiltonian Combined with Wave-Function Readjustment II. Metallicity and Electron Localization in Nanoscopic Systems, Acta Phys. Polon. B 32, 3189-3202 (2001).
  6. A.Rycerz and J.Spałek, Electronic states, Mott localization, electron-lattice coupling, and dimerization for correlated one-dimensional systems, Phys. Rev. B 65, 035110 (2002), pp. 1-15.
  7. J.Spałek, A.Rycerz, and R.Podsiadły, Electron localization from the combined exact diagonalization - ab initio approach, Physica B, 312-313, 542-544 (2002).
  8. A.Rycerz, J.Spałek, and R.Podsiadły, Electron localization from the combined exact diagonalization - ab initio approach in one dimension, Physica B, 318, 338-340 (2002).
  9. A.Rycerz, J.Spałek, and R.Podsiadły, Defining metallicity and Mott localization in correlated nanoscopic systems, Acta Phys. Polon. B 34, 651-654 (2003).
  10. A.Rycerz and J.Spałek, On metal-insulator transition for a one-dimensional correlated nanoscopic chain, Acta Phys. Polon. B 34, 655-658 (2003).
  11. A.Rycerz and J.Spałek, Microwave absorption by the Josephson network in a low field: Application to ceramic high temperature superconductors, Physica C 387, 97-101 (2003).
  12. A.Rycerz and J.Spałek, Fundamental properties, localization threshold, and the Tomonaga-Luttinger behavior of electrons in nanochains, Eur. Phys. J. B 40, 153-165 (2004).
  13. E.M.Görlich, A.Rycerz, and J.Spałek, Electronic properties of correlated nanoscopic systems from the exact diagonalization combined with an ab initio approach, phys. stat. sol. (b) 242, 234-244 (2005).
  14. A.Rycerz and J.Spałek, Fundamental properties of correlated electrons in nanochains, Physica B 359-361, 1448-1450 (2005).
  15. A.Rycerz, and J.Spałek, Electronic structure and parity effects in correlated nanosystems, phys. stat. sol. (b) 243, 183-187 (2006).
  16. A.Rycerz, and J.Spałek, Conductance of a double quantum dot with correlation-induced wave function renormalization, Physica B, 378-380, 935-937 (2006).
  17. J.Tworzydło, B.Trauzettel, M.Titov, A.Rycerz, and C.W.J.Beenakker, Sub-Poissonian shot noise in graphene, Phys. Rev. Lett. 96, 246802 (2006), pp. 1-4.
  18. A.Rycerz, Entanglement and transport through correlated quantum dot, Eur. Phys. J. B 52, 291-296 (2006).
  19. A.Rycerz, J.Tworzydło, and C.W.J.Beenakker, Valley filter and valley valve in graphene, Nature Physics 3, 172-175 (2007).
  20. J.Spałek, E.M.Görlich, A.Rycerz, and R.Zahorbeński, The combined exact diagonalization - ab initio approach and its application to correlated electronic states and Mott-Hubbard localization in nanoscopic systems, J. Phys.: Condens. Matter 19, 255212 (2007), pp. 1-43.
  21. A.Rycerz and J.Spałek, Josephson network as a model for inhomogeneous superconductor: A microwave power absorption, Acta Phys. Polon. A 111, 581-594 (2007).
  22. A.Rycerz, J.Tworzydło, and C.W.J.Beenakker, Anomalously large conductance fluctuations in weakly disordered graphene, Europhys. Lett. 79, 57003 (2007), pp. 1-5.
  23. P.Recher, B.Trauzettel, A.Rycerz, Ya.M.Blanter, and C.W.J.Beenakker, A.F.Morpurgo, Aharonov-Bohm effect and broken valley-degeneracy in graphene rings, Phys. Rev. B 76, 235404 (2007), pp. 1-6.
  24. A.Rycerz, Diatomic molecule as a quantum entanglement switch, Physica B, 403, 1534-1536 (2008).
  25. A.R.Akhmerov, J.H.Bardarson, A.Rycerz, and C.W.J.Beenakker, Theory of the valley-valve effect in graphene nanoribbons, Phys. Rev. B 77, 205416 (2008), pp. 1-5.
  26. A.Rycerz, Nonequilibrium valley polarization in graphene nanoconstrictions, phys. stat. sol. (a) 205, 1281-1289 (2008).
  27. J.Wurm, A.Rycerz, I.Adagideli, M.Wimmer, K.Richter, and H.U.Baranger, Symmetry Classes in Graphene Quantum Dots: Universal Spectral Statistics, Weak Localization, and Conductance Fluctuations, Phys. Rev. Lett. 102, 056806 (2009), pp. 1-4.
  28. A.Rycerz, Aharonov-Bohm Effect and Valley Polarization in Nanoscopic Graphene Rings, Acta Phys. Polon. A 115, 322-325 (2009).
  29. A.Rycerz, P.Recher, and M.Wimmer, Conformal mapping and shot noise in graphene, Phys. Rev. B 80, 125417 (2009) pp. 1-14.
