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Abstract

We describe and implement the recently proposed approach combining exact dia-

gonalization in the Fock space with an ab initio method (EDABI). Namely, we

apply it to the description of correlated nanochains, fermionic ladders, and clus-

ters. In particular, the microscopic parameters are determined and the evolu-

tion of the system properties is traced in a systematic manner as a function of

the interatomic distance. Both ground–state and dynamical correlation functions

are discussed within a single scheme. The principal physical results of the the-

sis are: (i) the appearance of the metallic and insulating features for a one–

dimensional nanochain in the half–filled band case, (ii) the transformation from

highly–conducting nanometal to the charge–ordered nanoinsulator away from the

half–filling; (iii) an absolute stability of the hydrogen molecular clusters and lad-

ders, and (iv) the molecule disintegration for the large densities; (v) the presence

of the dielectric catastrophe for the fermionic ladder when the system crosses over

from the band to the Mott–Hubbard insulating state. The analysis is performed us-

ing the Gaussian 1s–like basis and includes long–range Coulomb interactions.
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Chapter 1

Introduction

The theoretical understanding of the electrical and mechanical properties of na-

nometer–scale systems containing N = 1 ÷ 100 atoms is crucial from the two

principal prospectives.

First, as the size of microelectronic devices continues to shrink, interest is

focused on the nature of electron transport through essentially one–dimensional

devices, such as nanowires and quantum point contacts, with properties that are

qualitatively different from those of larger size. For instance, it has been discov-

ered five years ago, that the gold nanowires evolve spontaneously into chains of

single atoms (Yanson, Rubio Bollinger, van der Brom, Agraït and van Ruiten-

beek, 1998; Ochnishi, Kondo and Takayanagi, 1998), which are surprisingly sta-

ble, have nearly ideal quantum values of the conductance 2e2/h (≈ 12.9 kΩ−1),

and are able to sustain enormous current densities. Similar properties are present

in all the 5d noble metals, such as Ir, Pt, and Au, but absent in the correspond-

ing elements of the 4d series: Rh, Pd, and Ag (Smit, Untiedt, Yanson and van

Ruitenbeek, 2001). Although the formation of freely suspended chains of atoms

by itself has been explained within density functional theory calculations by Bahn

and Jacobsen (2001), the theoretical understanding of electron–transport aspects

of this phenomena is still lacking. The latter problem is studied with particular

interest for Na nanowires formed on surface (Tsukamoto and Kikuji, 2002; Ahn,

Kim, Lee, Hwang, Kim and Yeom, 2002). This is because such nanowire is ex-

pected to be treated as the s–band system having the simplest electronic struc-

ture characteristic for a monovalent atom. Elaborate investigations on electron–

transport properties of s–band nanowires are, however, not common as yet: only

a few experiment have been reported (Krans, van Ruitenbeek, Fisun, Yanson and

de Jongh, 1995; Yanson, Yanson and van Ruitenbeek, 1999).

Second, it is important to determine the electronic structure of such small

systems to see the evolution from the collection of atoms to a piece of a solid

with the delocalized (Bloch–type or Fermi–liquid–like) states. The latter aspect

1
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opens up few separate problems for further investigations such as the presence

of specific one–dimensional excitations (holons and spinons), the appearance of

the Peierls distortion, and of the Tomonaga–Luttinger liquid behavior (Fisher and

Glazman, 1997).

In this thesis we apply a novel method of approach (EDABI) developed in our

group recently (Spałek, Podsiadły, Wójcik and Rycerz, 2000; Rycerz and Spałek,

2001; Spałek, Görlich, Rycerz, Zahorbeński, Podsiadły and Wójcik, 2003), in

which we combine the exact diagonalization providing us with a rigorous treat-

ment of interparticle interaction, with an ab–initio optimization of a single–particle

wave function in the interacting–system ground state. In this manner, the inter-

action and the single–particle terms in the Hamiltonian are treated on the same

footing. Hence, the method is particularly useful for strongly correlated systems,

when the kinetic (band) energy of electrons propagating throughout the system

is at best comparable to the interaction among those particles. Two other exam-

ples of systems when the interaction among particles dominates are the high–

temperature superconductors and two–dimensional electron liquid with the frac-

tional quantum Hall effect.

The major part of the thesis contains a numerical study of correlated atomic

chains and ladders containing up to N = 16 atoms, with periodic (or antiperi-

odic) boundary conditions, and includes also the long–range part of the Coulomb

interaction. Such nanoscopic systems are interesting objects of study for few rea-

sons. First of all, the role of long–range Coulomb interaction in 1D is crucial,

as the charge screening becomes less effective (Hubbard, 1978; Kondo and Ya-

mai, 1977; Ovchinnikov, 1993). The exact solutions of the parametrized models

with inclusion of intersite interactions (Strack and Vollhardt, 1993; Arachea and

Aligia, 1994; Michielsen, De Raedt and Schneider, 1992) prove the existence of

the metal–insulator transition (MIT) for the half–filled band case, in contradis-

tinction to the Hubbard model solution (Lieb and Wu, 1968). The existence of

such MIT has also been discussed by Daul and Noack (2000) within the density–

matrix renormalization group (DMRG) method when the second–neighbor hop-

ping is included. A separate question concerns the appearance of the Tomonaga–

Luttinger behavior (Schulz, 1993; Voit, 1995) in the metallic state, for which

some evidence has been gathered (Dardel, Malterre, Grioni, Weibel, Baer, Voit

and Jérôme, 1992; Sekiyama, Fujimori, Aonuma, Sawa and Kato, 1995). Last but

not least, the questions of the metallicity appearance in a correlated nanoscopic

atomic chain or ring and that concerning the applicability of the concept of Mott

insulator in the situation when the separation between the quasiparticle states (in

a finite system) is of the same order of magnitude as the Hubbard gap, must be ad-

dressed separately. Similar problems are encountered in the weak–coupling renor-

malization group (RG) analysis (Fabrizio, 1996), which predicts that umklapp pro-

cesses lead any half–filled 1D system with two Fermi points to an insulating state.
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This is the reason for discussing in detail here a rigorous numerical evidence for

the transition from a nanometal to the localized spin system. The analysis is per-

formed separately for correlated atomic ladders, for which 4 Fermi points in prin-

ciple allow the system metallicity even for short–range interactions (Voit, 1995),

and the transformation from band to Mott insulator introduce a new phenomena

known as dielectric catastrophe (Resta and Sorella, 1999; Aebisher, 2001).

1.1 Aim and scope of the thesis

The structure of the thesis is as follows. In the next Chapter we summarize briefly

the method of approach as developed by (Spałek et al., 2000) and discuss its rela-

tion to multiconfiguration–interaction (MCI) approach from quantum chemistry.

The Lanczos method for the Hamiltonian diagonalization in the Fock space is also

presented. The particular emphasis is put on calculation of the dynamical prop-

erties such as the spectral function or the optical conductivity. In Chapter 3 we

provide the numerical study of 1D chains with long–range Coulomb interactions,

close to the metal–insulator transition. The role of boundary conditions for a fi-

nite system is also discussed. In Chapter 4 the stability of hydrogen molecules in

3D cluster is analyzed, the implications for hydrogen metallicity are briefly dis-

cussed. Finally, in Chapter 5, we present the results for the correlated ladders and

the evidence for the dielectric catastrophe in that system.

The main feature of the above analysis is to provide the properties as a function

of the lattice spacing. In this respect, our approach differs from numerous solu-

tions of the parametrized models such as the (extended) Hubbard model, where

the physical properties are discussed as a function of the model parameters. In

this manner we can trace the evolution of the system properties systematically,

since we change the interatomic distance continuously. We also complement our

previous study of a correlated atomic chain (Spałek and Rycerz, 2001; Rycerz and

Spałek, 2002) with an analysis performed systematically in the Gaussian 1s–like

basis (defined in Appendix A). The results concerning transport properties of 1D

chain (Chapter 3), as well as all the data for H4 cluster and those for the correlated

fermionic ladders (Chapters 4 and 5, respectively) have not been published as yet.
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Chapter 2

Numerical methods

In the first part of this Chapter we summarize our method of approach to the

strongly correlated electron systems that combines the first– and the second–

quantization scheme (Spałek et al., 2000). In the second part (Section 2.2) we

recapitulate briefly the Lanczos algorithm for finding the ground state in the Fock

space and its version for calculating dynamical properties, following mainly Jaklič

and Prelovšek (2000) and Dagotto (1994). We also provide (in Section 2.2.3) brief

overview of other numerical methods for correlated electrons and their relation to

the Lanczos method.

2.1 The exact diagonalization – ab initio (EDABI)

method

It is generally perceived that the wave mechanics (Schrödinger, 1926) (hereinafter

called the first–quantization scheme) describes the matter–wave aspect of the sys-

tem behavior, whereas the second–quantization scheme (Fock, 1957; Mahan, 1990)

restores the particle language as it operates with the particle transitions (creations

and annihilations) between the states with well defined quantum numbers appro-

priate for a complete set of single particle states. Obviously, a complete descrip-

tion of the physical system relies on complementarity of both descriptions of the

quantum states. The question we have addressed (Spałek et al., 2000; Rycerz

and Spałek, 2001; Spałek, Görlich, Rycerz and Zahorbeński, 2003) in this respect

is whether one can combine both first– and the second–quantization schemes in

approaching the many–particle systems, possibly in a systematic manner, which

would represent a nonperturbational description of many–body as well as the com-

plementary aspects of N–particle states.

The idea of exact diagonalization — ab initio (EDABI) approach is illustrated

on the block–diagram exhibited in Figure 2.1. We start from choosing the initial

5
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FIGURE 2.1: Flowchart diagram of the exact diagonalization ab–initio (EDABI)

method. The part on the far right provides renormalized Wannier functions

{wi(r)}, field operators, as well as the N–particle wavefunction.

Wannier basis set {wi(r)}, composed of orthogonalized atomic–like wavefunc-

tions. Next, we write down the system Hamiltonian in the second–quantization

form and determine the ground–state energy EG and the corresponding state |Ψ0〉
by e.g. Lanczos procedure (cf. Section 2.2) for the fixed basis {wi(r)}. Then,

the Wannier basis set {wi(r)} is optimized with respect to the inverse orbital size

α, characterizing the atomic wave functions composing wi(r), until the minimal

ground–state energy EG is reached (see below) for given lattice parameter a. Op-

erationally, the basis functions {wi(r)} are coded in the microscopic parameters

of the Hamiltonian in the second–quantized form. Those parameters are deter-

mined, in turn, for a given interatomic distance a and the inverse orbital size α.

We repeat the diagonalization for given a by varying α until the global minimum

of EG is achieved. The whole procedure is repeated for all the values of a under

consideration, thus providing the system evolution as a function of the interatomic

distance a.

2.1.1 The renormalized wave equation

In approaching a nonrelativistic system of interacting electrons in a single band

we start from Hamiltonian in the Fock space, expressed in the form

H =
∑

σ

∫
d3rΨ̂†

σ(r)T (r)Ψ̂σ(r)
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+
1

2

∑

σ1σ2

∫ ∫
d3r1d

3r2Ψ̂
†
σ1
(r1)Ψ̂

†
σ2
(r2)V (r1 − r2)Ψ̂σ2

(r2)Ψ̂σ1
(r1), (2.1)

where T (r) and V (r1−r2) are, respectively, the Hamiltonians for a single particle

and a single pair of particles in the coordinate (Schrödinger) representation, and

Ψ̂σ(r) is the field operator defined through

Ψ̂σ(r) =
∑

i

wi(r)χσaiσ, (2.2)

where aiσ is the annihilation operator of particle in a single–particle statewi(r)χσ.

One should note that the basis {wi(r)χσ} is completely arbitrary at this point. By

substituting (2.2) into (2.1) we obtain the usual form of the Hamiltonian

H =
∑

ijσ

tija
†
iσajσ +

1

2

∑

ijklσσ′

Vijkla
†
iσa

†
jσ′alσ′akσ, (2.3)

with the microscopic parameters defined by

tij ≡ 〈wi| T |wj〉 =
∫
d3rw∗

i (r)T (r)wj(r), (2.4)

and

Vijkl ≡ 〈wiwj |V |wkwl〉 =
∫
d3r1d

3r2w
∗
i (r1)w

∗
j (r2)V (r1 − r2)wk(r1)wl(r2).

(2.5)

Thus, in the form (2.3) of the many–particle Hamiltonian, the single– and many–

particle aspects of the problem are separated in the sense that calculation of the

parameters tij and Vijkl, both containing the single–particle basis {wi(r)}, is sep-

arated from the diagonalization procedure of the Hamiltonian in the Fock space.

The origin of this two–level procedure can be seen explicitly when we calculate

the system ground state energy

EG ≡ 〈H〉 =
∑

ijσ

tij〈a†iσajσ〉+
1

2

∑

ijklσσ′

Vijkl〈a†iσa†jσ′alσ′akσ〉, (2.6)

where the averaging 〈. . .〉 for the ground state |ΦG〉 takes place over all possible

occupancies of single–particle states |iσ〉, |jσ′〉, |kσ〉, and |lσ′〉, for fixed values of

tij and Vijkl regarded usually as parameters. When considering the grand canoni-

cal ensemble, one have to diagonalize H − µN , with

N =

∫
d3rΨ̂†(r)Ψ̂(r) =

∑

ijσ

∫
d3rw∗

i (r)wj(r)〈a†iσajσ〉. (2.7)
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To close the solution we treat the expression (2.6) as a functional {wi(r)}. In

the most general case of the grand canonical ensemble and with a nonorthogonal

basis {wi(r)} this functional can be written as

F [wi(r)] = EG [wi(r)]−
∑

ijσ

(µ+ λij)

∫
d3rw∗

i (r)wj(r)〈a†iσajσ〉. (2.8)

In effect, the Lagrange–Euler equation, which plays the role of the stationary

renormalized wave equation for wi(r), takes the form

δEG

δw∗
i (r)

−∇ · δEG

δ∇w∗
i (r)

−
∑

i6j,σ

(λij − µ)wj(r)〈a†iσajσ〉 = 0, (2.9)

where λij and µ play the role of Lagrange multipliers (if we use explicitly orthog-

onal basis and particle–conserving diagonalization procedure in the Fock space,

then λij = µ ≡ 0 and Eq. (2.9) reduces to the usual Euler equation). Also, when

the class of {wi(r)} is selected variationally (as in the following), Eq. (2.8) is then

minimized with respect to trial function parameters (e.g. inverse orbital size α in

the case when the orthogonal basis wi(r) is composed of superposed atomic–like

wave functions).

2.1.2 Relation to MCI method

With the help of the field operator Ψ̂(r) =
∑

iσ wi(rχσ) we can define ground–

state N–particle wave function as Ψ0(r1, . . . , rN) = 〈0| Ψ̂(r1) . . . Ψ̂(rN) |Ψ0〉
where |Ψ0〉 is the N–particle ground state state in the Fock space

|Ψ0〉 =
1√
N !

∑

k1...kN

Ck1...kNa
†
k1
. . . a†kN |0〉 (2.10)

and Ck1...kN are the expansion coefficients (note that: k ≡ jσ). Within our method

we determine Ck1...kN with the help of Lanczos algorithm (see next Section),

whereas in the framework of multiconfigurational–interaction (MCI) method the

Ck1...kN coefficients are optimized variationally (Shavitt, 1977). Using the decom-

position of Ψ̂(r) in terms of {wi(r)} we obtain that

Ψ0(r1, . . . , rN) =
1√
N !

∑

k1...kN

Ck1···kNA [wk1(r1) . . . wkN (rN)] , (2.11)

where A is the antisymmetrizer. Therefore, if we are able to perform the diagonal-

ization in the Fock space, we have an exact many–particle wave function within

the subspace selected by the single–particle basis {wi(r)}. This aspect of the

whole problem will be explored in detail elsewhere (Spałek, Görlich, Rycerz and

Zahorbeński, 2003).
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2.1.3 Methodological remark: A meaning of EDABI method

A principal methodological remark is in place here (J. Spałek, private communica-

tion). The definition (2.2) of the field operator is independent of the basis {wi(r)}
selected to represent it in the occupation–number representation provided it is

complete in the quantum–mechanical sense. This independence on the choice of

{wi(r)} is seen clearly from the circumstance that the fundamental anticummuta-

tion relations for the field operators Ψ̂σ(r) and Ψ̂†
σ(r), which are

Ψ̂σ(r)Ψ̂
†
σ′(r

′) + Ψ̂†
σ′(r

′)Ψ̂σ(r) = δ(d)(r− r′)δσσ′ ,

Ψ̂σ(r)Ψ̂σ′(r′) + Ψ̂σ′(r′)Ψ̂σ(r) = 0, (2.12)

Ψ̂†
σ(r)Ψ̂

†
σ′(r

′) + Ψ̂†
σ′(r

′)Ψ̂†
σ(r) = 0,

are indeed independent of the basis and determine, together with the Heisenberg

equation of motion

i~
∂

∂t
Ψ̂σ(r) =

[
Ψ̂σ(r), H

]
, (2.13)

whole dynamics of the system. Obviously, Eq. (2.13) is insoluble in a general

in a general case, as it represents a nonlocal operator equation for Ψ̂σ(r) (in ac-

tual calculations for an infinite basis, Eq. (2.13) should be supplemented with

that for Ψ̂†
σ(r), which makes the matter even worse). This is the reason why we

have selected the two–step approach: A diagonalization of the Hamiltonian in the

occupation–number representation followed by readjustment of {wi(r)} in the

correlated state.

As said above, the definition of Ψ̂σ(r) requires the basis completness. In most

parametrized models of interacting fermions the summation in Eq. (2.2) is limited

to incomplete sets (one–, two–, three–band models, etc.). In practice, we select

subset of L states to define Ψ̂σ(r). Under these circumstances, one can ask if

there is a way to define the truncated basis {wi(r), i = 1 . . . L} in the optimal

manner. The second step in our approach is the basis optimization and represents

an original contribution of our group to the many–body approach in the general

sense. Obviously, such set of formal ideas requires either analytical or numerical

tools to be implemented when analyzing concrete physical problems and models;

these are discussed next.
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2.2 Lanczos technique for correlated electrons

The development of computational methods for strongly correlated electron sys-

tems was stimulated by the scarity of well–controlled analytical approaches. In

1D variety of models were solved by Bethe Ansatz (Ha, 1996). However, even the

calculation basic ground–state properties for the Hubbard model (Hubbard, 1963),

such as electron momentum distribution, involves intensive numerical computa-

tions and have been done only recently (Ogata and Shiba, 1990; Sorella, Parola,

Parrinello and Tosatti, 1990). A few exactly solvable systems were discussed in

the framework of EDABI method by Spałek et al. (2000). Conceptually the sim-

plest way to find the ground state in the Fock space is the exact diagonalization

(ED) method for small systems: having determined all the matrix element of the

Hamiltonian Hkl ≡ 〈φk|H |φl〉 for same arbitrary basis {|φk〉 , k = 1 . . . Nst}
one can utilize standard numerical procedures for diagonalizing real–symmetric

or hermitian matrices (Press, Teukolsky, Vetterling and Flannery, 1992). In the

models of correlated electrons, however, one is dealing with the number of basis

statesNst which grows exponentially with the system size. In the (extended) Hub-

bard model there are 4 basis states for each lattice sites and therefore, the number

of basis states in the N–site system is Nst ∝ 4N . In the ED of such systems

one is representing operator with matrices Nst × Nst, which are already large for

very modest value of N . The present status of high–performance computing is

restricted to diagonalization of the matrices with Nst < 104 (Dongarra, Duff and

van der Vorst, 1998), so that reachable system sizes are N 6 10 for the Hubbard

model.

The helpful circumstance is that for the most interesting operators and lattice

models only a small portion of matrix elements is nonzero within the local basis.

Then, the operators can be represent by sparse matrices with Nst rows and at most

f(N) nonzero elements in each row, where f(N) is the total number of operator

components in the second–quantization representation. For instance, f(N) ∝ N
in the case of Hubbard model, whereas f(N) ∝ N4 for general Hamiltonian of

the form (2.3). In this way memory requirements are relaxed, the matrices up

to Nst ∼ 107 are considered in recent applications (Jaklič and Prelovšek, 2000).

Finding eigenvalues and eigenvectors of such large matrices is not possible with

the standard algorithms performing full diagonalization (Press et al., 1992). One

must instead resort to power algorithms, among which the Lanczos algorithm

(Lanczos, 1950; Pettifor and Weaire, 1985) is one of the most widely known. In

the next Section we report the procedure of finding the ground–state eigenvector

and, in Section 2.2.2, the methods for calculating dynamical properties within the

Lanczos algorithm.
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2.2.1 The ground–state algorithm

The basic idea of the Lanczos method is that a special basis can be constructed

where the Hamiltonian has a tridiagonal representation. This is carried out itera-

tively, as shown below. First, it is necessary to select an arbitrary vector |φ0〉 in the

Fock space of the model being studied. If the Lanczos method is used to obtain the

ground state of the model |ψ0〉, then it is necessary that the overlap between |ψ0〉
and the initial state |φ0〉 be nonzero. If no a priori information about the ground

state is available, this requirement is usually easily satisfied by selecting an initial

state with randomly chosen coefficients in the working basis that is being used.

If some other information about the ground state is known, like its total momen-

tum and spin, then it is convenient to initiate the iterations with a state already

belonging to the subspace having this quantum numbers (and still with random

coefficients within this subspace). The randomly–chosen coefficients of the initial

vector |φ0〉 are strongly recommended to avoid systematical errors in the resulting

ground–state correlation functions.

After |φ0〉 is selected, we define a new vector by applying the Hamiltonian H
to the initial state. The resulting vector is split in components parallel to |φ0〉, and

|φ1〉 orthogonal to it, respectively,

H |φ0〉 = a0 |φ0〉+ b1 |φ1〉 . (2.14)

Since H is Hermitian, a0 = 〈φ0|H |φ0〉 is real, while the phase of |φ1〉 can be

chosen so that b1 is also real. In the next step H is applied to φ1,

H |φ1〉 = b′1 |φ0〉+ a1 |φ1〉+ b2 |φ2〉 , (2.15)

where |φ2〉 is orthogonal to |φ0〉 and |φ1〉. It follows also b′1 = 〈φ0|H |φ1〉 = b1.

Proceeding with the iteration one gets in i–th step

H |φi〉 = bi |φi−1〉+ ai |φi〉+ bi+1 |φi+1〉 , 1 6 i 6 M. (2.16)

By stopping the iteration at i = M and putting the last coefficient bM+1 = 0,

the Hamiltonian can be represent in the basis of orthogonal Lanczos functions

{|φi〉 , i = 0 . . .M} as the tridiagonal matrix

HM =




a0 b1 0 · · · 0

b1 a1 b2
...

0 b2 a2
. . . 0

...
. . .

. . . bM
0 · · · 0 bM aM




(2.17)
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Such matrix is easily diagonalized using standard numerical routines (Press et al.,

1992) to obtain approximate eigenvalues ǫj and the corresponding orthonormal

eigenvectors |ψj〉,

|ψj〉 =
M∑

i=0

cji |φi〉 , j = 0 . . .M. (2.18)

It is important to realize that |ψj〉 are (in general) not exact eigenfunctions of H ,

but show a remainder

H |ψi〉 − ǫj |ψi〉 = bM+1c
j
M |φM+1〉 . (2.19)

Therefore, the procedure could be regarded as well–controlled, since the norm of

the vector on the right–hand side of Eq. (2.19) can be easily calculated. On the

other hand, it is evident from the diagonalization of HM , that matrix elements

〈ψi|H |ψj〉 = ǫjδij, i, j = 0 . . .M (2.20)

are exact, with no restriction to the subspace LM = span{|φi〉 , i = 0 . . .M}.

The above identity shows the usefulness of the Lanczos method for calculation of

particular matrix elements (see next Section).

If in the equation (2.16) bM+1 = 0, we find a (M+1)–dimensional eigenspace

where HM is already an exact representation of H . This inevitably happens when

M = Nst − 1, but for M < Nst − 1 it can only occur if the starting vector is

orthogonal to some invariant subspace ofH . This usually represent a systematical

error in selection of |φ0〉, and should not be the case if the input vector |φ0〉 is

random, without any hidden symmetries.

Within the Lanczos algorithm the extreme (the smallest and the largest) eigen-

values ǫi, along with their corresponding |ψi〉, are rapidly converging to exact

eigenvalues Ei and eigenvectors |Ψi〉. It is quite characteristic that usually (for

nondegenerate states) M = 30 ÷ 60 ≪ Nst is sufficient to achieve the conver-

gence to the machine precision of the ground–state energy E0 and the wavefunc-

tion |Ψ0〉, from which various static and dynamical properties can be evaluated.

The number of operations needed to perform M Lanczos iterations scales as

MNst. Numerically, the Lanczos procedure is subject to roundoff errors, intro-

duced by the finite–precision arithmetics. This problem usually only becomes

severve at M > 100 (more than needed to get accurate g.s. |Φ0〉) and is seen in

the loss of the orthogonality of vectors |φi〉. It can be remedied by successive

reorthogonalization (and normalization) of new states |φi〉, plagued with errors,

with respect to previous ones. However, this procedure requires ∼ M2Nst opera-

tions, and can become computationally more demanding than Lanczos iterations

alone. This effect prevent one using the Lanczos method, e.g. to tridiagonalize

fully large matrices.
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2.2.2 Dynamical response in the ground state

One of the most appealing features of the Lanczos method is that it allows the

calculation of dynamical properties of a given Hamiltonian (Haydock, Heine and

Kelly, 1972; Gagliano and Balseiro, 1987). Before the Maximum Entrophy method

(van der Linden, 1995; Jarrel and Gubernatis, 1996) for quantum Monte Carlo

technique have been developed, the Lanczos approach was the only reliable tech-

nique for evaluating dynamical responses in a controlled way (and for the frus-

trated systems still is). For small systems of N . 16 sites (for Hubbard model)

the Lanczos method still remains optimal from the computational point of view.

After |Ψ0〉 is obtained, the g.s. dynamic correlation functions can be calculated

within the same framework. Let us consider the autocorrelation function

CA(t− t′) = −i 〈Ψ0|A†(t)A(t′) |Ψ0〉 = −i 〈Ψ0|A†ei(E0−H)(t−t′)A |Ψ0〉 , (2.21)

where A is the operator that we are analyzing (which depends on the actual ex-

perimental setup under consideration), A(t) is the Heisenberg representation of

A, |Ψ0〉 is the ground state of the Hamiltonian H , whose ground–state energy is

E0. Many experiments, like (inverse) photoemission, inelastic neutron scattering,

and nuclear magnetic resonance, measure directly the Fourier transform CA(ω) of

CA(t− t′), which is given by

CA(ω) = −i
∫ ∞

0

dtei(ω+iη)tCA(t) = 〈Ψ0|A† 1

ω + iη + E0 −H
A |Ψ0〉 , (2.22)

where ω is the frequency and η>0 is the small (real) number introduced in the cal-

culation to shift the poles of the Green’s function into the complex plane. Usually,

we are interested in calculating the spectral intensity, which is defined by

IA(ω) = −1

π
ImCA(ω) = −1

π
Im 〈Ψ0|A† 1

ω + iη + E0 −H
A |Ψ0〉 . (2.23)

Introducing a complete basis,
∑

n |Ψn〉 〈Ψn| = 1 and using the identity

1

x+ iη
= P

(
1

x

)
− iπδ(x),

valid for η → 0 (where x is real, amd P denotes the principal part), we arrive at

IA(ω) =
∑

n

|〈Ψn|A |Ψ0〉|2 δ(ω − (En − E0)), (2.24)

which is another way of expressing the spectral decomposition of a given oper-

ator. |Ψn〉 are selected as eigenvectors of the Hamiltonian with eigenvalues En.
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In practice, the δ functions are smeared by a finite ǫ, i.e. they are replaced by

Lorentzians according to

δ(x) → 1

π

ǫ

x2 + ǫ2
. (2.25)

In order to evaluate numerically Eq. (2.24), it is convenient to write down

the Hamiltonian in the Lanczos basis |φi〉 (see previous Section), but, instead of

starting iterations with a random state, we chose now

|φ0〉 = A |Ψ0〉 /
√

〈Ψ0|A†A |Ψ0〉 (2.26)

as an initial configuration. Let us consider, following Fulde (1991), the matrix

(z − HM) and the identity (z − HM)(z − HM)−1 = I , where z = ω + iǫ + E0.

The the first–row, first–column element of the matrix (z −HM)−1 corresponds to

〈φ0|
1

z −H
|φ0〉 ,

which is the quantity we want to study in Eq. (2.23). Using the Cramers rule to

invert the matrix (z −HM), one can easily represent the spectral intensity (2.23)

in the continued–fraction form (Haydock et al., 1972)

IA(ω) = −1

π
Im

〈Ψ0|A†A |Ψ0〉

z − a0 − b21

z − a1 −
b22

z − a2 − . . .

,







(2.27)

where ai and bi are the elements of the tridiagonal matrix HM , evaluated within

the Lanczos algorithm starting from the initial state Eq. (2.26), and the form termi-

nates with bM+1 = 0. Recalling that z = ω+iǫ+E0 and knowing the ground–state

energy of the system, we can, for any value of frequency ω and of the width ǫ, ob-

tain the spectral function. From the eigenvalues of the Hamiltonian HM we can

get very accurately the positions of the poles in the spectral function.

In practice, in order to get the dynamical response of a finite cluster it is the

best to proceed in two steps. First, to run the Lanczos subroutine using Eq. (2.26)

as the initial state. It is clear that, with this procedure, we are testing the subspace

of the Hilbert space in which we are interested (and which is, in general different

from the subspace explored by the ground–state Lanczos procedure, cf. Section

2.2.1). Thus, all the states found in the Lanczos step will contribute to the spectral

function (there will be M + 1 poles as M iterations are carried out, assuming that

M + 1 is smaller than the dimension of the subspace being explored). Secondly,

in order to find the intensity of each pole, it is useful to recall that that any energy

eigenvector |ψj〉 of the tridiagonal representation of the Hamiltonian HM can be
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written as in Eq. (2.18), where now |φi〉 are the orthonormalized vectors defined

in the Lanczos procedure, with |φ0〉 given by Eq. (2.26). Then, it can be easily

shown that

|〈ψj |A |Ψ0〉|2 =
∣∣cj0
∣∣2 〈Ψ0|A†A |Ψ0〉 , (2.28)

and thus the intensity can be can be written in terms of the first component of

each eigenvector obtained when the tridiagonal Hamiltonian matrix HM is diago-

nalized, i.e.

IA(ω) ≈
M∑

j=0

∣∣cj0
∣∣2 〈Ψ0|A†A |Ψ0〉 δ(ω − (ǫj − E0)), (2.29)

where eigenvalues ǫj corresponds to eigenvectors |ψj〉 and different notation is

used for the ground–state wavefunction |Ψ0〉 and energy E0 to underline they

may, in general, belong different subspace of the full Hilbert space.

In summary, the whole procedure simply amounts to a Lanczos run with a very

particular initial state. To test the convergence of the procedure, it is generally

enough to plot the spectral function with a particular ǫ in Eq. (2.25), and to test

by eye how the results evolve with the number of iterations. Other more formal

methods to terminate the iterations can also be implemented (Pettifor and Weaire,

1985; Viswanath and Müller, 1990; Viswanath and Müller, 1991).

2.2.3 Relation to other numerical methods

Numerical approaches to strongly correlated electrons predominantly can be di-

vided into two categories: the Quantum Monte Carlo (QMC) methods and exact

diagonalization (ED) methods. As we have already mentioned, in ED methods

(e.g. the Lanczos method), the computational effort scales exponentially with the

system size N , that limits their applicability to small clusters only. On the other

hand, when choosing Lanczos technique, one has to make a very mild assumption

about the considered model, since the computational time depends smoothly on

the number of terms in the Hamiltonian in local basis, and does not depend at all

on the parameter values. This is not the case in QMC, when one can easily cross

the border between the sign–free and sign–plagued problems. For this reason,

the Lanczos method remains still the only method of well–controlled numerical

study of various systems, e.g. with magnetic frustration, or with long–range in-

teractions, as considered in this thesis. Major advantages of Lanczos method for

the latter application are listed at the end of this Section. Here we mention only

that the recently developed finite–temperature Lanczos method (FTML) by Jaklič

and Prelovšek (1994), combining the Lanczos algorithm with a random sampling,

allows for analogous treatment of many–body quantum models at T > 0 (Jaklič

and Prelovšek, 2000) as a standard Lanczos method for T = 0.
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A complete study of the system thermodynamical, dynamical, transport and

ground–state properties without restriction on the type of model is a challenging

goal. There are, however, problems for which other specific numerical techniques

provide valuable insight, as they are capable of reaching large N (the computa-

tional effort scales as a power of N). These are:

(i) density–matrix renormalization group (DMGR), applied to general 1D sys-

tems (White, 1998),

(ii) world–line loop QMC applied to non–frustrated spin systems in arbitrary

dimensions (Evertz, Lana and Marcu, 1993), and

(iii) auxiliary–fields QMC methods (Blankenbecler, Scalapino and Sugar, 1981).

Apart form restriction to 1D systems, DMGR method (i) strongly prefers open

boundary conditions (computation time scales as m2 for PBC and as m for open–

BC, where m is the number of leading eigenvalues of the density matrix included

in the calculation). Convergence of the method become also rapidly slower with

the range of interactions, which makes DMGR method not suitable for the sys-

tems with unscreened long–range Coulomb interactions. In spite of the above

limitations, DMGR remains the powerful extension of ED methods in 1D, as it

provides physical properties of various systems containing N = 100 ÷ 200 sites

with precision unreachable for the finite–time QMC averaging.

In the method (ii) computational efforts scales linearly with N , that allows

one to reach huge system size N ∼ 106. This is because in this class of meth-

ods the path–integral formulation of the imaginary time propagation maps d–

dimensional quantum system onto (d+1)–dimensional simple classical system.

Within the World–Line QMC algorithm (Hirsch, Scalapino, Sugar and Blanken-

becler, 1981) this mapping relates 1D XYZ quantum spin chain to an eight–vertex

model (Barma and Shastry, 1978) or 1D t–J model to the 15–vertex model (Assaad

and Würtz, 1991). Although world–line methods are simple and powerful, they

are also limited to very specific systems, so that no significant progress have been

observed in this field since the early 90’s.

The last method (iii) is the only QMC algorithm capable of handling a class

of models with spin and charge degrees of freedom in dimension larger than

unity, such as 2D Hubbard model, which plays a special role in theoretical de-

scription of high–Tc superconductivity (Assaad, Hanke and Scalapino, 1994).

In the determinantal approach to lattice models (Assaad, 2002), which exists

in both ground–state and finite–temperature versions, CPU time scales as N3,

so relatively large systems of N ∼ 100 sites can be studied. The situation is

even better in a very much related Hirsch–Fye impurity algorithm (Hirsch and

Fye, 1986), where one can consider infinite system with a single impurity. The
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latter method has been used extensively in the context of dynamical mean field

theories (Jarrell, 1992; Georges, Kotliar, Krauth and Rozenberg, 1996). However,

electron correlations in many cases leads to the sign–problem, which remains the

central challenge in QMC simulations. Insight into the origin of the sign–problem

was provided by Fahy and Hammann (1990), and is beyond the scope of this brief

review. We mention only, that for sing–plagued models the computational effort

scales exponentially with N (and with the inverse temperature β), that makes the

system intractable except for very high temperatures. Defining auxiliary fields

in the way which explore the special symmetries of a given model, we avoid the

sign–problem in many cases; a remarkable progress has been made for the case of

Kondo–lattice models (Capponi and Assaad, 2001).

An interesting generalization of the Lanczos method for QMC simulations

have been recently proposed by Sorella (2001). In the effective Hamiltonian

approach the Lanczos algorithm is used to perform systematic corrections to a

variational wavefunction (of Jastrow type), obtained from fixed–node variational

QMC. The method combines the efficiency of Lanczos with possibility to study

large systems of N ∼ 100 sites. However, at the present stage, it is not capable of

providing an estimate of the dynamical and transport properties.

To summarize this overview, we recall the main features of the Lanczos me-

thod, which brought us to apply it for diagonalization of the Hamiltonian in our

method combining the first– and the second–quantization scheme (EDABI). In

brief, there are three most remarkable advantages of the Lanczos algorithm in

comparison to other methods, when applied to small clusters:

• Accuracy. The Lanczos method is free of systematic errors. When starting

from a random initial state, the system properties converge to their exact

values usually up to the machine round–off errors.

• Efficiency. The method is actually the fastest for small clusters, when nec-

essary information fits into the machine RAM memory.

• Universality. A very mild assumptions are made about the system Hamil-

tonian. CPU time scales predictably when new term are added.

For future applications to larger systems, particularly for the ladders, the auxiliary–

fields QMC and the Maximal Entrophy method (van der Linden, 1995; Jarrel and

Gubernatis, 1996) look very promising as the sign–problem is absent in 1D. How-

ever, some additional model assumptions must be done.
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Chapter 3

Correlated electrons in nanochains

The discussion of 1D systems in a half–filled band sector is interesting for few rea-

sons. From one hand, we have an analytical solution of Hubbard model obtained

by Lieb and Wu (1968), in which ground state is insulating for arbitrary small

Coulomb repulsion U . This result was complemented with weak–coupling renor-

malization group analysis by Fabrizio (1996), who showed that umklapp processes

drives any half–filled system with two Fermi points to an insulating state. On the

other hand, we have experimental results for quantum rings and wires (Jacak,

Hawrylak and Wójs, 1998; Ge, Prasad, Andresen, Bird, Ferry, Lin et al., 2000)

and nanotubes (Mintmire, Dunplap and White, 1992; Frank et al., 1998), which

demonstrate the metallic behavior even for s–band systems, such as Na nanowires

(Krans et al., 1995; Yanson et al., 1999).

This apparent contradiction has been partially lifted by an analysis of para-

metrized models with additional interactions. Strack and Vollhardt (1993) re-

ported the presence of a metal–insulator transition (MIT) in the extended Hub-

bard model with correlated hopping V =−t (where t is the hopping magnitude).

Daul and Noack (2000) studied the model with second–neighbor hopping t′ and

found MIT for t′ = 0.5t. In these models the 2–point structure of the Fermi sur-

face is destroyed by the artificially large additional terms, which do not seem to

be relevant in real atomic or molecular systems. Similar restriction concerns the

condensation–like MIT described by Lin and Hirsch (1986) in the model with

nearest–neighbor Coulomb interaction K = U . Extensive numerical study of

1D systems with long–range Coulomb interactions are, however, not common as

yet. The only complete analysis of MIT in such a system was done for spinless

fermions (Capponi, Poilblanc and Giamarchi, 2000).

A separate problem concerns the transport properties of a finite–size system,

where the separation between quasiparticle levels result always in a finite charge–

gap and, additionally, the electron tunneling through a finite barrier leads always

to a finite conductivity. In this context, we address the question of metallicity

19
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appearance in correlated quantum dots and correlated atomic chains and rings.

In this Chapter we complement our previous study of the correlated 1D chain

(Spałek and Rycerz, 2001; Rycerz and Spałek, 2002). The analysis here is per-

formed systematically in the Gaussian 1s–like basis (for the basis definition and

properties cf. Appendix A), and using the boundary conditions that minimize

ground–state energy for a given system size N (cf. Section 3.3.2). Brief compari-

son with the results for the Slater–type orbitals, used previously, is also provided

in Section 3.2.3.

3.1 The Hamiltonian

We consider the system of Ne electrons on N lattice sites, each containing a sin-

gle valence orbital and an infinite–mass ion (i.e. we start from hydrogenic–like

atoms). Including all long–range Coulomb interaction and neglecting other terms,

one can reduce the generic lattice Hamiltonian (2.3) to the form

H = ǫa
∑

i

ni + t
∑

iσ

(
a†iσai+1σ + HC

)

+U
∑

i

ni↑ni↓ +
∑

i<j

Kijninj +
∑

i<j

Vion (Rj −Ri) . (3.1)

The first term represents the atomic energy (we include it explicitly, since ǫa
changes with the varying lattice constant). The second describes the kinetic en-

ergy of the system with nearest–neighbor hopping t. Next two terms express the

intra– and interatomic Coulomb interaction. The last term is the Coulomb repul-

sion between the ions located at positions {Ri}, included for the same reasons as

the atomic energy ǫa.