  30. A.Rycerz, Magnetoconductance of the Corbino disk in graphene, Phys. Rev. B 81, 121404(R) (2010), pp. 1-4.
  31. A.Rycerz, Electron Transport and Quantum-Dot Energy Levels in Z-Shaped Graphene Nanoconstriction with Zigzag Edges, Acta Phys. Polon. A 118, 238-243 (2010).
  32. A.Rycerz, Aharonov-Bohm and relativistic Corbino effects in graphene: A comparative study of two quantum interference phenomena, Acta Phys. Polon. A 121, 1242-1245 (2012).
  33. A.Rycerz, Random matrices and quantum chaos in weakly-disordered graphene nanoflakes, Phys. Rev. B 85, 245424 (2012), pp. 1-20.
  34. A.Rycerz, Strain-induced transitions to quantum chaos and effective time-reversal symmetry breaking in triangular graphene nanoflakes, Phys. Rev. B 87, 195431 (2013), pp. 1-9.
  35. G.Rut and A.Rycerz, Pseudodiffusive conductance, quantum-limited shot noise, and Landau-level hierarchy in biased graphene bilayer, Phys. Rev. B 89, 045421 (2014), pp. 1-12.
  36. G.Rut and A.Rycerz, Minimal conductivity and signatures of quantum criticality in ballistic graphene bilayer, Europhys. Lett. 107, 47005 (2014), pp. 1-5.
  37. G.Rut and A.Rycerz, Conditions for Conductance Quantization in Mesoscopic Dirac Systems on the Examples of Graphene Nanoconstrictions, Acta Phys. Polon. A 126, A114-A117 (2014).
  38. G.Rut and A.Rycerz, Magnetoconductance of the Corbino disk in graphene: Chiral tunneling and quantum interference in the bilayer case, J. Phys.: Condens. Matter 26, 485301 (2014), pp. 1-12.
  39. G.Rut and A.Rycerz, Quantum-limited shot noise and quantum interference in graphene based Corbino disk, Philos. Mag. 95, 599-608 (2015).
  40. G.Rut and A.Rycerz, Trigonal warping, pseudodiffusive transport, and finite-system version of the Lifshitz transition in magnetoconductance of bilayer graphene Corbino disks, Phys. Rev. B 93, 075419 (2016), pp. 1-14.
  41. A.Rycerz, Pairwise entanglement and the Mott transition for correlated electrons in nanochains, New J. Phys. 19, 053025 (2017), pp. 1-15.
  42. D.Suszalski, G.Rut, and A.Rycerz, Lifshitz transition and thermoelectric properties of bilayer graphene, Phys. Rev. B 97, 125403 (2018), pp. 1-10.
  43. D.Suszalski, G.Rut, and A.Rycerz, Thermoelectric properties of gapped bilayer graphene, J. Phys.: Condens. Matter 31, 415501 (2019), pp. 1-8.
  44. D.Suszalski, G.Rut, and A.Rycerz, Mesoscopic valley filter in graphene Corbino disk containing a p-n junction, J. Phys. Mater. 3, 015006 (2020), pp. 1-17.
  45. D.Suszalski, G.Rut, and A.Rycerz, Conductivity scaling and the effects of symmetry-breaking terms in bilayer graphene Hamiltonian, Phys. Rev. B 101, 125425 (2020), pp. 1-10.
  46. D.Suszalski and A.Rycerz, Adiabatic Quantum Pumping in Buckled Graphene Nanoribbon Driven by a Kink, Acta Phys. Pol. B Proc. Suppl. 13, 907-913 (2020).
  47. A.Rycerz and D.Suszalski, Graphene disk in a solenoid magnetic potential: Aharonov-Bohm effect without a two-slit-like setup, Phys. Rev. B 101, 245429 (2020), pp. 1-6.
  48. D.Suszalski and A.Rycerz, Adiabatic pumping driven by a moving kink in a buckled graphene nanoribbon with implications for a quantum standard for the ampere, Phys. Rev. B 102, 165408 (2020), pp. 1-10.
  49. A.Rycerz, Wiedemann–Franz law for massless Dirac fermions with implications for graphene, Materials 14, 2704 (2021), pp. 1-20.
  50. A.Rycerz and P.Witkowski, Sub-Sharvin conductance and enhanced shot noise in doped graphene, Phys. Rev. B 104, 165413 (2021), pp. 1-7.
  51. A.Rycerz and P.Witkowski, Theory of sub-Sharvin charge transport in graphene disks, Phys. Rev. B 106, 155428 (2022), pp. 1-12.
  52. G.Rut, M.Fidrysiak, D.Goc-Jagło, and A.Rycerz, Mott transition in the Hubbard model on anisotropic honeycomb lattice with implications for strained graphene: Gutzwiller variational study, Int. J. Mol. Sci. 24, 1509 (2023), pp. 1-22.
  53. A.Rycerz, K.Rycerz, and P.Witkowski, Thermoelectric Properties of the Corbino Disk in Graphene, Materials 16, 4250 (2023), pp. 1-16.
  54. A.Rycerz, M.Fidrysiak, and D.Goc-Jagło, Strain-induced Aharonov-Bohm effect at nanoscale and ground state of a carbon nanotube with zigzag edges, J. Magn. Magn. Mater. 587, 171322 (2023), pp. 1-4.