Derivation of the microscopic parameters for a given Wannier basis {wi(r)}
and their numerical values are provided in the next two sections. Here we recall

only the definitions of single– and two–particle parameters tij (2.4) and Vijkl (2.5),

which lead to

ǫa = tii = 〈wi|T |wi〉 , t = ti,i+1 = 〈wi|T |wi+1〉 , (3.2)

and

U = Viiii = 〈wiwi| V |wiwi〉 , Kij = Vijij = 〈wiwj| V |wiwj〉 . (3.3)

The operator T represents the full single–particle lattice potential, i.e.

T (r) = − ~
2

2m
∇2 −

∑

j

e2

|r−Rj |
a.u.
= −∇2 −

∑

j

2

|r−Rj|
, (3.4)
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where a.u. means the expression in atomic units. V = e2/|r1 − r2| is the usual

Coulomb potential (we do not include any screening by e.g. core electrons as we

want to discuss the model situation, but in a rigorous manner). Analogously, the

Coulomb repulsion between ions Vion = V .

The interatomic Coulomb term in the Hamiltonian (3.1) can be represented as

a following

∑

i<j

Kijninj =
∑

i<j

Kij(ni − 1)(nj − 1)−
∑

i<j

Kij + 2Ne
1

N

∑

i<j

Kij

= HK +Ne
1

N

∑

i<j

Kij + (Ne −N)
1

N

∑

i<j

Kij, (3.5)

where we use the relation Ne =
∑

i ni and introduce the symbol HK for the

long–range Coulomb interaction. Substituting (3.5) to the Hamiltonian (3.1) and

representing the ionic repulsion in the form

∑

i<j

2

Rij
= Ne

1

N

∑

i<j

2

Rij
− (Ne −N)

1

N

∑

i<j

2

Rij

(in Rydbergs), where Rij = |Rj −Ri|, we obtain that

H = Neǫ
eff
a +Ht +HU +HK + (Ne −N)

1

N

∑

i<j

(
Kij −

2

Rij

)
. (3.6)

We denote kinetic energy and intraatomic Coulomb interaction terms by Ht and

HU (respectively), the effective atomic energy is defined (in Ry) as

ǫeffa ≡ ǫa +
1

N

∑

i<j

(
Kij +

2

Rij

)
. (3.7)

The effective atomic energy contains the electron attraction to the ions, as well

as the mean–field part of their repulsion (Kij), and the ion–ion interaction. Such

definition preserves correctly the atomic limit, when the distant atoms should be

regarded as neutral objects. In practice, the above form is calculated numerically

with the help of Richardson extrapolation for N → ∞ (Burden and Faires, 1985).

One can find it converges exponentially with N , whereas bare ǫa is divergent

harmonically, due to ∼ 1/r Coulomb wells in the single–particle potential (3.4).

The situation is more subtle in the case of hopping integral t, and will be discussed

in Section 3.1.1.

Last term in the Hamiltonian (3.6) vanish for the half–filled band case Ne =
N , as it is ∝ (Ne−N). It also does not affect the system charge gap (as it depends

linearly on Ne), and the correlation functions away from half filling (as a constant
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term). For these reasons, we skip the last term in (3.6) in all the further analysis.

Therefore, recalling the definitions of the terms Ht, HU , and HK , we can write

down the system Hamiltonian in the form

H = ǫeffa
∑

i

ni+ t
∑

iσ

(
a†iσai+1σ + HC

)
+U

∑

i

ni↑ni↓+
∑

i<j

Kijδniδnj, (3.8)

where δn ≡ ni − 1. Thus all the mean–field Coulomb terms are collected in ǫeffa ,

whereas the last term in the above Hamiltonian represent the correlated part of

the long–range interactions.

3.1.1 Wannier basis and tight–binding approximation

The parameters of our model Hamiltonian (3.8) are define by Eq. (3.2) and (3.3) in

terms of Wannier basis {wi(r)}. In the framework of tight–binding approximation

(TBA) one can postulate Wannier functions in the form

wi = β [Ψi − γ(Ψi−1 +Ψi+1)] , (3.9)

where Ψj represents the atomic function (i.e. of 1s type) centered on site j (see

Appendix A and B for details). The above finite expansion is validated by an

exponential drop of Wannier functions (Kohn, 1959; Zeiner, Dirl and Davies,

1998). The orthogonality relation 〈wi|wi±1〉 = 0 and the normalization condi-

tion 〈wi|wi〉 = 1 leads to coefficients of the expansion (3.9)

γ =
S1

(1 + S2) +
√

(1 + S2)2 − S1(3S1 + S3)
, (3.10)

and

β =
[
1− 4γS1 + 2γ2(1 + S2)

]−1/2
, (3.11)

where we define the overlap integral of atomic functions Sm = 〈Ψi|Ψi+m〉 (the

normalization S0 = 〈Ψi|Ψi〉 = 1 is supposed).

The above expressions are well–defined if the quantity under the square root

in Eq. (3.10)

∆ = (1 + S2)
2 − S1(3S1 + S3) > 0,

which is the case for all the lattice constants studied here (see Table 3.1 for nu-

merical values). The actual limits of TBA comes with nonzero overlap integral

of Wannier functions defined by Eq. 3.9, when considering the second–neighbor

sites

〈wi|wi+2〉 = β2γ2.
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TABLE 3.1: Wannier–basis parameters for 1D chain calculated in the Gaussian

STO–3G basis (see Appendix A) as a function of lattice parameter a (a0 is the

Bohr radius). The values of the optimal inverse orbital size αmin are also provided.

a/a0 αmina0 β γ 〈wi|wi+2〉 ∆
1.5 1.363 1.41984 0.32800 0.21689 0.34735

2.0 1.220 1.23731 0.26301 0.10590 0.50525

2.5 1.122 1.14133 0.20965 0.05725 0.63980

3.0 1.062 1.08190 0.16246 0.03089 0.75691

3.5 1.031 1.04394 0.12013 0.01573 0.85349

4.0 1.013 1.02216 0.08568 0.00768 0.92009

4.5 1.007 1.01010 0.05795 0.00343 0.96170

5.0 1.004 1.00429 0.03779 0.00144 0.98327

6.0 1.001 1.00063 0.01451 0.00021 0.99749

7.0 1.000 1.00007 0.00483 2.3·10−5 0.99972

8.0 1.000 1.00001 0.00139 1.9·10−6 0.99998

10.0 1.000 1 7.3·10−5 5.3·10−9 1

Numerical values of the overlap remainder 〈wi|wi+2〉 are also gathered in Table

3.1. The above nonorthogonality may strongly affect the second neighbor hop-

ping, as a zero–overlap is crucial for the convergence of hopping integral on an

lattice providing the single–particle potential of the form (3.4). However, as the

only term involving second–neighbors in our Hamiltonian (3.8) is the interatomic

Coulomb repulsion K2, the presented TBA approach seems sufficient for the pur-

pose of this thesis.

Substituting Eq. (3.9) to (3.2) we obtain the expressions for single–particle

parameters

ǫa = β2
[
ǫ′a − 4γt′1 + 2γ2(ǫ′a + t′2)

]
, (3.12)

and

t = β2
[
t′1 − 2γ(ǫ′a + t′2) + γ2(3t′1 + t′3)

]
, (3.13)

where primes denotes the parameters in the atomic basis, namely ǫ′a = 〈Ψi|T |Ψi〉
and t′m = 〈Ψi|T |Ψi+m〉. The detailed formulas for ǫ′a and t′m are provided in

Appendix A for the Gaussian–type orbitals and in Appendix B for the Slater–type.

Here we only emphasize, that as the terms up to third–neighbors are included in

Eq. (3.13) one should carefully apply TBA on the level of single–particle potential

T (r) defined by Eq. (3.4). This is the main goal of this section.

We already mentioned, that the atomic energy ǫa is divergent with the lattice

size N and define the convergent effective quantity ǫeffa (3.7). In case of hopping t
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FIGURE 3.1: Schematic representation of the Wannier functions (a) centered on

the neighboring sites wi(r) and wi+1(r), and (b) the resulting charge distribution

ρ(r) = w∗
i (r)wi+1(r). The values of the lattice parameter and the inverse orbital

size are a = 2a0 and αmina0 = 1.22, respectively.

the convergence is provided by an orthogonality of the Wannier functions wi and

wi+1. This is because, when calculating the hopping integral

t = 〈wi| T |wi+1〉 a.u.
= 〈wi| − ∇2 |wi+1〉+

∑

k

〈wi|Vk |wi+1〉 , (3.14)

one approaches to the series of electrostatic interactions between the continuous

charge distribution ρ(r) = w∗
i (r)wi+1(r) (depicted schematically in Figure 3.1)

and the ions, each providing the Coulomb well Vk(r) = −2/ |r−Rk| (in Ry)

located on the k–th lattice site, namely

〈wi|Vk |wi+1〉 = −
∫
d3rw∗

i (r)
2

|r−Rk|
wi+1(r).

In order to estimate the asymptotic behavior of t we take into account only the

leading term in the multipole expansion of the charge distribution ρ(r). Because

of the symmetry, the total charge q =
∫
d3rρ(r) = 0, as well as the dipole mo-

ment p =
∫
d3r rρ(r) = 0. Thus the first non–vanishing term is the quadrupole
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moment, defined as a traceless tensor

Qpq =

∫
d3r(3rprq − r2δpq)ρ(r)

(Jackson, 1975). The relevant contribution to the potential energy in (3.14) is

equal to

−1

6

∑

pq

Qpq
∂2U

∂rp∂rq

∣∣∣∣
RC

,

where U(r) =
∑

k Vk(r) is the total potential of the lattice and RC = (Ri+
Ri+1)/2 denotes the quadrupole position. The hopping integral t (3.14) become

now convergent with N → ∞ even in 3D, because of the symmetry (the distant

Coulomb wells do not influence the gradient of an electric field, ∂2U/∂rp∂rq ,
inside an infinite system).

Since the formal convergence of ǫeffa (3.7) and t (3.14) with N was shown, few

technical remarks should be added. In practice, when using the expressions (3.12)

and (3.13) one has to deal with the divergent quantities in the atomic basis (ǫ′a, t′1,

etc.) This may, in principle, plague the resulting values of ǫeffa and t with round–

off errors. This is fortunately no the case in 1D, where the divergence is harmonic

only, but should be considered carefully in 2D and 3D, where the divergence with

N is, respectively, of order ∼ N1/2 and ∼ N2/3. The problem could be managed

by making a particular transformation of the single–particle operator T (r)

T (r,ΣR) = T (r) + ΣR, (3.15)

where ΣR is a constant of the same asymptotic behavior as T (r), but has an oppo-

site sign, namely

ΣR =
∑

k

2

|Rc −Rk|
.

The transformation (3.15) affects the matrix elements in a following manner

tij(ΣR) = 〈wi| T + ΣR |wj〉 = tij + ΣRδij ,

so only the atomic energy ǫa = tii changes. The simple redefinition of the effective

atomic energy

ǫeffa (ΣR) = ǫa(ΣR) +

[
1

N

∑

i<j

(
Kij +

2

Rij

)
− ΣR

]
= ǫeffa ,

(brackets denotes the order of operations, essential on a finite–precision machine)

makes the model Hamiltonian (3.8) totally invariant under the transformation

(3.15).
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parameter a and inverse orbital size α are specified in a.u. Limiting values of the

hopping integral t∞ (in Ry) are obtained via the Richardson extrapolation in the

Slater–type basis.
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Additionally, the convergence of the hoping integral t depends dramatically on

the way, in which we cut-off distant Coulomb wells in a single–particle potential

T (r) when calculating the primed terms in Eq. (3.13). The most efficient method

we have determined relies on taking the same number of wells N for all primed

terms, namely

ǫ′a = 〈Ψi| T |Ψi〉 ≈ 〈Ψi| −∇2 |Ψi〉+
∑i+N/2

k=i−N/2
〈Ψi|Vk |Ψi〉 ,

t′1 = 〈Ψi| T |Ψi+1〉 ≈ 〈Ψi| −∇2 |Ψi+1〉+
∑i+N/2

k=i−N/2
〈Ψi|Vk |Ψi+1〉 , (3.16)

t′2 = 〈Ψi−1|T |Ψi+1〉 ≈ 〈Ψi−1| −∇2 |Ψi+1〉+
∑i+N/2

k=i−N/2
〈Ψi−1|Vk |Ψi+1〉 ,

t′3 = 〈Ψi−1|T |Ψi+2〉 ≈ 〈Ψi−1| −∇2 |Ψi+2〉+
∑i+N/2

k=i−N/2
〈Ψi−1|Vk |Ψi+2〉 .

The comparison of t obtained by using formulas (3.16) with the simplest choice

t′ij = 〈Ψi|T |Ψj〉 ≈ 〈Ψi| − ∇2 |Ψj〉+
j+1∑

k=i−1

〈Ψi| Vk |Ψj〉 (3.17)

is presented in Figure 3.2. We find, that the choice of N = 6 wells in Eqs.

(3.16) provides the same accuracy as N = 60÷ 70 in Eq. (3.17). This is because

the cut–off in T (r) via formulas (3.16) could be, approximately, regarded as a

transformation of the form (3.15), whereas Eq. (3.17) corresponds to different

constants ΣR in ǫ′a, t′1, etc. that lead to the invariance of the Hamiltonian only for

N ≫ 1. The results for N & 2000 in Figure 3.2 suffers from the finite–precision

numerical integration of the potential energy part in Eqs. (3.16) and (3.17), which

was of the order ∼ N · 10−7 Ry for the Slater type orbitals (see Appendix B).

However, the wide plateau, typically for N = 50 ÷ 2000 is sufficient to perform

the extrapolation to N → ∞. In practice, 2–nd order Richardson extrapolation

(Burden and Faires, 1985) for N = 20, 40 and 80 provides an excellent accuracy.

3.1.2 Interaction parameters

The only parameters of the Hamiltonian (3.8) not determined as yet are the intra–

and interatomic Coulomb repulsion U and Kij = K|i−j|. Since U = Kii, one can

express all of them in a compact formula obtained by substituting the expansion

(3.9) to the definition (3.3)

Kij = 〈wiwj|V |wiwj〉 =
∑

δ1δ2δ3δ4

Bδ1Bδ2Bδ3Bδ4 〈Ψi+δ1Ψj+δ2| V |Ψi+δ3Ψj+δ4〉 ,

(3.18)
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where δ1 . . . δ4 = −1, 0, 1 and

Bδ =

{
β, δ = 0

−βγ, δ = ±1
.

The sum in Eq. (3.18) contains 34 =81 terms, as each index δ assumes 3 values.

In practice, this number can be reduced to 36 by using the symmetry of V ′
ijkl =

〈ΨiΨj |V |ΨkΨl〉 terms with i↔ k and j↔ l, that clearly comes out in the same

integral form as (2.5).

In the case of Gaussian–type orbitals, all the V ′
ijkl terms in Eq. (3.18) are calcu-

lated explicitly, since the product of two Gaussians has still a Gaussian form (see

Appendix A). For the Slater basis, however, the compact formulas are available

only for two–site terms, namely the Coulomb repulsion K ′
ij = V ′

ijij , correlated

hoping V ′
ij = V ′

iiij , and the Heisenberg exchange integral J ′
ij = V ′

ijji = V ′
iijj (see

Appendix B). Numerical calculations for the Slater–type basis, if the three– and

four–site terms are included, requires an extansive computational effort. So, the

systematic analysis in the Gaussian–type orbitals becomes much more efficient.

The values of the model parameters, corresponding to the lattice spacing a/a0 =
1.5÷ 10, are presented in Table 3.2. The data correspond to the optimal values of

the inverse orbital size αmin, as displayed in Table 3.1. We also provide there the

values of the correlated hopping V and the Heisenberg–exchange integral J to

show that one could disregard the corresponding terms in the Hamiltonian (3.8).

TABLE 3.2: Microscopic parameters (in Ry) of 1D chain, calculated in the Gaus-

sian STO–3G basis. Corresponding values of the optimal inverse orbital size αmin

are provided in Table 3.1. The Richardson extrapolation with N → ∞ were used.

R/a0 ǫeffa t U V † J† K1 K2 K3

1.5 0.0997 -0.8309 2.054 -43.93 30.92 1.165 0.667 0.447

2.0 -0.5495 -0.4423 1.733 -23.81 21.06 0.911 0.501 0.334

2.5 -0.7973 -0.2644 1.531 -14.95 15.13 0.750 0.401 0.267

3.0 -0.9015 -0.1708 1.407 -10.99 10.91 0.639 0.334 0.222

3.5 -0.9483 -0.1156 1.335 -9.41 75.6 0.557 0.286 0.191

4.0 -0.9705 -0.0796 1.291 -8.74 4.93 0.493 0.250 0.167

4.5 -0.9815 -0.0549 1.270 -8.10 2.92 0.442 0.222 0.148

5.0 -0.9869 -0.0374 1.258 -7.07 1.57 0.399 0.200 0.133

6.0 -0.9908 -0.01676 1.249 -4.29 0.34 0.333 0.167 0.111

7.0 -0.9915 -0.00710 1.247 -1.96 0.05 0.286 0.146 0.095

8.0 -0.9917 -0.0027 1.247 -0.70 5·10−3 0.250 0.125 0.083

10.0 -0.9917 -2.5·10−3 1.247 -0.05 2·10−5 0.200 0.100 0.067
† The values of V and J are specified in mRy.
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The values of the effective atomic energy ǫeffa and the hopping integral t were

obtained by using Richardson extrapolation for the lattice size N → ∞ and Eqs.

(3.16) for calculating the corresponding parameters in the atomic basis. One can

note the values of t calculated in the Gaussian STO–3G basis (listed in Table 3.2)

differs from those obtained in Slater basis (presented in Figure 3.2) by less then

0.5% when using the same values of the inverse orbital size α. However, the

differences grow significantly, if α is optimized independently for the Slater basis

and the three– and four–site terms are not included in the atomic basis. More

detailed discussion of this problem is provided in the next section.

3.2 The optimized ground–state energy

We now consider a nanoscopic linear chain of N = 6 ÷ 10 atoms, each contain-

ing a single valence electron (hydrogenic–like atoms), including all long-range

Coulomb interactions (3– and 4–site terms are treated exactly in the Gaussian

STO–3G basis). We focus here on the so–called Extended Hubbard Model with

Hamiltonian (3.8).

3.2.1 Results from EDABI method

The Hamiltonian (3.8) is diagonalized in the Fock space with the help of Lanczos

technique. As the microscopic parameters ǫeffa , t, U , andKij are calculated numer-

ically in the Gaussian STO–3G basis, the inverse orbital size α of the 1s–like state

is subsequently optimized to obtain the ground state energy EG as a function of

the interatomic distance a. We have already shown (Rycerz and Spałek, 2001) that

such a combined exact diagonalization – ab initio study of the one dimensional

system provides precise values of the localization threshold, the electron–lattice

couplings, and the dimerization magnitude. However, the convergence of the re-

sults obtained with the Slater-type orbitals is not sufficient to be able to perform a

finite–size scaling with the lattice sizeN → ∞. This is because, when calculating

the microscopic parameters in the single–particle (Wannier) basis, one ignores the

three– and the four–site interaction terms, that represents an uncontrolled approx-

imation. Numerical illustration of this problem is provided in Section 3.2.3.

In contrast, for the Gaussian-type orbitals we can treat the three– and four–

site terms exactly. Their effects on the convergence of the results for the ground-

state energy EG and the optimal inverse orbital size αmin are shown in Figure 3.3

for N = 6 ÷ 10 atoms. These results were used to extrapolate the value of the

variational parameter αmin to larger N to speed up the computations. Figure 3.3

illustrates also the Hubbard localization criterion. Namely, for the interatomic
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distance a ≈ 3a0 the energy of the ideal metallic state (M), determined as

EM
G = ǫeffa − 4

π
|t|+ 1

N

∑

i<j

Kij 〈δniδnj〉 , (3.19)

where the charge–density correlation function 〈δniδnj〉 is calculated for the elec-

tron gas on the lattice

〈δniδnj〉 = −2
sin2(π |i−j| /2)

(π |i−j|)2

(for the half–filled band case), crosses over to that representing the Mott insulating

state (INS), with

EINS
G = ǫeffa . (3.20)

One usually adds the second–order perturbation correction to the energy of insu-

lating state (3.20) in the well–known form (Emery, 1979)

4t2

U −K1

(
〈Si · Si+1〉 −

1

4

)
,

where S is a spin operator and the Bethe–Ansatz result is 〈Si · Si+1〉 − 1/4 =
− ln 2 for the Heisenberg antiferromagnet. Here we only compare the two sim-

plest variational approaches, leading to the energies (3.19) and (3.20).

The critical value of a is very close to obtained for the 1s Slater–type orbitals

(Spałek and Rycerz, 2001). The validity of the Hubbard criterion for this one–

dimensional system is controversial, as the energy of the antiferromagnetic (so

Slater-type) Hartree–Fock solution (HF) is lower than those of M and INS. There-

fore, the detailed verification of this criterion by estimating the charge–energy gap

and transport properties of the correlated system is the main goal of this Chapter.

3.2.2 Hartree–Fock approximation

In this Section we describe briefly the Hartree–Fock (HF) solution included in

Figure 3.3. Since analytical HF equations for an infinite system described by the

Hamiltonian (3.8) are not easy to obtain, we apply here a fully numerical proce-

dure, capable of treating the system size N ∼ 103. The main advantage of this

approach is that we utilize an unrestricted Hartree–Fock (UHF) method, in which

no particular charge or spin order is supposed in the resulting Slater determinant.

It can be also easily generalized for the systems of a higher dimensionality, which

are, however, beyond the scope of this thesis.
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An effective Hartree–Fock version of the Hamiltonian (3.8), including the

long–range part of the Coulomb interaction, reads

HHF = ǫeffa
∑

i

ni + t
∑

iσ

(
a†iσai+1σ + HC

)
+ U

∑

i

(〈ni↑〉ni↓ + 〈ni↓〉ni↑

−〈ni↑〉 〈ni↓〉) +
∑

i<j

Kij (〈δni〉 δnj + 〈δnj〉 δni − 〈δni〉 〈δnj〉) (3.21)

−
∑

i<j,σ

Kij

(
〈a†iσajσ〉a†jσaiσ + 〈a†jσaiσ〉a†iσajσ − |〈a†iσajσ〉|2

)
.

The above effective Hamiltonian has the form HHF = HHF
↑ +HHF

↓ (up to constant

terms), where the commutator [HHF
↑ , HHF

↓ ] = 0, as the particles with σ =↑ are

coupled to those with σ =↓ by a diagonal (Hartree) term only. Because of that

property, one can diagonalize separately the N × N Hamiltonian for σ =↑ and

that for σ =↓.

We start the self–consistent procedure by choosing the set of N/2 random, or-

thogonal wavefunctions for σ =↑ and separate for σ =↓ (we suppose an absence

of global magnetization). Then, the cumulants 〈a†iσajσ〉 are estimated, and the

resulting HF Hamiltonians for σ =↑, ↓ are diagonalized with standard numerical

routines (Press et al., 1992). Having obtained new sets of N/2 eigenfunctions

corresponding to the lowest–lying eigenvalues for σ =↑, ↓, we calculate new cu-

mulants 〈a†iσajσ〉. In the next step, we apply the relaxation scheme, namely, we

substitute the diagonal cumulants

〈niσ〉new → (1− η) 〈niσ〉new + η 〈niσ〉old ,

to avoid the oscillating solutions. In practice, the choice of η = 0.2÷0.5 provides

a convergent and efficient algorithm.

For the half–filled band case (Ne = N), we find for the above procedure

a convergence to the antiferromagnetic (AF) solution, with an uniform charge

distribution, and the alternating spin order, i.e.

〈δni〉 = 1− n̄ = 0, 〈ni↑〉 − 〈ni↓〉 = (−1)im, (3.22)

where n̄ = Ne/N is the band filling and m is the magnetization. Typically, only

few domain walls appear due to the randomness of the initial–state choice. This

property suggest us to keep the diagonal cumulants satisfying AF order (3.22)

at each step, and determine only the magnetization m self–consistently (starting

random basis, as before). The values of ground–state energy, presented in Figure

3.3 and that of charge–energy gap, discussed in Section 3.3.4, are obyained within

such a modified procedure.
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3.2.3 Comparison with the results for the Slater–basis

We compare now the results obtained within EDABI method for the Gaussian–

and the Slater–basis sets. However, as the Wannier functions in the form (3.9)

lead to instabilities when using the Slater basis for the lattice parameter a . 3a0
(Rycerz, 2000), a few modifications must be introduced to make such comparison

possible. First of all, we reduce the interaction part of the Hamiltonian (3.8) to

the Hubbard term only, so we put 〈δniδj〉 ≈ 0 for i 6= j. Moreover, we take

six Coulomb wells only in the single–particle potential T (r), when calculating

ǫeffa and t via Eqs. (3.16) in the atomic representation. As the remaining part of

the approach is standard, we use formulas (3.12), (3.13), and (3.18) to estimate

the model parameters in the Wannier basis, whereas the quantities in the atomic

representation (primed) are calculated as described in Appendix A and B for the

Gaussian and the Slater base, respectively.

Numerical results for a chain containing N = 10 atoms are shown in Tables

3.3 and 3.4. The data for Gaussian–type STO–3G basis differ from those obtained

for the model with long–range Coulomb interaction and the single–particle poten-

tial of an infinite lattice (see Table 3.2) by less than 5%, whereas the errors for

the Slater–type orbitals approach of 30%. This is because, when using the Slater–

TABLE 3.3: Optimized inverse orbital size, microscopic parameters and the

ground–state energy for 1D chain of N = 10 atoms calculated in Gaussian–type

STO–3G basis and as a function of the interatomic distance. Intersite Coulomb

repulsionK1 is included on the mean–field level in ǫeffa , Hubbard U term is treated

exactly. Single–particle potential is approximated by six Coulomb wells.

a/a0 αmina0 ǫeffa t U K EG/N
1.5 1.309 0.1311 -0.8643 2.002 1.154 -0.5684

2.0 1.205 -0.5342 -0.4595 1.718 0.908 -0.8154

2.5 1.120 -0.7893 -0.2750 1.530 0.750 -0.9139

3.0 1.067 -0.8975 -0.1776 1.412 0.639 -0.9567

3.5 1.038 -0.9465 -0.1197 1.342 0.558 -0.9756

4.0 1.020 -0.9698 -0.0820 1.299 0.494 -0.9841

4.5 1.013 -0.9812 -0.0562 1.276 0.442 -0.9881

5.0 1.005 -0.9868 -0.0382 1.260 0.399 -0.9901

6.0 1.003 -0.9908 -0.0170 1.251 0.333 -0.9914

7.0 1.000 -0.9915 -0.0072 1.247 0.286 -0.9917

8.0 1.000 -0.9917 -0.0027 1.246 0.250 -0.9917

10.0 1.000 -0.9917 -0.0003 1.246 0.200 -0.9917
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TABLE 3.4: Optimized inverse orbital size, microscopic parameters and the

ground–state energy for N = 10 atoms calculated in Slater–type basis. Inter-

site Coulomb repulsion K1 is included on the mean–field level in ǫeffa , Hubbard U
term is treated exactly. Single–particle potential contains six Coulomb wells.

a/a0 αmina0 ǫeffa t U K EG/N
1.5 1.806 0.9103 -1.0405 2.399 1.695 0.0665

2.0 1.491 -0.1901 -0.5339 1.985 1.172 -0.5179

2.5 1.303 -0.6242 -0.3076 1.722 0.889 -0.7627

3.0 1.189 -0.8180 -0.1904 1.553 0.713 -0.8800

3.5 1.116 -0.9104 -0.1230 1.440 0.596 -0.9391

4.0 1.069 -0.9559 -0.0815 1.365 0.513 -0.9693

4.5 1.039 -0.9784 -0.0546 1.317 0.451 -0.9848

5.0 1.022 -0.9896 -0.0370 1.288 0.403 -0.9926

6.0 1.013 -0.9977 -0.0165 1.269 0.334 -0.9982

7.0 1.001 -0.9995 -0.0072 1.252 0.286 -0.9996

8.0 1.001 -0.9999 -0.0031 1.251 0.250 -0.9999

10.0 1.000 -1.0000 0.0003 1.250 0.200 -1.0000

TABLE 3.5: Optimized inverse orbital size, microscopic parameters and the

ground–state energy for 1D chain of N = 10 atoms, calculated in Gaussian–type

STO–3G basis. Long–range Coulomb interactions are included exactly, single–

particle potential contains six Coulomb wells.

a/a0 αmina0 ǫeffa t U K EG/N
1.5 1.322 0.1340 -0.8684 2.014 1.156 -0.7691

2.0 1.208 -0.5338 -0.4603 1.721 0.909 -0.9377

2.5 1.119 -0.7894 -0.2748 1.528 0.749 -0.9824

3.0 1.063 -0.8977 -0.1770 1.407 0.639 -0.9924

3.5 1.030 -0.9466 -0.1192 1.334 0.557 -0.9932

4.0 1.011 -0.9697 -0.0817 1.288 0.493 -0.9922

4.5 1.006 -0.9812 -0.0562 1.269 0.442 -0.9917

5.0 1.006 -0.9868 -0.0382 1.260 0.399 -0.9915

6.0 1.002 -0.9908 -0.0170 1.250 0.333 -0.9917

7.0 1.000 -0.9915 -0.0072 1.247 0.286 -0.9917

8.0 1.000 -0.9917 -0.0027 1.246 0.250 -0.9917

10.0 1.000 -0.9917 -0.0003 1.246 0.200 -0.9917
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type orbitals, we ignore the three– and four–site terms in the atomic basis, that

represents an uncontrolled approximation. Similar analysis of the existing Hub-

bard model solution for an infinite chain (Lieb and Wu, 1968) shows the absolute

difference . 10−2 Ry in the ground–state energy per site and the relative devia-

tion of order 10−4 ÷ 10−3 in the values of the model parameters (Kurzyk, Spałek,

Wójcik and Rycerz, 2003).

The corresponding results for N = 10 atoms in Gaussian basis, when the

long–range interactions are included, are presented in Table 3.5. One can notice,

that the long–range interaction leads to a relatively small difference between the

presented data and those in the Table 3.2. The major contributions to such differ-

ence comes from the single–particle potential energy. This explains the necessity

of using a quite sophisticated procedure, which is described in Section 3.1.1.

3.3 The ground–state properties

In this Section we analyze basic ground state correlation functions, the electron

momentum distribution and the charge–energy gap of a correlated 1D chain of

N = 4 ÷ 16 atoms. All the properties are calculated as a function of lattice

parameter a in the Gaussian–type STO–3G basis (see Appendix A). We use the

optimal values of the inverse orbital size αmin obtained from extrapolation of the

data forN = 6÷10, presented in previous Section (cf. Table 3.2). The main points

of the analysis presented here and in the next Section, are discussed in relation to

the Hubbard model, for which one has Mott–insulating state in 1D (Lieb and Wu,

1968) and to the quater–filled (QF) system with long–range Coulomb interaction,

which exhibits highly–conducting behavior (cf. Section 3.4).

3.3.1 Spin and charge correlation functions

In Figure 3.4 we present the set of basic correlation functions for the nanochain

described by Hamiltonian (2.1), obtained with the EDABI method. The oscillat-

ing spin–spin correlation function 〈Si · Sj〉 illustrates the antiferromagnetic na-

ture of the system ground state, particularly for a/a0 & 3 (cf. Figure 3.4a). The

long-range character of this order is confirmed by the nearest neighbor spin-spin

correlation function |〈Si · Si+1〉|, which is almost independent of R, whereas the

single-particle correlation function |〈a†iai+1〉| and the average double occupancy

〈ni↑ni↓〉, decrease exponentially with the increasing R (cf. Figure 3.4b, note the

logarithmic scale of the y-axis). The analysis of the density-density correlation

function 〈∆ni∆nj〉, (where ∆ni ≡ ni − n̄ and n̄ = Ne/N is the band filling)

provides the evidence that the system gradually transforms from a nanoscopic

metal to an insulator with growing R. In the half-filed band case (cf. Figure 3.4c),
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FIGURE 3.4: Basic correlation functions for nanochain: (a) spin–spin correlation

function 〈Si · Sj〉 vs. distance |i− j|; (b) absolute values of the nearest neighbor

spin–spin |〈Si · Si+1〉|, single–particle (hopping) correlation function |〈a†iai+1〉|,
and average double occupancy per site 〈ni↑ni↓〉, all vs. interatomic distance a
(specified in units of a0); (c) density–density fluctuation correlation function

〈∆ni∆nj〉 vs. distance |i− j| for the half–filled band case (Ne = N), and (d)
for the system containing two holes (Ne = N − 2).



3.3. THE GROUND–STATE PROPERTIES 37

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5  6  7  8

D
E

N
S

IT
Y

-D
E

N
S

IT
Y

 C
O

R
R

. F
U

N
.

NEIGHBOR DISTANCE,  |i-j|

(QF)N=16
a=1.5
a=3.0

  
  
  
  
  

a=4.0
a=5.0
a=8.0

  
  
  
  
  

 0

 0.1

 0.2

 0.3

 2  3  4  5  6  7  8

INTERATOMIC DISTANCE,  a (a.u.)

N=16
N=12
N=8

θ C
D
W

(a) (b)

FIGURE 3.5: Charge–density distribution for the quarter–filled (Ne = N/2)

nanochain: (a) density–density fluctuation correlation function 〈∆ni∆nj〉 vs. dis-

tance |i− j|, (b) charge–density wave order parameter for the alternating density–

density fluctuation (see main text for the definition) vs. interatomic distance a.

〈∆ni∆nj〉 diminishes significantly faster with the distance |i− j| for larger R,

whereas for the system containing 2 holes (cf. Figure 3.4d) an additional maxi-

mum appears at |i− j| = N/2 for a/a0 & 3; this can be interpret as follows: in

the metallic–like regime the added holes are distributed almost uniformly through-

out the system to minimize their band energy, whereas in the insulating limit (large

R) the Coulomb repulsion dominates, so the minimal energy respects the holes

located at the opposite sides of the system (i.e. at |i− j| = N/2 for the periodic

boundary conditions).

Such crossover behavior is strongly manifested for the quarter–filled band

case (cf. Figure 3.5). In QF chain of N = 16 atoms (cf. Figure 3.5a) the charge

is almost uniformly distributed for a . 3a0, but charge–density waves are formed

rapidly in the range a/a0 = 4÷ 5. The corresponding order parameter, defined as

θCDW =
1

N

∑

m

(−1)m 〈∆ni∆ni+m〉 , (3.23)

approaches its maximal value θCDW = 1/4 for a & 8a0 (cf. Figure 3.5b). The

above transition–like behavior seems similar to MIT observed by Capponi et al.

(2000) for spinless fermions, as we note that quarter–filling for S = 1/2 elec-

trons corresponds to the half–filled band case for spinless fermions. The corre-

spondence between charge–order transformation described here, and the resulting

system conductivity is discussed in Section 3.4.2.
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3.3.2 The boundary–condition problem

In the thermodynamic limit the system properties are the same, regardless which

boundary conditions are used. Nevertheless, the role of the boundary conditions

is of great importance when working with finite clusters. For 1D system at half–

filling (Ne = N) the so–called modified boundary conditions (MBC) are one

possibility (Jullien and Martin, 1982). For MBC, when N = 4n + 2 (where n is

natural number) true periodic boundary conditions (PBC) are used, whereas for

N = 4n one uses instead antiperiodic boundary conditions (ABC). This choice

follows from the different behavior of linear clusters withN = 4n+2 andN = 4n
sites, respectively (Rościszewski and Oleś, 1993; Fourcade and Sproken, 1984).

In practice, both PBC and ABC are implemented in a cluster with torus topology

(a ring in 1D); namely, the terminal annihilation operators in the Hamiltonian (3.8)

are substituted by {
aN+1,σ → a1σ for PBC,
aN+1,σ → −a1σ for ABC.

(3.24)

Therefore, the terminal hopping term involving the end atoms changes sign for

ABC, whereas the interaction terms ni↑ni↓ and ninj remain unaltered for both

PBC and ABC.

The effect of MBC on the ground–state energyEG of 1D nanochain with long–

range Coulomb interactions is illustrated in Table 3.6, where we use the extrapo-

TABLE 3.6: The effect of boundary conditions on the ground–state energies of 1D

nanochains when long–range Coulomb interactions are included.

EG/N , N = 8 EG/N , N = 10 EG/N , N = 12
a/a0 PBC ABC PBC ABC PBC ABC

1.5 -0.69911 -0.76236 -0.74908 -0.71131 -0.71732 -0.74225

2.0 -0.91386 -0.93660 -0.92973 -0.91767 -0.91927 -0.92633

2.5 -0.97524 -0.98164 -0.97857 -0.97593 -0.97602 -0.97721

3.0 -0.99049 -0.99168 -0.99062 -0.99030 -0.99008 -0.99013

3.5 -0.99256 -0.99270 -0.99234 -0.99232 -0.99216 -0.99217

4.0 -0.99200 -0.99201 -0.99186 -0.99184 -0.99169 -0.99171

4.5 -0.99156 -0.99156 -0.99149 -0.99148 -0.99134 -0.99142

5.0 -0.99143 -0.99148 -0.99144 -0.99143 -0.99130 -0.99135

6.0 -0.99163 -0.99164 -0.99163 -0.99163 -0.99157 -0.99157

7.0 -0.99170 -0.99170 -0.99169 -0.99169 -0.99169 -0.99169

8.0 -0.99169 -0.99169 -0.99169 -0.99169 -0.99169 -0.99169

10.0 -0.99169 -0.99169 -0.99169 -0.99169 -0.99169 -0.99169
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lated values of optimal inverse orbital size αmin listed in Table 3.1. The changes of

the ground–state energy due to boundary conditions are minimal, particularly for

larger system sizes N and lattice parameters a. This is because EG (and the corre-

sponding αmin) is rapidly convergent with N , as it was discussed in Section 3.2.1.

However, the choice of boundary conditions may have a significant influence on

other physical properties of the finite system. For example, the Drude weight D
is negative, when PBC are applied to the half–filled system of N = 4n sites (Fye,

Martins and Scalapino, 1991), whereas one can easily keep D > 0 by choosing

BC that minimize the ground–state energy (Góra, Rościszewski and Oleś, 1998).

We discuss this problem in more detail in Section 3.4.2.

We explain briefly here, why the minimalEG corresponds to particular bound-

ary conditions by analyzing the situation for noninteracting fermions. But first, we

provide the correspondence between MBC and the approach by Kohn (1964) in-

troducing a (fictitious) flux Nφ through a torus representing the lattice with PBC,

depicted schematically in Figure 3.6a. Such a flux indicates a vector potential

A(r), having a circulance

∮

C

A(r) · dl = Nφ, (3.25)

when moving around the lattice sites j = 1, . . . , N,N+1 ≡ 1. For discrete–lattice

model the vector potential A(r) can be introduced via a gauge transformation (the

Peierls construction)

ajσ → ajσ exp

(
i

∫
Rj

R0

A(r) · dr
)
, (3.26)

(where R0 is an arbitrary starting point) which effectively modifies the hopping

term in the Hamiltonian (3.8), namely

Ht [A(r)] = t
∑

j

[
exp

(
i

∫
Rj+1

Rj

A(r) · dr
)
a†jσaj+1σ + HC

]
, (3.27)

whereas diagonal and interactions terms do not change again. The only physical

information, contained in the phase differences

ϕj,j+1 =

∫
Rj+1

Rj

A(r) · dr

is the total flux Nφ, as the circulance (3.25) can be now written in a phases sum–

rule form ∑

j

ϕj,j+1 = Nφ. (3.28)
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FIGURE 3.6: Fictitious flux piercing

a finite ring: (a) schematic represen-

tation of a ring containing N sites,

(b) band structure of a half–filled

system of N = 8 sites for φ = 0,

and (c) for φ = π/N . Doubly oc-

cupied states are depicted by full cir-

cles, the Fermi level ǫF for N → ∞
is also indicated.

Different choices of ϕj,j+1 corresponding to the same sum (3.28) lead to the

Hamiltonians (3.27) that are equivalent up to the unitary transformation. This is

because vector potential itself is defined up to the gauge transformation

A(r) → A(r) +∇χ(r),

(where χ(r) is arbitrary scalar field), so one can have any values of ϕj,j+1 preserv-

ing the sum rule (3.28), by simple adjusting χ(r) appropriately. Thus, one usually

choose between two possibilities:

(i) equal phase differences ϕ1,2 = . . . = ϕN−1,N = ϕN,1 = φ, or

(ii) the phase difference concentrated at a single (i.e. terminal) bond

ϕ1,2 = . . . = ϕN−1,N = 0, ϕN,1 = Nφ.