Articles in proceedings and books:

  1. J.Spałek, A.Rycerz, W.Wójcik, and R.Podsiadły, in Open Problems in Strongly Correlated Electron Systems, ed. by J.Bonca et al. (Kluwer Academic Publishers, 2001) pp. 443-445
  2. A.Rycerz and J.Spałek, in IX School on High Temperature Superconductivity, eds. A.Szytula, A.Kolodziejczyk (Krakow, 2002), pp.201-218; e-print arXiv:cond-mat/0106188.
  3. A.Rycerz, J.Spałek, R.Podsiadły, and W.Wójcik, in Lectures on the Physics of Highly Correlated Electron Systems VI, ed. F.Mancini, AIP Conf. Proc. Vol. 629 (New York, 2002) pp. 213-223.
  4. J.Spałek, E.M.Goerlich, A.Rycerz, R.Zahorbeński, and R.Podsiadły, W.Wójcik, in Concepts in Electron Correlations, eds. A.C.Hewson and V.Zlatic, Proc. NATO Adv. Res. Workshop, Kluwer Academic (Dortrecht, 2003) pp. 257-268.
  5. A.Rycerz, J.Spałek, R.Podsiadły, and W.Wójcik, in Lectures on the Physics of Highly Correlated Electron Systems VII, ed. F.Mancini, AIP Conf. Proc. Vol. 678 (New York, 2003) pp. 313-322.
  6. J.Spałek, A.Rycerz, E.M.Goerlich, and R.Zahorbeński, in Highlights of Condensed Matter Physics, AIP Conf. Proc. Vol. 695 (New York, 2003), pp. 291-303.
  7. E.M.Goerlich, J.Kurzyk, A.Rycerz, R.Zahorbeński, W.Wójcik, and J.Spałek, in Molecular nanowires and other quantum objects, eds. A.S.Alexandrov et al., Kluwer Academic (Dortrecht, 2004) pp. 355-375.
  8. A.Rycerz and J.Spałek, Lectures on the Physics of Highly Correlated Electron Systems VIII, eds. A.Avella, F.Mancini, AIP Conf. Proc. Vol. 715 (New York, 2004) pp. 235-244.
  9. B.Trauzettel, J.Tworzydło, M.Titov, A.Rycerz, and C.W.J.Beenakker, Minimum conductivity and maximum Fano factor in mesoscopic graphene, Proceedings of the VIth Rencontres du Vietnam, Hanoi, Vietnam, 2006.
  10. A.Rycerz, Transition to Quantum Chaos in Weakly Disordered Graphene Nanoflakes, Chaotic Modeling and Simulation (CMSIM) 1, 35-43 (2012); e-print arXiv:1112.5078.
  11. A.Rycerz, Nonstandard Transition GUE-GOE for Random Matrices and Spectral Statistics of Graphene Nanoflakes, in Recent Advances in Graphene Research, ed. Pramoda Nayak, InTech, DOI:10.5772/64240 (2016) pp. 91-110; e-print arXiv:1604.03783.

Dissertations:

SUBMITTED:



Contents © 2015-2022 by Adam Rycerz. This page was last updated on October 5, 2023.