Selection (i) is convenient for analytical purposes, as it allows us to study the

translationally invariant system in the representation of the same symmetry, whereas
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(ii) allows to work in real representation, and speed up numerical computations

for Nφ = 0 or π. In these special cases, the transformation of the form (3.26) is

unitary equivalent to (3.24), namely φ = 0 for PBC and φ = π/N for ABC.

The diagonalization of the single–particle Hamiltonian (3.27) in the represen-

tation (i) easily leads to the band energy of the form

ǫk(φ) = 2t cos(ka+ φ), (3.29)

so the eigenvalues of the system in presence of a fictitious flux φ are just shifted

in the momentum space. In effect, one can define the gauge–invariant momentum

Ka = ka+ φ, (3.30)

to obtain the dispersion relation (3.29) in the usual form ǫK = 2t cos(Ka). The

illustration for N = 8 (so N = 4n) and the half–filled band case is provided

in Figure 3.6. For φ = 0 (PBC, cf. Figure 3.6b) we have a doubly–degenerate

state on the Fermi level and system is frustrated. On the contrary, for φ = π/N
(ABC, cf. Figure 3.6c) we arrive at the closed–shell configuration and this value

corresponds to the minimal EG. For N = 4n + 2 the situations is opposite, and

one obtain the closed–shell (benzene–like) configuration in case of PBC. One can

repeat an analogous consideration in the quarter–filled band case, to obtain that

the ground–state energy minima correspond to PBC for N = 8n+4, and to ABC

for N = 8n, respectively.

The situation reviewed above for noninteracting particles does not change

qualitatively, when the interaction is switched on. If only the topology of a Fermi

surface is preserved, the rules for choosing between PBC and ABC will remain

the same. Problems with applying the optimal boundary conditions become non-

trivial in 2D, where various plane cluster configurations were analyzed ((Jaklič

and Prelovšek, 2000)). One usually generalizes the equal–phases case (i) and

optimizes two fictitious fluxes φx and φy to reach the minimum of EG. Such

procedure is, however, beyond the scope of this thesis.

In the remaining part of this Chapter we apply the boundary conditions that

minimize the ground–state energy for the particular system size N . Such proce-

dure, apart from providing the correct sign of Drude weight D (cf. Section 3.4.2),

as we have mentioned already, leads also to a smooth convergence of the charge

gap (cf. Section 3.3.4) and of the electron momentum distribution (cf. next Sec-

tion). One exclusion is made when analyzing the density of states and the spectral

function (cf. Section 3.4.1), where we plot the quantities for N = 12 using PBC,

in order to demonstrate the frustration effect, similar to that shown in Figure 3.6a,

but in the case of strongly–interacting system with a Slater gap.
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3.3.3 Tomonaga–Luttinger scaling

We discuss now the electron momentum distribution of 1D chain of N = 6 ÷
16 atoms to determine whether the system is either conducting (Luttinger–liquid

state) or insulating at the localization threshold. But first, we briefly summarize

the basic features of the homogeneous conductors, following Voit (1995).

Fermi liquid theory is based on a notion of quasi–particles evolving out of the

particles (holes) of a Fermi gas upon adiabatically switching interactions (Landau,

1957; Landau, 1959; Nozières, 1964). They are in one–to–one correspondence

with the bare particles and, specifically, carry the same quantum numbers and

obey Fermi–Dirac statistics. The existence of such quasi–particles formally shows

up through two main effects:

(i) a nonzero quasiparticle pole strength zk in a single-particle propagator

G(k, ω) =
zk

ω − (ǫk − ǫF ) + iδsgn(k − kF )
+Gincoh(k, ω) (3.31)

(with the standard notation), which gives them a finite lifetime τ diverging,

however, as τ ∼ (ǫk − ǫF )
−2 as the Fermi surface is approached, so that the

quasi–particles are robust against small displacements away from kF ; and

(ii) finite jump ∆nF of the momentum distribution function nk = 〈a†
k
ak〉 at

the Fermi ridge (k = kF ), exactly equal to the inverse quasi–particle mass

renormalization ∆nF = zkF .

One–dimensional conductors are very special that they retain a Fermi sur-

face (if defined as a set of points where the momentum distribution or its deriva-

tives has singularities, see below) enclosing the same k–space volume as that of

free fermions, in agreement with Luttinger’s theorem1 (Luttinger, 1960). How-

ever, there are no fermionic quasi–particles, and their elementary excitations are

rather bosonic collective charge (holons) and spin (spinons) fluctuations dispers-

ing with different velocities. An incoming electron decays into such charge– and

spin–excitation branches, which then separate spatially with time (the so–called

charge–spin separation).

To be more specific, salient properties of such 1D conductors include two

principal features:

(i) a continuous momentum distribution function, showing the singularity near

the Fermi level k ≈ kF in the form (Solyom, 1979)

nkσ = nF + A |kF − k|θ sgn(kF − k), (3.32)

1This theorem holds true as long as there is no phase transitions (induced by the interaction) in

the electron system.
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where θ is a non–universal (interaction–dependent) exponent; in conse-

quence, it yields the non–existence of fermionic quasi–particles (the quasi–

particle residue in (3.31) vanishes as zk ∼ |kF − k|θ when k → kF );

(ii) similar power–law behavior of all physical properties, particularly of the

single–particle density of states N (ω) ∼ |ω − µ|θ (pseudogap), that imply

a finite Drude weight D > 0 for θ < 1.

Those properties are generic for 1D conductors, but particularly prominent in

a 1D model of interacting fermions (TLM) proposed by Tomonaga (1950) and

Luttinger (1963), and solved exactly by Mattis and Lieb (1963) with the help of

bosonisation technique. The notion of Luttinger liquid was coined by Haldane

(1981) to describe these universal low–energy properties of gapless 1D quantum

systems, and to emphasize that an asymptotic (ω → µ, k → kF ) description can

be based on the Luttinger model in the same manner as the Fermi liquid theory is

based on the concept of an ideal Fermi gas. In the case of lattice models, such as

(extended) Hubbard, the Luttinger liquid behavior is predicted by the renormaliza-

tion group (RG) mapping onto TLM (Solyom, 1979). Through such mapping, one

can also expect the convergence of the momentum distribution nkσ (discrete for

finite N) to the continuous power–law form (3.32) with increasing N . This belief

was first checked numerically by Sorella et al. (1990) for the Hubbard model.

Here we present a similar approach to a finite 1D chain with long–range

Coulomb interaction, described by the Hamiltonian (3.8). The corresponding

electron–momentum distribution for half–filling (Ne = N) is depicted in Figure

3.7a in the linear, and in Figure 3.7b in the log–log scale. The data for N = 4n
(when using ABC) contain the substitution ka→ ka + π/N (cf. Eq. 3.30), to get

the gauge–invariant momentum distribution. In order to extract the exponent θ
accurately from the data for finite N , it was necessary to include also the higher

scaling corrections. They can be obtained from the Tomonaga mapping in the

form of an expansion in power of ln(π/|kF − k|a),
ln |nF − nkσ| = −θ ln z + b ln ln z + c+O(1/ ln z), (3.33)

where z ≡ π/|kF − k|. This singular form is required by the especially slow ap-

proach to the RG fixed point (Solyom, 1979); neglecting logarithmic corrections

one can extract from the derivative d ln |nF − nkσ|/d ln z the asymptotic form

(3.32) for k ≈ kF . Solid lines in Figures 3.7a and 3.7b represent the formula

(3.33), the best fitted values of the parameters θ, b and c are listed in Table 3.7.

The exponent θ is also ploted in Figure 3.7c as a function of the lattice parameter

a showing, that it crosses the critical value θ = 1 (corresponding to the metal–

insulator boundary in 1D) for acrit = 2.60a0. We also provide residual sum of

squares (cf. inset in Figure 3.7c) to show, that a quality of the fit (3.33) is worst

for a ≈ acrit, where the system is close to the metal–insulator transition.
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14 atoms with long–range Coulomb interactions: (a) momentum distribution for
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singular expansion in powers of ln(π/|kF − k|a) (see main text for details); (c)
Tomonaga–Luttinger model exponent θ vs. lattice parameter a (specified in a0)

and (in the inset) the corresponding residual sum of squares. The solid lines in

Figures (a) and (b) represent the TLM fitting of Eq. (3.33).
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TABLE 3.7: The fitted parameters of the singular expansion (3.33) for the electron

momentum distribution in the half–filled 1D chain with inclusion of long–range

Coulomb interactions. The standard deviation σ is also specified in each case.

a/a0 θ σ(θ) b σ(b) c σ(c)
1.5 0.138 0.015 0.147 0.024 -0.567 0.015

2.0 0.387 0.055 0.425 0.089 -0.346 0.053

2.5 0.893 0.122 0.971 0.196 0.084 0.118

3.0 1.307 0.128 1.315 0.207 0.357 0.125

3.5 1.433 0.085 1.264 0.137 0.262 0.082

4.0 1.455 0.186 1.113 0.299 -0.032 0.180

4.5 1.462 0.109 1.057 0.176 -0.384 0.106

5.0 1.413 0.133 0.943 0.214 -0.823 0.129
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FIGURE 3.8: Momentum distribution nkσ for electrons on a chain of N = 8÷ 16
atoms in the quarter–filled band case (Ne = N/2). Lines are drawn as a guide to

the eye only. Values of the lattice parameter a are specified in units of a0.
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TABLE 3.8: The fitted parameters of the singular expansion (3.33) for half–filled

1D chain described by the Hubbard model.

a/a0 θ σ(θ) b σ(b) c σ(c)
1.5 0.229 0.030 0.237 0.048 -0.537 0.029

2.0 0.803 0.100 0.855 0.162 -0.078 0.097

2.5 1.283 0.109 1.259 0.176 0.217 0.106

3.0 1.420 0.075 1.230 0.121 0.116 0.073

3.5 1.415 0.048 1.083 0.078 -0.163 0.047

4.0 1.436 0.069 1.033 0.111 -0.456 0.067

4.5 1.445 0.166 1.000 0.268 -0.801 0.161

5.0 1.371 0.037 0.873 0.060 -1.218 0.036

The electron momentum distribution for the quarter–filled band case (Ne =
N/2) is shown in Figure 3.8. The available number of datapoints was too small to

fit the singular formula (3.33) to a reasonable accuracy, so the lines in the plot are

the guide to the eye only. However, the smooth behavior of the Luttinger–liquid

type is evident for a . 4a0, whereas it changes dramatically for the larger values

of a. The correspondence with the charge–density wave transition mentioned in

Section 3.3.1 seems also visible.

The results for the half–filled Hubbard model, presented for comparison in

Figure 3.9 (and in Table 3.8) are qualitatively very similar to those in Figure 3.7

(when the long–range interactions are included). The critical value of the lattice

parameter acrit = 2.16a0 also does not differ drastically from the previous one.

This is because such nanoscopic systems may always show a conducting behavior

in the large–density limit as the external electron tunnels through a finite potential

barrier. Therefore, such half–filled band systems, both with– and without inclu-

sion of the long–range interactions can be regarded as close to the metal–insulator

transition, with no contradiction to the RG result by Fabrizio (1996). This discus-

sion is completed by the calculation of the charge–energy gap in the next section,

as well as of the system spectral function and the conductivity in Section 3.4.

The above results illustrate the important role of choosing appropriate bound-

ary conditions when studying such nanoscopic systems. Similar analysis per-

formed entirely for PBC has lead to quite different physical conclusions (Rycerz

and Spałek, 2003a). Namely, we obtained the Fermi–ridge discontinuity and a

quasiparticle mass divergence at the localization (MIT) threshold.

The situation depicted in this section does not settle completely the issue of

applicability of the Tomonaga–Luttinger concepts to nanoscopic chains. Namely,
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the Tomonaga–Luttinger distribution function (3.32) is, strictly speaking, valid

only close to the Fermi surface, where |k − kF | ≪ kF . As one can see from

Figures 3.7a and 3.9a, there are no points very close to kF . Additionally, the

fitting of the theoretical expansion (3.33) is definitly worse deeply below the Fermi

surface. Under these circumstances, our older interpretation (Spałek and Rycerz,

2001; Rycerz, Spałek, Podsiadły and Wójcik, 2002; Rycerz and Spałek, 2003a)

seems plausible, but only for the half–filled band case. On this basis, one can

clearly see that we need to extend our approach to larger N in order to distinguish

between the Fermi– and TL–liquid concepts in a clear fashion. This fundametal

problem will be critically reviewed by us in the near future.

3.3.4 Finite–size scaling estimate of MIT

For a further verification, whether the system is metallic or insulating in the Luttin-

ger–liquid like regime presented in previous section, we perform an extrapolation

with 1/N → 0 of the charge–gap defined (for the half–filling) as

∆EC(N) = EN+1
G + EN−1

G − 2EN
G , (3.34)

where ENe

G is the ground-state energy of the system containing Ne electrons. The

corresponding numerical results are shown in Figure 3.10. The extrapolation with

1/N → 0 performed using the 2–nd and the 3–rd order polynomials provides

nonzero value of ∆EC for any lattice parameter a; only for the lowest examined

value a = 1.5a0, E
Ne

G reaches zero within the extrapolation error; for other val-

ues, it is nonzero. The gap also is significantly smaller than the corresponding

Hartree–Fock (HF) value, in the regime a . 4.5a0, that suggests some kind of

reorganization of the dielectric state, e.g. from the Slater– to the Mott–type, as

discussed for parametrized models by Resta and Sorella (1999) and by Korbel,

Wójcik, Klejnberg, Spałek, Acquarone and Lavagna (2003). This hypothesis is

verified by estimating the system conductivity in Section 3.4.2. One should also

note the finite–size scaling on ∆EC seems to be quite insensitive on the boundary

conditions, namely the independent parabolic extrapolations with 1/N → 0 for

N = 4n and N = 4n+ 2, when PBC are using (Rycerz and Spałek, 2003b), lead

to the results which are very close to those presented in Figure 3.10.

The situation becomes completely different when we consider the quarter–

filled band case Ne = N/2 (cf. Figure 3.11). The parabolic extrapolation with

1/N → 0 provides now the value of the charge–gap ∆EC ≈ 0 (within the error-

bars) for lattice parameter a . 2a0. In the range of a/a0 = 2.5 ÷ 4.5 the gap

reaches nonzero values (significantly greater than the corresponding errorbars),

but random dispersion of the datapoints suggests instability of the performed ex-

trapolation due to nonanalytic behavior of ∆EC when the system is close to the
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metal–insulator transition. For a & 4.5a0 the gap smoothly grows to a nonzero

value corresponding to the insulating charge–density wave state, identified in Sec-

tion 3.3.1. The more precise position of the MIT point is determined in Section

3.4.2, where we calculate the Drude weight for the system.

3.4 Spectral and transport properties

In this Section we utilize the standard method of calculating dynamical properties

within the Lanczos algorithm (cf. Section 2.2.2) to determine the single–particle

density of states, the spectral function, the charge stiffness, and the optical con-

ductivity of a correlated 1D chain of N = 6÷16 atoms. We analyze the evolution

of all these properties with the lattice parameter a in the framework of EDABI

method (cf. Section 2.1). As in previous Section, we use optimal values of the

inverse orbital size αmin obtained in Section 3.1.2 (cf. Table 3.1) for the Gaussian–

type STO–3G basis (see Appendix A), and discuss the main points in relation to

the similar system described by the Hubbard model, as well as apply it to the

quarter–filled system with long–range Coulomb interactions.

3.4.1 Spectrum of single–particle excitations

The evolution of the single-particle density of states N (ω) =
∑

k
A(k, ω), where

A(k, ω) is the spectral function, with the increasing a is shown in Figure 3.12 for
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the half–filled (Ne = N) system described by the Hamiltonian (3.8). The spectral

function is defined in the standard manner (cf. Eq. 2.24), i.e.

A(k, ω) =
∑

n

∣∣〈ΨN±1
n

∣∣ c±
kσ

∣∣ΨN
0

〉∣∣2 δ
[
ω −

(
EN±1

n − EN
0

)]
, (3.35)

where the upper (lower) sign correspond to ω > µ (ω < µ), respectively, |ΨN
n 〉

is the n-th eigenstate of the system containing N particles, EN
n is the correspond-

ing eigenenergy, and the matrix element 〈ΨN±1
n |c±

kσ|ΨN
0 〉, with c+

kσ ≡ a†
kσ and

c−
kσ ≡ akσ, is calculated within the Lanczos technique set up by Dagotto (1994)

and described in details in Section 2.2.2 (cf. Eq. 2.29). For plotting purposes we

have used analytical representation of Dirac delta (2.25) with ǫ = 0.01 Ry. In

the metallic range (a . 2.5a0) the quasiparticle peaks are well defined, but an

incoherent tail is always present and grows in strength with the increasing a. In

effect, in the intermediate regime of a/a0 = 3 ÷ 4 the lower and the upper Hub-

bard bands are formed, which, in turn, continuously evolve into discrete atomic

levels located at the positions ω = ǫa and ω = ǫa + U , when a → ∞. Those

limiting peak positions correspond to the ground (H0) and excited (H−) atomic

states. Probably, the most interesting feature of this spectrum is its incoherent

nature for a ∼ 3a0, where the band and the interaction energies are comparable

and where the Luttinger liquid exponent cross the critical value θ = 1 (cf. Section

3.3.3) corresponding to the metal–insulator boundary.

Additional illustration of the spectrum evolution is provided by the spectral

functions plotted in Figure 3.13. The chain of N = 10 atoms (or generally N =
4n + 2), for which there are no quasiparticle states at the Fermi level, can be

regarded as a nanoscopic metal in the small a limit, since the separation between

the single–particle levels are mainly determined by the geometrical quantization

of their momenta (cf. top panel in Fig.3.13a, where a clear band dispersion can be

seen). For N = 12 (N = 4n), however, the situation is slightly different, as the

states at the Fermi level are split (cf. top panel in Fig.3.13b). This phenomenon

looks like the presence of Slater–split states at the Fermi level, but may also appear

as a signature of the charge–spin separation in 1D system, cf. Voit (1995). We do

not use here antiperiodic boundary conditions forN = 4n, as discussed in Section

3.3.2, to illustrate the frustration of the same type as depicted schematically in

Figure 3.6b, here encoutered for a correlated system treated in a rigorous manner.

3.4.2 Charge stiffness and optical conductivity

We start the discussion with the real part of the optical conductivity σ(ω) at zero

temperature (Shastry and Sutherland, 1990; Millis and Coppersmith, 1990), which

is determined by the real part of the linear response to the applied electric field,
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and can be written as

σ(ω) = Dδ(ω) + σreg(ω), (3.36)

where the regular part is

σreg(ω) =
π

N

∑

n 6=0

|〈Ψn| jp |Ψ0〉|2
En − E0

δ (ω − (En −E0)) , (3.37)

whereas the Drude weight (charge stiffness) D is given by

D = − π

N
〈Ψ0|Ht |Ψ0〉 −

2π

N

∑

n 6=0

|〈Ψn| jp |Ψ0〉|2
En − E0

, (3.38)

with the hopping term Ht as in Eq. (3.8) and the current operator

jp = it
∑

jσ

(a†jσaj+1σ − a†j+1σajσ). (3.39)

Here the states |Ψn〉 in Eqs. (3.37) and (3.38) are the eigenstates of Hamiltonian

(3.8) corresponding to the eigenenergies En, with boundary conditions that mini-

mize the ground–state energy for a given system size N (cf. Section 3.3.2).

The total integrated spectral weight under σ(ω) satisfies the well–known sum

rule (Maldague, 1977)
∫ ∞

0

σ(ω)dω = − π

2N
〈Ψ0|Ht |Ψ0〉 , (3.40)

(note that
∫∞

0
δ(ω)dω = 1/2). Using the Hellmann–Feynman relation,

〈Ψ0|Ht |Ψ0〉 = t
∂

∂t
EG, (3.41)

one can independently obtain 〈Ψ0|Ht |Ψ0〉 from the ground–state energyEG (Bae-

riswyl, Carmelo and Luther, 1986).

As originally noted by Kohn (1964), the Drude weight D can be calculated

from the dependence of the ground–state energy on fictitious flux φ, passing

through the system (cf. Section 3.3.2)

D =
π

N

∂2EG(φ)

∂φ2

∣∣∣∣
φ=0

, (3.42)

which can be shown to be equivalent to the expression of Eq. (3.38). Namely,

expanding the single–particle Hamiltonian Ht(φ) of the form (3.27) in the equal–

phases case ∫
Rj+1

Rj

A(r) · dr ≡ φ,
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we obtain for small φ

Ht(φ) = t
∑

jσ

(
eiφa†jσaj+1σ + e−iφa†j+1σajσ

)
≈

t
∑

jσ

[(
1 + iφ− φ2/2

)
a†jσaj+1σ +

(
1− iφ− φ2/2

)
a†j+1σajσ

]
. (3.43)

Since the interaction terms in the Hamiltonian (3.8) do not change when φ is

introduced, we can write down (up to a constant)

H(φ) = Ht(φ) +Hint ≈ H(0) + φjp −
1

2
φ2Ht, (3.44)

where we have used the current operator jp given by Eq. (3.39). Applying the

second–order perturbation scheme to H(φ), in order obtain the ground–state en-

ergy EG(φ) up to ∼ φ2 terms, we arrive at

EG(φ) ≈ EG(0) + φ 〈Ψ0| jp |Ψ0〉 −
φ2

2
φ 〈Ψ0|Ht |Ψ0〉 − φ2

∑

n 6=0

|〈Ψn| jp |Ψ0〉|2
En − E0

.

(3.45)

Substituting Eq. (3.45) to the definition (3.42) and differentiating, one can easily

obtain the expression (3.38).

The above derivation is formally valid for both PBC and ABC cases, provided

that terminal hopping terms in Eq. (3.39) and (3.43) could be appropriately rede-

fined according to (3.24). However, one should carefully check, which boundary

conditions correspond to the mimimalEG for a given system sizeN , because oth-

erwise the perturbation scheme (and the linear response theory itself) fails, leading

e.g. to the negative value of D. Following the discussion in Section 3.3.2, for 1D

systems, we choose PBC for N = 4n+ 2 and ABC for N = 4n. The averages in

Eq. (3.38) are estimated within the Lanczos method as set up by Dagotto (1994)

and described in Section 2.2.2 (cf. Eq. 2.29).

Kohn (1964) provided also a general argument that, in the limit of large N , D
would be vanishing exponentially for an insulating system. It should remain finite,

however, for a metallic system, giving the effective ratio of the number of carriers

per site n̄ to their effective mass m. Namely, by integrating the band energy

(3.29) in the range −kF 6 k 6 kF (where the Fermi momentum kF = πn̄/2a
does not depend on φ, supposing that the flux is adiabatically switched on) we get

for noninteracting electrons:

EG(φ)

N
=
∑

σ

1

2π

∫ kF

−kF

ǫk(φ)dφ =
8t

π
sin

πn̄

4
cos
(
φ− πn̄

4

)
(3.46)
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Differentiating Eq. (3.46) with respect to φ. one can easily obtain the well–known

Drude formula

D =
πe2n̄

m
a.u.
= 2πn̄ |t| ,

as the carrier mass m = 1/2|t| in atomic units. Therefore, one can use the Drude

weight D as a characteristic of the metal–insulator transition.

For finite system of N atoms D is always nonzero due to a finite tunneling

probability through a potential barrier of a finite width. Because of that, the finite–

size scaling with 1/N → ∞ has to be performed for D. Here we use, following

Góra et al. (1998) the parabolic extrapolation

ln |D∗
N | = a + b(1/N) + c(1/N)2, (3.47)

where D∗
N denotes the normalized Drude weight

D∗ = −N
π

D

〈Ht〉
(3.48)

for the system ofN sites (the averaging takes place for the ground state |Ψ0〉), that

provides the value in the range 0 6 D∗ 6 1, and thus can be regarded as an order

parameter for MIT.

The results for 1D system of N = 6 ÷ 14 atoms in the half–filled band case

are shown in Figure 3.14. We present, for comparative purposes, the data for

the system with long–range Coulomb interaction (cf. Figure 3.14a) together with

those corresponding to the Hubbard model (cf. Figure 3.14b). All the values of

D∗
N used for the scaling (3.47) are gathered in Tables 3.9 and 3.10 together with

resulting D∗
∞ and its relative errors (we stop at the lattice parameter a for which

D∗
∞ = 0 in the range of errorbars). In both the cases of long–range (cf. Table 3.9)

and on–site (cf. Table 3.10) interaction, the extrapolated Drude weight D∗
∞ be-

come significantly grater then zero (of 2σ value) only for small lattice parameters

a 6 2.6a0 and a 6 2.1a0, respectively. The limiting values match those obtained

in Section 3.3.3, for which the Luttinger–liquid exponent cross the critical values

θ = 1, corresponding to the metal–insulator boundary. The above results suggests

transition–like behavior in such 1D systems at half–filling, however, the optical

conductivity σreg(ω), drawn in Figure 3.15, shows the isolated Hubbard peak at

ω ≈ U and no interband transitions present in conducting system. Due to this

fact, and to the nonzero value of the charge–gap for any a (cf. Section 3.3.4), one

should regard both the half–filled systems studied here as the Mott–insulators in

the large N limit.

The situation become again completely different at quarter–filing (QF). The

normalized Drude weight of QF systems of N = 8÷16 atoms, depicted in Figure

3.16a, shows a highly–conducting behaviour (D∗≈1) for a . 3.5a0 and gradually
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FIGURE 3.14: The normalized Drude weight for 1D system in the half–filled band

case with the long–range Coulomb interactions (a) and with the Hubbard U term

only (b). The values of D∗
∞ obtained through finite size scaling with 1/N → ∞

are also provided. True periodic boundary conditions (PBC) are used for N =
4n+ 2, the antiperiodic (ABC) for N = 4n.
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TABLE 3.9: Normalized Drude weight D∗
N , the extrapolated value D∗

∞, and its

relative error for 1D half–filled system with long–range Coulomb interactions.

a/a0 D∗
14 D∗

12 D∗
10 D∗

8 D∗
6 D∗

∞ σ(D∗
∞)/D∗

∞

1.5 0.9225 0.9420 0.9563 0.9727 0.9822 0.8008 0.019

1.6 0.8879 0.9162 0.9378 0.9612 0.9754 0.7175 0.029

1.7 0.8419 0.8817 0.9130 0.9459 0.9667 0.6148 0.043

1.8 0.7826 0.8365 0.8805 0.9256 0.9552 0.4967 0.064

1.9 0.7095 0.7794 0.8389 0.8992 0.9406 0.3728 0.092

2.0 0.6245 0.7105 0.7875 0.8660 0.9222 0.2567 0.129

2.1 0.5315 0.6310 0.7265 0.8254 0.8996 0.1606 0.172

2.2 0.4338 0.5431 0.6549 0.7755 0.8714 0.0899 0.228

2.3 0.3403 0.4523 0.5766 0.7179 0.8379 0.0455 0.287

2.4 0.2554 0.3631 0.4937 0.6524 0.7982 0.0207 0.352

2.5 0.1839 0.2812 0.4109 0.5813 0.7526 0.0087 0.420

2.6 0.1269 0.2096 0.3315 0.5065 0.7009 0.0033 0.489

2.7 0.0840 0.1508 0.2595 0.4312 0.6441 0.0012 0.566

2.8 0.0536 0.1049 0.1972 0.3586 0.5836 0.0004 0.641

2.9 0.0315 0.0706 0.1456 0.2914 0.5208 0.0001 0.920

3.0 0.0196 0.0461 0.1047 0.2314 0.4575 0.0000 −

TABLE 3.10: Normalized Drude weight D∗
N , the extrapolated value D∗

∞, and its

relative error for 1D half–filled system described by Hubbard model.

a/a0 D∗
14 D∗

12 D∗
10 D∗

8 D∗
6 D∗

∞ σ(D∗
∞)/D∗

∞

1.5 0.6173 0.6742 0.7342 0.7973 0.8640 0.3294 0.070

1.6 0.5180 0.5879 0.6632 0.7437 0.8291 0.2106 0.106

1.7 0.4136 0.4935 0.5831 0.6817 0.7883 0.1178 0.155

1.8 0.3131 0.3973 0.4973 0.6127 0.7416 0.0573 0.215

1.9 0.2246 0.3063 0.4106 0.5390 0.6896 0.0244 0.286

2.0 0.1529 0.2259 0.3276 0.4631 0.6331 0.0092 0.364

2.1 0.0991 0.1598 0.2527 0.3884 0.5731 0.0032 0.449

2.2 0.0619 0.1094 0.1896 0.3190 0.5123 0.0010 0.540

2.3 0.0372 0.0724 0.1382 0.2561 0.4514 0.0003 0.639

2.4 0.0218 0.0467 0.0985 0.2018 0.3927 0.0001 0.739

2.5 0.0124 0.0294 0.0687 0.1561 0.3372 0.0000 −
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FIGURE 3.15: The regular part of the optical conductivity σreg(ω) for half–filled

1D chain of N = 12 atoms. The long–range Coulomb interactions are included.

transforms to zero in the range a/a0 = 4÷5. Also the regular part of conductivity

σreg(ω) (cf. Figure 3.16b) demonstrates the interband transitions in the metallic

range, those vanish at a ≈ 4.5a0 (for N = 16). Such behavior provides the

model case for transformation from a nanoscopic metal in the small a limit to the

localized charge–ordered system (cf. Section 3.3.1) for larger a.

3.5 A brief overview

In this Chapter we have presented a fairly complete description of finite 1D chain

in the framework of EDABI method, which combines the exact diagonalization of

many–fermion Hamiltonian in the Fock space with a subsequent ab–initio read-

justment of the single–particle (Wannier) function. The ground–state and dynam-

ical properties have been obtained as a function of the lattice parameter a and the

microscopic parameters have been determined explicitly. Our approach thus ex-

tends the current theoretical treatments to the strongly correlated systems within

the parametrized (second–quantized) models by providing the determination of

those parameters and, in turn, determining the fundamental properties of the cor-

related state explicitly as a function of a.

Technically, we determine at each step the microscopic parameters taking the

Wannier functions composed of the Gaussian–type orbitals with an adjusted size,
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FIGURE 3.16: Optical conductivity for the quarter–filled chain with long–range

Coulomb interaction: (a) normalized Drude weight vs. lattice parameter a (speci-

fied in a0) and its values extrapolated with 1/N → 0 (the Aitken method has been

used to estimate the extrapolation errors); (b) regular part of the conductivity,

σreg(ω) for N = 16 atoms.
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diagonalize the Hamiltonian in the Fock space within the Lanczos method, and

thus obtained ground state energy is readjusted again by changing variationally the

size of the orbitals, calculating the changed parameters and performing again the

diagonalization in the Fock space, and so on, until the global minimum is reached

for given a. To speed up the procedure, we organize the study in two steps. First,

we determine the optimal inverse orbital size αmin as a function of a for relatively

small systems of N = 6 ÷ 10 atoms. Second, as the convergence of αmin for

N > 8 is remarkable, we use the extrapolated values for N > 10, up to the

largest studied system of N = 16 atoms. Such convergence is strongly dependent

on a proper application of the tight–binding approximation for the system with

long–range Coulomb interactions, as the charge screening in 1d is less effective.

Only by including properly the long–range attractive interaction to the ions and

the repulsive interactions between the electrons and ions, we reach a valid atomic

limit at large distance a. We discuss this problem in detail in Section 3.1. Also the

relation to our previous approach employing the Slater–type orbitals is provided

in Section 3.2.

In the major part of this Chapter, we analyze the situation with one electron

per atom (the half–filled band case), including the long–range Coulomb interac-

tions. Physical properties of such nanoscopic system containing N = 6 ÷ 14
atoms are compared with those obtained when only the on–site (Hubbard U) term

is included (supposing the same values of the model parameters in both situa-

tions). Basic ground–state correlation functions and the Luttinger–liquid type of

the electron momentum distribution (cf. Section 3.3) suggest the crossover tran-

sition from the metallic to the insulating (spin–ordered) state with the increasing

a in both cases of the system with– and without the long–range interactions (but

metallic behavior is manifested to much stronger degree when the long–range

part of the Coulomb interactions is included). However, the finite–size scaling

with 1/N → 0, performed on the charge–energy gap shows the insulating nature

of the ground state for the large N limit, in agreement with the renormalization–

group results for the infinite system with two Fermi points (Fabrizio, 1996). Such

an apparently contradictory nature of the nanoscopic systems is confirmed by an

analysis of their spectral and transport properties (cf. Section 3.4). On one hand,

the quasiparticles are well–defined in the spectral function, but the incoherent part

is always present and it strength grows systematically with the increasing a (the

energy gap is also present in the density of states for any a). Analogously, the

Drude weight is nonzero in the small a limit (and critical values of a agree with

those obtained form the Luttinger–liquid exponent in both cases with and with-

out the long–range interactions), but the regular part of the optical conductivity

exhibits the insulating behavior.

An illustrative example of the nanonscopic system with a clear transformation

from the nanometal to the nanoinsulator with charge–density wave order is pro-
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vided for a similar system in the quater–filled band case (and when including the

long–range Coulomb interactions). For that system, the Drude weight changes

gradually from its maximal value to zero, and the other studied properties evolve

appropriately with the increasing lattice parameter a. The intermediate range of a,

where the evolution takes place, also shrink rapidly with increasing N , suggesting

the zero–temperature transition in the large N limit. To the best of our knowl-

edge, such a transition has not been identified before for 1D system of S = 1/2
electrons.

The above analysis, for both the half– and the quarter–filled band cases is very

sensitive to the choice of the boundary conditions for a finite system. This problem

is widely studied in existing literature (Jullien and Martin, 1982; Rościszewski

and Oleś, 1993), we reviewed it in Section 3.3 and have provided its relation to

the fictitious–flux approach by Kohn (1964), as well as have used it to define the

electric conductivity in a standard manner (cf. Section 3.4).

In the next Chapter we apply the EDABI method to the analysis of a simple

(3D) H4 cluster and in Chapter 5 we discuss a novel type of quantum ladders with

the completely frustrated spins. The ladder is the first step in approaching the

molecular hydrogen cristal.



Chapter 4

Basic 3D system: H4 cluster

In this Chapter we analyze the stability of 3D clusters containing two H2 mole-

cules within the EDABI method (cf. Section 2.1). We focus here on two different

geometries of the cluster, with (i) parallel and (ii) perpendicular orientation of the

molecular axes, as depicted schematically in Figure 4.1, where the geometrical

parameters a and b are also defined. Such an analysis constitutes a starting point

for the complete study of ground–state and dynamical properties of the fermionic

ladders, presented in the next Chapter. The instability of the molecules for short

distance between them seems also meaningful for the hydrogen metallicity at high

pressure. The latter aspect is discussed in the end part of this Chapter.

4.1 Model Hamiltonian

Here we restrict ourselves, as in the previous Chapter, to considering the extended

Hubbard model with long–range part of the Coulomb interaction. Namely, the
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FIGURE 4.1: Schematic representation of the H4 cluster geometries: (i) parallel

and (ii) perpendicular orientation of H2 molecules. Geometrical parameters of the

cluster are: the bond length a and the intermolecular distance b. The numbering

order of the lattice sites j is also provided.
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system Hamiltonian reads

H = ǫeffa
∑

i

ni +
∑

ijσ

tija
†
iσajσ + U

∑

i

ni↑ni↓ +
∑

i<j

Kijδniδnj, (4.1)

where the effective atomic energy is defined in the standard manner (3.7), the

indexes assume the values i, j = 1 . . . 4, and the numbering order is fixed as in

Figure 4.1. The novel elements in the Hamiltonian (4.1) are the second– and the

third–neighbor hopping terms, t13 = t24 ≡ t2 and t14 = t23 ≡ t3, respectively.

They cannot be neglected as in the Hamiltonian (3.8), since for the particular

values of the geometrical parameters a and b one can, in principle, get t1 ≈ t2 ≈
t3.

The analysis is performed again with the Gaussian STO–3G basis (cf. Ap-

pendix A), and the inverse orbital size α is optimized with respect to the system

ground–state energy EG, as usually in the framework of the EDABI method. The

Lanczos method for the diagonalization of the Hamiltonian in the Fock space (cf.

Section 2.2) is now replaced by standard numerical routines (Press et al., 1992),

since the corresponding matrix size is Nst = 36 for the half–filled band sector

(Ne = N = 4) and the total z–component of spin is Sz
tot = 0.

4.1.1 The Wannier basis

The microscopic parameters in the Hamiltonian (4.1) are defined for the Wan-

nier basis, which is constructed in two steps. First, we define the orthogonalized

molecular Wannier–like functions

wa
1 = βa (Ψ1 − γaΨ2) , wa

2 = βa (Ψ2 − γaΨ1) (4.2)

(and analogously for the sites i = 3 and 4), where the coefficients

βa =
1√
2

(
1 +

√
1− S2

1

1− S2
1

)2

, γa =
S1

1 +
√

1− S2
1

. (4.3)

The overlap integrals of the atomic functions Ψi are, due to the system symmetry,

given by

S0 ≡ 〈Ψi|Ψi〉 = 1, S1 ≡ 〈Ψ1|Ψ2〉 = 〈Ψ3|Ψ4〉 ,
S2 ≡ 〈Ψ1|Ψ3〉 = 〈Ψ2|Ψ4〉 , S3 ≡ 〈Ψ1|Ψ4〉 = 〈Ψ2|Ψ3〉 . (4.4)

Molecular orbitals, corresponding to the functions (4.2)

Φ0
12 =

1√
2
(wa

1 + wa
2) =

1√
2
βa (1− γa) (Ψ1 +Ψ2) , (4.5)
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Φπ
12 =

1√
2
(wa

1 − wa
2) =

1√
2
βa (1 + γa) (Ψ1 −Ψ2) , (4.6)

(and analogously for the sites i = 3 and 4), have nonzero intermolecular overlaps

〈
Φ0

12|Φ0
34

〉
= 〈w1|w3〉+ 〈w1|w4〉 = (βa)2 (1− γa)2 (S2 + S3), (4.7)

〈Φπ
12|Φπ

34〉 = 〈w1|w3〉 − 〈w1|w4〉 = (βa)2 (1 + γa)2 (S2 − S3), (4.8)

whereas 〈Φ0
12|Φπ

34〉 = 〈Φπ
12|Φ0

34〉 = 0. Since that, in the second step, we define the

orthogonal Bloch functions for the cluster

Φ̃0
12 = β0

(
Φ0

12 − γ0Φ0
34

)
, Φ̃0

34 = β0
(
Φ0

34 − γ0Φ0
12

)
, (4.9)

Φ̃π
12 = βπ (Φπ

12 − γπΦπ
34) , Φ̃π

34 = βπ (Φπ
34 − γπΦπ

12) , (4.10)

where the coefficients β0,π and γ0,π have the form as in Eq. (4.3) with overlap

S1 replaced by 〈Φ0
12|Φ0

34〉 and 〈Φπ
12|Φπ

34〉, given by Eqs. (4.7) and (4.8), respec-

tively. Thus, the orthogonal Wannier functions for the cluster are given by the

transformation of the form inverse to that in Eqs. (4.5) and (4.6), namely

w1 =
1√
2

(
Φ̃0

12 + Φ̃π
12

)
, w2 =

1√
2

(
Φ̃0

12 − Φ̃π
12

)
, (4.11)

and analogously for the sites i = 3 and 4.

The subsequent substitutions of Eqs. (4.5-4.6) to (4.9-4.10), and then to Eqs.

(4.11), with appropriate definitions of the coefficients βa, γa, β0,π, and γ0,π, may

leads one to an expansion for the Wannier functions in the form

w1 = B0Ψ1 + B1Ψ2 + B2Ψ3 + B3Ψ4, (4.12)

with explicitly defined coefficients B0 . . .B3. Such definitions are, however, quite

long and useless, since in practice we perform the substitutions mentioned above

numerically, for given geometrical parameters a and b, and the inverse orbital size

α. The described construction is well defined for any values of the parameters, as

the values under the square roots in Eq. (4.3), as well as in analogical expressions

for β0,π and γ0,π, are always positive.

4.1.2 Microscopic parameters

Numerical values of the effective atomic energy ǫeffa , hopping integrals t1 . . . t3, the

intra– and intersite Coulomb repulsionsU andK1 . . .K3, are gathered in Table 4.1

for the cluster geometry (i) and in Table 4.1 for (ii). All the data were obtained for

the Gaussian STO–3G basis and corresponds to the optimal values of the inverse
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TABLE 4.1: Microscopic parameters (in Ry) for the H4 cluster configuration (i)
calculated in the Gaussian STO–3G basis. Corresponding values of the inverse

orbital size αmin and the bond length amin are provided in Table 4.3.

b/a0 ǫeffa t1 t2 t3 U K1 K2 K3

1.7 -0.2354 -0.8610 -0.6622 0.0822 1.811 1.027 0.947 0.728

2.0 -0.3088 -0.8791 -0.5137 0.0617 1.802 1.032 0.872 0.692

2.5 -0.4233 -0.8390 -0.3268 0.0352 1.748 1.007 0.750 0.619

3.0 -0.4925 -0.7983 -0.2067 0.0220 1.702 0.984 0.649 0.553

3.5 -0.5319 -0.7685 -0.1290 0.0150 1.671 0.967 0.567 0.497

4.0 -0.5533 -0.7492 -0.0785 0.0103 1.653 0.957 0.500 0.449

5.0 -0.5689 -0.7316 -0.0267 0.0037 1.639 0.949 0.401 0.373

6.0 -0.5707 -0.7275 -0.0084 0.0007 1.638 0.948 0.334 0.318

8.0 -0.5692 -0.7269 -0.0006 -0.0000 1.640 0.949 0.250 0.243

10.0 -0.5684 -0.7268 -0.0000 -0.0000 1.641 0.950 0.200 0.197

20.0 -0.5673 -0.7272 -0.0000 -0.0000 1.642 0.951 0.100 0.100

∞ -0.5671 -0.7273 0 0 1.642 0.951 0 0

TABLE 4.2: Microscopic parameters (in Ry) for the H4 cluster configuration (ii)
calculated in the Gaussian STO–3G basis. Corresponding values of the inverse

orbital size αmin and the bond length amin are provided in Table 4.4.

b/a0 ǫeffa t1 t2 t3 U K1 K2 K3

1.6 -0.5352 -0.5423 -0.2986 -0.2986 1.650 0.911 0.816 0.816

2.0 -0.4511 -0.7496 -0.2230 -0.2230 1.732 0.991 0.772 0.772

2.5 -0.4863 -0.7820 -0.1451 -0.1451 1.711 0.986 0.680 0.680

3.0 -0.5221 -0.7721 -0.0923 -0.0923 1.683 0.972 0.598 0.598

3.5 -0.5467 -0.7558 -0.0571 -0.0571 1.661 0.961 0.530 0.530

4.0 -0.5613 -0.7423 -0.0342 -0.0342 1.646 0.953 0.473 0.473

5.0 -0.5715 -0.7293 -0.0115 -0.0115 1.637 0.947 0.387 0.387

6.0 -0.5719 -0.7264 -0.0038 -0.0038 1.636 0.947 0.326 0.326

8.0 -0.5692 -0.7269 -0.0003 -0.0003 1.640 0.949 0.247 0.247

10.0 -0.5685 -0.7268 -0.0000 -0.0000 1.641 0.950 0.198 0.198

20.0 -0.5673 -0.7272 -0.0000 -0.0000 1.642 0.951 0.100 0.100

∞ -0.5671 -0.7273 0 0 1.642 0.951 0 0
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orbital size αmin and the bond length amin provided in the next Section. We also

choose the local minimum a < b, where it is not the global one (cf. next Section).

The limiting values for the intermolecular distance b → ∞ corresponds to the

exact solution of the hydrogen molecule treated as a two–side problem (Spałek,

Oleś and Chao, 1981; de Boer and Schadschneider, 1995), for which the ground–

state energy is given by

EG(H2) = 2ǫa +
U +K1

2
−
√
(U −K1)2/4 + 4t21 +

2

R12

= 2ǫeffa +
U −K1

2
−
√

(U −K1)2/4 + 4t21, (4.13)

where ǫeffa ≡ ǫa + (K1 + 2/R12)/2 (in Ry) and the remaining parameters are

analogical to those in the cluster Hamiltonian (4.1), providing the Wannier basis

reduce to the form of Eq. (4.2) in limit b→ ∞.

4.2 The optimized ground–state energy

The Hamiltonian (4.1) is now diagonalized in the Fock space using standard nu-

merical routines (Press et al., 1992) and the resulting ground–state energy EG is

optimized with respect to the inverse orbital size α in the Gaussian STO–3G ba-

sis (cf. Appendix A). In this manner, one can consider EG as a function of two

parameters: the bond length a and the intermolecular distance b (cf. Figure 4.1).

We analyze first the dependence EG(a) for a given b and the optimal inverse

orbital size α = αmin(a), which is presented in Figure 4.2 for the cluster geometry

(i) and in Figure 4.3 for (ii). In the case of parallel molecular axis (i), the local

minimum of EG(a) appears for b < 1.65a0 at the point amin < b (cf. Figure 4.2a).

For the critical value of b
(i)
crit = 2.39a0 the minimum for amin < b is equivalent to

that for amin > b, and become the global one for the values of the intermolecular

distance b > bcrit. The situation is very similar in the case of cluster geometry

(ii), corresponding to perpendicular orientation of the molecular axes (cf. Figure

4.3a). The critical value of b is now b
(ii)
crit = 1.88a0, the local minimum of EG(a)

at amin < b disappear for b = 1.59a0. Significant differences for the cluster

geometries (i) and (ii) are present, however, in the inverse orbital size αmin(a),
which is almost independent on a in the case (ii) (cf. Figure 4.3b) in comparison

to the case (i) (cf. Figure 4.2b). The appearance of such differance shows that the

closed–shell molecular orbital configuration (note the data for free molecules in

the limit b → ∞ are drawn in Figures 4.2 and 4.3 as the dashed lines) is strongly

preffered in the case (ii), whereas electron correlations play a crucial role for the

planar cluster geometry (i).
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TABLE 4.3: The optimal bond length amin, inverse orbital size αmin, and the

ground–state energy EG per atom for the planar H4 cluster (i). The corresponding

energy of the molecular dimer EG(2H2) is also provided.

b/a0 amin/a0 αmina0 EG/N EG(2H2)/N
1.7 1.3627 1.2231 -0.928424 -0.922411

2.0 1.3291 1.2395 -1.019152 -1.016365

2.5 1.3518 1.2304 -1.098551 -1.097314

3.0 1.3829 1.2157 -1.131770 -1.131167

3.5 1.4075 1.2041 -1.144613 -1.144317

4.0 1.4238 1.1969 -1.148598 -1.148454

5.0 1.4373 1.1911 -1.148093 -1.148056

6.0 1.4390 1.1908 -1.145975 -1.145964

8.0 1.4375 1.1924 -1.143651 -1.143649

10.0 1.4366 1.1929 -1.142756 -1.142755

20.0 1.4357 1.1940 -1.141908 -1.141908

∞ 1.4356 1.1943 -1.141783

TABLE 4.4: The optimal bond length amin, inverse orbital size αmin, and the

ground–state energyEG per atom for the cluster geometry (ii). The corresponding

energy of the molecular dimer EG(2H2) is also provided.

b/a0 amin/a0 αmina0 EG/N EG(2H2)/N
1.6 1.5796 1.1568 -0.928235 -0.923390

2.0 1.3759 1.2206 -1.038891 -1.037968

2.5 1.3725 1.2193 -1.108116 -1.107803

3.0 1.3947 1.2091 -1.136931 -1.136809

3.5 1.4153 1.2000 -1.147566 -1.147519

4.0 1.4292 1.1937 -1.150310 -1.150293

5.0 1.4397 1.1894 -1.148674 -1.148672

6.0 1.4400 1.1897 -1.146200 -1.146200

8.0 1.4377 1.1926 -1.143705 -1.143705

10.0 1.4367 1.1929 -1.142774 -1.142774

20.0 1.4357 1.1940 -1.141908 -1.141908

∞ 1.4356 1.1943 -1.141783
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The above observation is further confirmed by the data gathered in Tables 4.3

and 4.4, where we compared the ground–state energy EG, obtained within the

EDABI method (and corresponding to the local minimum amin < b) with that of

the molecular dimer configuration EG(2H2). The latter values were calculated

with the help of an exact expression (4.13), in with we substitute the microscopic

parameters by their values for the H4 cluster (cf. Tables 4.1 and 4.2). Such ap-

proach corresponds to the variational wavefunction for the cluster in the form

|Ψ(H4)〉 ≈ |Ψ(H2)〉 |Ψ(H2)〉, since the K2 and K3 terms do not play the role due

to zero dipole momentum of the molecules. As we expect, the variational ap-

proach leads to the values of EG(2H2) closer to the exact EG in the case (ii) than

for the planar cluster (i), cf. Table 4.4 and 4.3, respectively.

4.2.1 Absolute stability

Figures 4.2 and 4.3 exhibit also another feature of the H4 cluster: the global energy

minimum in the parameter (a, b) space. The existence of such minimum around

b ≈ 4a0 is clear, since the curve EG(a) for b = 6a0 lay below those for b =
3.5a0 and 6a0, and the limiting curve for b → ∞ (H2 molecule) is above each

of them (cf. Figures 4.2a and 4.3a, the situation is very similar for both cluster

configurations). The precise positions of the global EG minima are the following:

b
(i)
min = 4.32a0, a

(i)
min = 1.4303a0, α

(i)
min = 1.1937a−1

0 ,

E
min(i)
G /N = −1.149061 Ry (4.14)

for the planar cluster geometry (i), and

b
(ii)
min = 4.13a0, a

(ii)
min = 1.4318a0, α

(ii)
min = 1.1927a−1

0 ,

E
min(ii)
G /N = −1.150396 Ry (4.15)

for the geometry (ii). The corresponding minimum for free H2 molecule (the

b → ∞ limit) is provided e.g. in the last row of Table 4.3. The binding energies

for molecules in (i) and (ii) clusters are, respectively: ∆E
(i)
G /N = 7.3 · 10−3 Ry

and ∆E
(ii)
G /N = 8.6 · 10−3 Ry.

The shape of the ground–state energy surface EG(a, b) is illustrated in Fig-

ures 4.4 and 4.5 for both considered cluster geometries. The contour plots in the

parameter plane (cf. Figure 4.4a and 4.5a) shows the energy minima on the both

sides of the symmetry axis a=b, corresponding to the square configuration of the

planar (i) cluster, and a=
√
2b for the tetrahedral configuration in the case (ii), as

depicted in Figures 4.4b and 4.5b, respectively. The evolution of the EG(a) min-

ima with b, and the catastrophe for b = bcrit, discussed in the previous Section,



72 CHAPTER 4. BASIC 3D SYSTEM: H4 CLUSTER

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6

B
O

N
D

 L
E

N
G

T
H

,  
a 

(a
.u

)

-1.1

-1
.1

-1.0

-1.0

-0.9

 1

 2

 3

 4

 5

 6

 1  2  3  4  5  6

B
O

N
D

 L
E

N
G

T
H

,  
a 

(a
.u

)

INTERMOLECULAR DISTANCE  b (a.u)

a
=
b

-1.1

-1

-0.9

 1  2  3  4  5  6  7  8

G
R

O
U

N
D

-S
T

A
T

E
 E

N
E

R
G

Y
  (

R
y) Molecule

 1

 1.1

 1.2

 1.3

 1  2  3  4  5  6  7  8

IN
V

E
R

S
E

 O
R

B
. S

IZ
E

,  
   

 

INTERMOLECULAR DISTANCE  b (a.u)

Molecule

α
a
0

(a)
(c)

(b) (d)

FIGURE 4.4: The ground–state energy surface EG(a, b) for the planar cluster ge-

ometry (i): (a) contour plot in the parameter plane, (b) representation of global

(solid lines) and local (dashed lines) conditional minima in respect to a for a

given b and vice–versa, (c) ground–state energy EG vs. b for global and local con-

ditional minima, and (d) the corresponding optimized inverse orbital size αmin.

Full circles marks the equivalent (global) energy minima, open – the points where

the local minima vanish. The symmetry axis (dashed–dot line) on the parameter

plane and the results for H2 molecule (thin dashed line) are also shown.
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can be now explained in terms of the conditional energy minima with respect to

a, for a given b (cf. Figure 4.4c and 4.5c). The optimal ground–state energy is

continuous in the point b = bcrit, whereas its derivative, as well as both optimized

parameters a and α (cf. Figure 4.4d and 4.5d) show discontinuity. Such behav-

ior suggests the presence of the first–order phase transition in the thermodynamic

limit.

4.2.2 Configurations of the high symmetry

As one can read form the contour plots in Figures 4.4a and 4.5a, the conditional

minimization of the ground–state energy for the square (a = b) configuration of

the planar (i) cluster, and the tetrahedral (a =
√
2b) for the case (ii), leads to

the saddle points at (a, b) plane in both cases. In other words, the ground–state

energies of the above high–symmetry configurations are higher than the values for

the global minima (4.14) and (4.15). They are also significantly higher than the

energy of free H2 molecule, namely, we get:

• bmin = 2.6810a0, αmin = 1.0406a0, E
min
G = −1.028790 Ry,

for the square a=b, (i); and
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square and the tetrahedron) compared with those corresponding to the optimal

bond length amin for the H4 planar cluster (i) and the spacial configuration (ii).
Inset provides optimal values of the inverse orbital size αmin.
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• bmin = 2.5447a0, αmin = 0.9994a0, E
min
G = −0.997250 Ry,

for the tetrahedron a=
√
2b, (ii).

The situation is illustrated in a function of the intermolecular distance b in Figure

4.6, where also the corresponding values of the optimal inverse orbital size αmin

are shown with the inset.

The above results are another way of showing that the molecules in free H4

cluster preserve their identity, since the optimal bond length amin in Eqs. (4.14)

and (4.15) is about three times smaller than the corresponding intermolecular dis-

tance bmin. The system could be driven by external forces to the high–symmetry

configurations, in which the identity of the molecules is lost. However, such a

transformation requires a relatively high energy. The situation is qualitatively sim-

ilar in the case of 3D hydrogen crystal, where the dissociation of the molecules

into atoms and the resulting metal–insulator transition (MIT) appears at ultra–high

pressure (Hemley and Ashcroft, 1998; Nellis, 2000). The last aspect of electronic

states is discussed in the next Section.

4.3 Physical discussion

The solid hydrogen is predicted (Wigner and Huntington, 1935; Ceperley and

Alder, 1986) to become metallic at megabare pressures. Experimental evidence

for such a pressure–induced MIT were found first in the 250 GPa range at 77

K by Mao and Hemley (1989), and than at 150 GPa for the room temperature

295 K (Hemley and Mao, 1989; Hemley and Mao, 1990). Although the results

for H4 cluster presented in this Chapter seem, in principle, to be unrelated to

the situation in 3D crystallite hydrogen with the hcp structure, some interesting

common features with ab initio calculations have been observed.

It was reported by Chacham and Louie (1991) that the influence of an ori-

entational order is crucial for the metalization pressure. The fully ordered phase

undergoes a metalization due to band overlap at the volume V = 2.50 cm3/mol,

whereas the disordered phase at V = 1.89 cm3/mol, which correspond to the crit-

ical pressures of 151 and 300 GPa, respectively. Our model system, the H4 cluster,

shows qualitatively a very similar behavior, since the planar geometry (i) could

be regarded as a fully ordered phase (parallel molecular axes) and the disordered

phase contains a significant fraction of the geometry (ii). The quantitative results

for such a small system are far from the thermodynamic limit, since e.g. the crit-

ical value of intermolecular distance b
(i)
crit = 2.39a0 corresponds to the volume

V = 0.86 cm3/mol for the ideal hcp structure. However, the qualitative agree-

ment is remarkable and suggests the crucial role of the electron correlations in the

hydrogen metalization, as the correlated interaction of dipolar moments is most
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effective for the parallel orientation of the molecules. A separate question con-

cerns the possible metallization at lower pressure, before dissociation (Mao and

Hemley, 1994); that transition has no connection with the structure of H4 cluster

considered.

The problem seems to be a very interesting subject of study e.g. within the

dynamical mean–field theory combined with ab initio calculations (Anisimov,

Potaryaev, Korotin, Anokhin and Kotliar, 1997; Nekrasov, Held, Blümer, Potaryev,

Anisimov and Vollhardt, 2000), where one can treat electron correlations exactly

in the limit of large coordination number. In the remaining part of the thesis we

concentrate on low dimensional systems, such as the fermionic ladders, which

are discussed in the next Chapter, in order to treat the metallization due to band

overlap first in a rigorous manner, within the EDABI method.



Chapter 5

The fermionic ladders

The fermionic ladders, considered in this Chapter, are interesting objects to study

within the EDABI method for the two main reasons. First, one can look for the

metal–insulator transition (due to the band overlap) when the system geometry

corresponds to 1D molecular crystal, in analogy to the hydrogen metalization in

3D (Mao and Hemley, 1994). Although such considerations are limited to the

small cluster, we have the major advantage of treating such a system in a rigor-

ous manner, including the electron correlations. Second, an interesting question

concerns the presence of the dielectric catastrophe (Resta and Sorella, 1999) as-

sociated with the molecule dissociation, when the system evolves from the band

insulator (in the molecular–crystal phase) to the Mott–Hubbard insulator (i.e. in-

dependent 1D atomic chains). Thus, changing the ladder geometry, we can ana-

lyze both MIT due to band overlap in a molecular crystal phase and that associated

with the molecule dissociation.

We focus here, as in the preceding Chapter, on two different geometrical con-

figurations of the ladder: (i) with parallel and (ii) with perpendicular orientation

of the molecules, as depicted schematically in Figure 5.1. Exploring of the two–

dimensional parameter space, defined by the bond length a and the intermolecular
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FIGURE 5.1: Schematic representation of the two ladder geometries: (i) parallel

and (ii) perpendicular orientation of the molecules. Geometrical parameters of

the ladder are: the bond length a and the intermolecular distance b.
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distance b, involves a large computational effort for the system sizes N = 8÷ 12
atoms. A large part of this space is also physically uninteresting, as in the model

case of H4 cluster. Because of that, we proceed here as follows: First, we deter-

mine the system properties as a function of the intermolecular distance b, for the

optimal bond length a = amin, and for both the geometrical configurations (i) and

(ii). Then, we analyze the most interesting static and dynamical correlation func-

tions versus a, for specific values of b (close to the dissociation point b = bcrit),
and for the planar geometry (i). The latter choice is persuaded by the fact, that for

the perpendicular molecule orientation (ii) dissociation splits the system into four

independent atomic chains, that leads to a small number of sites per chain (N/4)

for the system size N 6 12.

5.1 The Hamiltonian and microscopic parameters

We now consider a ladder of N = 8÷ 12 atoms, each containing a single valence

electron (hydrogenic–like atoms), including the long–range part of the Coulomb

interaction exactly (the microscopic parameters are calculated in the Gaussian

STO–3G basis, that leads to analytical expressions for the three– and four–site

terms on the atomic level, cf. Appendix A). The system Hamiltonian has again

the form of the extended Hubbard model

H = ǫeffa
∑

i

ni +
∑

[ij]σ

tija
†
iσajσ + U

∑

i

ni↑ni↓ +
∑

i<j

Kijδniδnj, (5.1)

where the effective atomic level ǫeffa is given by Eq. (3.7), δni ≡ ni−1, the brack-

ets [ij] denotes the summation over the indexes i and j belonging to the same

rectangle in Figure 5.1, so we include the hopping terms up to the third neighbor

t1 . . . t3 (t‖i,j‖ ≡ tij), and the notation for intra– and intersite Coulomb repulsion

is standard, U and K‖i,j‖ ≡ Kij , respectively. The discrete metric ‖i, j‖ is given

by the neighbor rank in a molecular crystal configuration, namely

‖i, j‖ = 2 |⌊i/2⌋ − ⌊j/2⌋|+ |(imod2)− (jmod 2)| , (5.2)

where ⌊x⌋ is the floor function of x, and mod denotes the modulo division, defined

as xmod y = x − y⌊x/y⌋ (Graham, Knuth and Patashnik, 1994). The ladder

geometries (i) and (ii) lead to the same Hamiltonian in the second–quantized

form of Eq. (5.1), the differences are encoded in the microscopic parameters ǫeffa ,

tij , U , and Kij . These parameters are calculated in the basis of Wannier functions

{wi(r)}, composed of 1s–like Gaussian–type orbitals with the optimized inverse

radii α (cf. Appendix A).

The construction of the Wannier basis for the ladder proceeds analogously

to that presented in Section 4.1.1. The only modification is that of the orthogonal
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TABLE 5.1: Microscopic parameters (in Ry) of the planar ladder (i), calculated

in the Gaussian STO–3G basis. Corresponding values of the optimal bond length

amin and the inverse orbital size αmin are provided in Table 5.3.

b/a0 ǫeffa t1 t2 t3 U K1 K2 K3

2.0 0.0404 -1.1576 -0.4252 0.1113 1.968 1.130 0.944 0.752

2.5 -0.2909 -0.9671 -0.2566 0.0589 1.817 1.047 0.778 0.642

3.0 -0.4399 -0.8639 -0.1609 0.0346 1.729 0.999 0.660 0.562

3.5 -0.5133 -0.8028 -0.1013 0.0220 1.678 0.971 0.571 0.500

4.0 -0.5506 -0.7659 -0.0628 0.0142 1.649 0.955 0.501 0.450

4.5 -0.5683 -0.7449 -0.0380 0.0087 1.635 0.947 0.446 0.408

5.0 -0.5754 -0.7340 -0.0225 0.0049 1.630 0.944 0.401 0.373

6.0 -0.5767 -0.7270 -0.0074 0.0010 1.631 0.944 0.334 0.317

7.0 -0.5742 -0.7261 -0.0022 0.0001 1.634 0.946 0.286 0.276

8.0 -0.5723 -0.7262 -0.0005 -0.0000 1.636 0.947 0.250 0.243

10.0 -0.5698 -0.7267 -0.0000 -0.0000 1.639 0.949 0.200 0.197

20.0 -0.5674 -0.7274 -0.0000 -0.0000 1.642 0.951 0.100 0.100

TABLE 5.2: Microscopic parameters (in Ry) calculated in the Gaussian STO–3G

basis for the ladder configuration (ii). Corresponding values of the optimal bond

length amin and the inverse orbital size αmin are provided in Table 5.3.

b/a0 ǫeffa t1 t2 t3 U K1 K2 K3

2.0 -0.3722 -0.7987 -0.1296 -0.1296 1.658 0.960 0.785 0.785

2.5 -0.4628 -0.8188 -0.0937 -0.0937 1.688 0.974 0.690 0.690

3.0 -0.5210 -0.7936 -0.0623 -0.0623 1.663 0.962 0.602 0.602

3.5 -0.5538 -0.7675 -0.0398 -0.0398 1.643 0.951 0.531 0.531

4.0 -0.5709 -0.7484 -0.0245 -0.0245 1.631 0.944 0.473 0.473

4.5 -0.5786 -0.7362 -0.0147 -0.0147 1.626 0.941 0.426 0.426

5.0 -0.5810 -0.7293 -0.0088 -0.0088 1.625 0.941 0.387 0.387

6.0 -0.5786 -0.7254 -0.0032 -0.0032 1.628 0.943 0.326 0.326

7.0 -0.5750 -0.7255 -0.0011 -0.0011 1.633 0.945 0.281 0.281

8.0 -0.5729 -0.7256 -0.0003 -0.0003 1.636 0.947 0.247 0.247

10.0 -0.5698 -0.7268 -0.0000 -0.0000 1.639 0.949 0.198 0.198

20.0 -0.5673 -0.7274 -0.0000 -0.0000 1.642 0.951 0.100 0.100
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functions given by Eqs. (4.9) and (4.10), since the molecular orbitals Φ0,π
〈ij〉 (defined

in Eqs. (4.5) and (4.6) for 〈ij〉 = 〈12〉) have a nonzero overlap with those on the

left and right, Φ0,π
〈ij〉−1 and Φ0,π

〈ij〉+1, respectively. The bracket 〈ij〉 denotes the pair

of atoms belonging to the same molecule in the ladder, so e.g. 〈34〉−1 ≡ 〈12〉,
〈34〉+1≡〈56〉, etc. (for the numbering order the same as that for the H4 cluster in

Figure 4.1). Therefore, Eqs. (4.9) and (4.10) are replaced by

Φ̃0,π
〈ij〉 = β0,π

[
Φ0,π

〈ij〉 − γ0,π
(
Φ0,π

〈ij〉−1 + Φ0,π
〈ij〉+1

)]
, (5.3)

in analogy to the expansion (3.9) for the nanochain. The coefficients γ0,π and β0,π

are given by expressions having the form of Eqs. (3.10) and (3.11), with overlap

integrals Sm (m = 1 . . . 3) substituted by

〈
Φ0

〈ij〉|Φ0
〈ij〉+m

〉
= (βa)2 (1− γa)2 (S2m + S2m+1), (5.4)

〈
Φπ

〈ij〉|Φπ
〈ij〉+m

〉
= (βa)2 (1 + γa)2 (S2m − S2m+1), (5.5)

where βa and γa are given by Eq. (4.3), and the overlap integrals in the atomic

basis are defined as S‖i,j‖ ≡ 〈Ψi|Ψj〉. We again have 〈Φ0
〈ij〉|Φπ

〈ij〉+m〉 = 0 due to

the reflection symmetry. The remaining part of the construction is the same as in

the case of H4 discussed in Section 4.1.1.

The model parameters, corresponding to the intermolecular distance b/a0 =
2÷20, and the optimal values of the bond length amin and inverse orbital size αmin

(see next Section), are presented in Tables 5.1 and 5.2 for the parallel (i) and the

perpendicular (ii) orientation of molecules, respectively. Similarly as in the case

of a nanochain (cf. Chapter 3), we perform the Richardson extrapolation with the

lattice size N → ∞ to obtain the size–independent values of the effective atomic

energy ǫeffa and the hopping integrals t1 . . . t3.

5.2 The optimized ground–state energy

The Hamiltonian (5.1) is diagonalized in the Fock space with the help of Lanczos

technique (cf. Section 2.2). As the microscopic parameters ǫeffa , t1 . . . t3, U , and

Kij are calculated numerically in the Gaussian STO–3G basis, the bond length

a and the inverse orbital size α of the 1s–like state are subsequently optimized

to obtain the ground state energy EG as a function of the intermolecular distance

b. The results for N = 10 are presented in Figure 5.2. Due to the closed–shell

molecular crystal configuration of the system ground state, the data almost do not

depend on the system size (e.g., analogical results for N = 8 fit onto those shown

in Figure 5.2 up to the pixel size). The corresponding values of the optimal bond

length amin and the inverse orbital size αmin, provided in the insets of Figure 5.2,
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orbitals (STO–3G basis) have been used.

TABLE 5.3: The optimal bond length amin, inverse orbital size αmin, and the

ground–state energy for the ladder of N = 10 atoms.

Parallel (i) Perpendicular (ii)
b/a0 amin αmin EG/N amin αmin EG/N

2.0 1.173 1.265 -0.9301 1.301 1.084 -1.0158

2.5 1.280 1.231 -1.0862 1.343 1.162 -1.1228

3.0 1.349 1.210 -1.1413 1.387 1.175 -1.1585

3.5 1.394 1.196 -1.1591 1.419 1.178 -1.1676

4.0 1.422 1.189 -1.1626 1.437 1.179 -1.1670

4.5 1.437 1.185 -1.1609 1.446 1.179 -1.1632

5.0 1.444 1.183 -1.1578 1.449 1.180 -1.1590

6.0 1.445 1.185 -1.1521 1.447 1.184 -1.1525

7.0 1.443 1.188 -1.1485 1.443 1.187 -1.1487

8.0 1.441 1.190 -1.1463 1.441 1.189 -1.1464

10.0 1.438 1.192 -1.1441 1.438 1.192 -1.1442

20.0 1.436 1.194 -1.1421 1.436 1.194 -1.1421
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are also listed in Table 5.3 for both the ladder geometries (i) and (ii). The global

minima of the ground–state energy EG are achieved for:

b
(i)
min = 4.00a0, a

(i)
min = 1.422a0, α

(i)
min = 1.189a0,

E
min(i)
G /N = −1.1626 Ry, (5.6)

for the planar ladder geometry, and

b
(ii)
min = 3.67a0, a

(ii)
min = 1.426a0, α

(i)
min = 1.178a0,

E
min(ii)
G /N = −1.1680 Ry, (5.7)

for the case of perpendicular molecule orientation (ii). These values leads to

the binding energies of the molecules in ladders ∆E
(i)
G /N = 20.8 · 10−3 Ry and

∆E
(ii)
G /N = 26.2 ·10−3 Ry, respectively, that are about three times larger than the

corresponding ∆E
(i)
G and ∆E

(ii)
G in the H4 cluster (cf. Section 4.2.1). One should

also note the maxima of the optimal bond length amin as a function of b, as well

as the minima of αmin(b) (cf. Figure 5.2, insets), which are close to the global

minima of EG (5.6) and (5.7), and correspond to the attractive interaction in the

system.

The optimized ground–state energy EG studied as a function of a for a fixed

b, is depicted in Figure 5.3 for the planar ladder geometry (i). EG(a) shows a

very similar behavior to that observed in the case of H4 cluster (cf. Section 4.2);

the critical values of the intermolecular distance b, corresponding to the molecule

dissociation, are now equal to

b
(i)
crit = 2.06(1)a0 and b

(ii)
crit = 1.93(2)a0,

for the respective ladder geometries. The number in brackets indicates an extrap-

olation error (with 1/N → 0) on the last decimal place, estimated from the data

for the system sizes N = 8 ÷ 12. In the first case (i) the system splits into two

independent atomic chains with the lattice parameter achain = b, whereas in the

second case (ii) four resulting chains are characterized by achain = 2b. Such sce-

nario is caused by the constrains in the system, supposed arbitrarily to reduce the

number of geometrical parameters to a and b only. However, the obtained values

of bcrit seem valuable since they illustrate, together with the related data for the

H4 cluster, the convergence of b
(i)
crit and b

(ii)
crit to each other when increase the sys-

tem dimensionality. The dissociation has again the nature of the first–order phase

transition, since it corresponds to the switching between the well–separated min-

ima of the ground state energy EG(a) with respect to the bond length a, which

is significantly smaller than b (and decrease) when approaching the critical value

b ≈ bcrit (cf. Table 5.3).
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84 CHAPTER 5. THE FERMIONIC LADDERS

5.3 Ground–state properties

In this Section we analyze the ladder ground–state properties, first as a function

of the intermolecular distance b for the optimal values of the bond length amin and

inverse orbital size αmin (determined in the previous Section) and for both lad-

der configurations (i) and (ii) (cf. Figure 5.1), and then as a function of the bond

length a for few fixed values of b (close to the critical distance bcrit determined

in the previous Section) and for the planar ladder geometry (i). The periodic

or antiperiodic boundary conditions are used to minimize the ground–state en-

ergy for the system containing N = 8 ÷ 12 atoms, as discussed in Section 3.3.2.

We concentrate here on the ladders with one electron per atom (corresponding to

hydrogenic–like atoms).

5.3.1 Spin and charge correlation functions

In Figure 5.4 we present the spin– and charge–density fluctuations for the ladder

of N = 12 atoms as a function of the discrete distance ‖i, j‖ defined by Eq. (5.2).

The spin–spin correlation function 〈si · sj〉 shows an almost exponential de-

cay with ‖i, j‖ for the planar ladder geometry (i) (cf. Figure 5.4a) and decrease

abruptly on the second–neighbor for the perpendicular molecule orientation (ii)
(cf. Figure 5.4b). Such behavior is caused by the spin frustration in the system of

two perpendicularly orientated molecules (ii) on the neighboring sites. The sign

of spin–spin correlation functions is alternating with ‖i, j‖, due to the short–range

kinetic exchange interaction. An interesting feature of the planar ladder (i) is a

nonzero value of 〈si · sj〉 on further neighbors, even for a relatively large lattice

parameter b/a0 = 3 ÷ 4, since one can expect the closed–shell (spin–singlet)

molecular crystal configuration to not show the magnetic order. This illustrates

again the important role of the electron correlations for the system of the planar

geometry, in analogy to the results for the H4 cluster (cf. Section 4.2).

The situation is quite different in the case of charge–density correlation func-

tion 〈∆ni∆nj〉, which also decays exponentially with the neighbor distance ‖i, j‖,

but is rather insensitive on a change of the intermolecular distance b for both

the considered ladder geometries (cf. Figure 5.4c and 5.4d). This behavior il-

lustrates the long–range nature of the electron correlations induced by the inter-

molecular Coulomb interaction present in the Hamiltonian (5.1). The sign order

of 〈∆ni∆nj〉, depicted schematically in Figures 5.4e and 5.4f), is also nontrivial.

In the case of planar geometry (i), the long–range order with the domains contain-

ing three molecules (half of the system size) is energetically preferred, in spite of

the domain–wall occurrence (cf. Figure 5.4e). The case of perpendicular geome-

try (ii) looks analogically (cf. Figure 5.4f), as the similar charge order is present

in two separated sublattices, each containing a single molecule. Thus, the long–
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range charge order for the geometry (ii) survives the frustration present in the

nearest–neighbor interaction of two perpendicularly orientated electric dipoles.

The corresponding results for N = 8 shows the charge frustration even in the pla-

nar case (i), since the three–molecule domain configuration is again preferred in

comparison to the strictly alternant order. Also, the momentum distribution differs

remarkably from that for the atomic chain (cf. Chapter 3).

5.3.2 Electron and hole momentum distributions

We analyze here the electron–momentum distribution function, defined as

n0kσ = 〈a†0kσa0kσ〉, nπkσ = 〈a†πkσaπkσ〉, (5.8)

for the bonding and anti–bonding bands, respectively. The results for the ladder

with an optimal bond length amin, containing N = 8 and 12 atoms, are shown in

Figure 5.5. In the case of planar geometry (i) (cf. Figure 5.1), and for the small

values of the bond length b, one can note the presence of holes in the bonding

(cf. Figure 5.5a) and electrons in the anti–bonding band (cf. Figure 5.5b), centered

around the momenta k = π/b and k = 0, respectively. The situation for the

perpendicular geometry (ii) looks similarly in the case of the bonding band (cf.

Figure 5.5c), whereas in the anti–bonding bound electrons are uniformly in the

Brillouin zone (cf. Figure 5.5d). Such picture follows from that based on the

dispersion relations for the noninteracting system

ǫ0k = −t1 + 2(t2 + t3) cos kb, ǫπk = t1 + 2(t2 − t3) cos kb, (5.9)

if we note that t2 = t3 for the geometry (ii), due to the system symmetry. A very

small amount of the particle–hole excitations away from the band overlap point,

for which |t1|−2|t2| < 0, allows one to consider the system as a molecular crystal

(see next Section for the charge gap data).

The situation changes dramatically when direct band overlap takes place in

the momentum space. One can arrive at such a situation by changing the bond

length a (and, as a result, the intramolecular hopping t1) for a fixed value of the

intermolecular distance b (so t2 remains almost constant). The resulting electron

momentum distribution for the planar ladder (i) is presented in Figure 5.6. We

observe the systematic flow of the quasiparticles from the bonding to the anti–

bonding band until the half–filled band situation (in the system with one electron

per atom) is achieved, e.g. for a & 3a0 if b = 2a0 (cf. Figures 5.6a and 5.6b),

and for a & 4a0 if b = 3a0 (cf. Figures 5.6c and 5.6d). To describe such process

quantitatively, we define the total number of particle–hole excitations

Nh
0 ≡

∑

kσ

〈a0kσa†0kσ〉 = N e
π ≡

∑

kσ

〈a†πkσaπkσ〉 (5.10)
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(note that the total number of electrons is Ne = N). The numerical values of

Nh
0 , provided in Figure 5.7a, shows the crossover transition from the molecular

crystal to the system with a half–filled band, which takes place for a/a0 = 2 ÷ 3,

and looks very similarly for both studied system sizes N = 8 and 12 (for the

purpose of this analysis we suppose ABC for N = 8 and PBC for N = 12,

the problem of choosing BC when varying a is discussed in the next Section). The

corresponding carrier densitiesNh
0 /N , obtained from a simple 2–band model with

the dispersion relation given by Eq. (5.9), are shown in Figure 5.7b. These results

differs significantly from that presented in Figure 5.7a, since such a band model

shows the critical behavior

Nh
0 /N ∝ D ∝ |t1 − t1crit|1/2 ∼ (a− acrit)

1/2,

absent in the interacting 1D system due to nonexistence of the quasiparticles (cf.

Section 3.3.3). However, the values of a and b corresponding to the effective

quarter–filling (QF), for whichNh
0 = N e

π = N/2, do not differ significantly when

obtained from the band model end from the band model and from ED results for

N = 8 and 12 (cf. Figure 5.7c).

The latter aspect seems important from the theoretical point of view. Both

the molecular crystal (a≈ amin < b), and the free chain with the half–filled band

(a ≫ b) are predicted to have a zero conductivity: first one due to the closed–

shell configuration, the second due to the weak coupling RG analysis by Fab-

rizio (1996), which relate the metallic or insulating character of the 1D system

at a half–filling to the number of Fermi points. Nevertheless, around the effec-

tive quarter–filling (a ≈ b), the ladder has four Fermi points in the momentum

space, and there are no relevant umklapp processes which could drive the system

to an insulating phase (Fabrizio, 1996). Becuse of that, one can expect the ladder

metallicity around the Nh
0 = N/2 line, as shown in Figure 5.7c. We verify this

hypothesis in the remaining part of this Chapter by estimating the system charge

gap (the next Section) and the Drude weight (in Section 5.4.2).

5.3.3 Charge–energy gap

In Figure 5.8 we present the charge gap defined by Eq. (3.34), for both parallel (i)
and perpendicular (ii) orientation of the molecules with the optimal bond length

amin in each case. Since the system ground–state has the closed–shell configura-

tion, the data for N = 8 and 12 fit almost exactly to the perturbational result for

the molecular crystal

∆EC ≈ ∆EC(H2)− 4 |t2| , (5.11)

where

∆EC(H2) ≡ −2 |t1|+K1 +
√
(U −K1)2 + (4t1)2
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denotes the energy gap for the H2 molecule treated as a two–site problem, and

−4 |t2| is the effective gap narrowing due to the intermolecular hoppings t2 and

t3. The differences for N = 10 represents the finite–size effect caused by the

frustration due to odd number of molecules N/2 = 5, that raise the ground–state

energy when one electron is added to or subtracted from the system.

Before analyzing the results for the planar ladder with varying bond length a,

let us discuss briefly the boundary–condition problem for such system, illustrated

in Figure 5.9. In the molecular–crystal range a ≈ amin, the ground–state energy

EG is almost independent of BC. However, we found it is always lower for PBC,

which also leads to the positive Drude weight (cf. next Section). On the other hand,

for a≫ b, the system is divided into two separate atomic chains ofN/2 sites each,

so the minimal ground–state energy corresponds to PBC for N = 8n + 4 (so e.g.

for N = 12) and to ABC for N = 8n. In the intermediate range of a ∼ b we

have a single switching point for N = 8 (in which optimal boundary conditions

change from PBC to ABC), and two switching points for N = 12 (between which

the system prefers ABC).

The charge–energy gap for the planar ladder (i) with the fixed intermolecular

distance b = 2a0 and 3a0 is shown in Figure 5.10. We choose the optimal BC for a

given a, as mentioned above. The results obtained through the linear extrapolation

with 1/N → 0 (drawn as solid lines) show minimum at a ≈ 3a0 for b = 2a0 that

lays significantly below the limiting value for a ≫ b. The weaker minimum at
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a ≈ 4.5a0 for b = 3a0 is also visible. Such behavior suggests the metallicity

appearance in the intermediate range of a ∼ b, where the system transforms form

the band– to the Mott–type insulator. However, the scaling quality is relatively

poor, since the data for at least N = 16 are not available at this time (the data for

N = 10, or generally N 6= 4n, cannot be used in the finite–size scaling, since

they show the frustration caused by the odd number of molecules, N/2).

5.4 Spectral and transport properties

In this Section we present the ladder dynamical properties calculated with the

Lanczos algorithm (cf. Section 2.2.2). Analogously as for the system ground–

state, we analyze first the ladder with an optimized bond–length amin (so the

molecular–crystal range) for the both parallel (i) and perpendicular (ii) orienta-

tions of the molecules (cf. Figure 5.1), and then the planar ladder (i) with varying

a. The latter case corresponds to the transformation from the band– to the Mott–

type insulator, for which a nonzero conductivity is expected due to a dielectric

catastrophe (Resta and Sorella, 1999).

5.4.1 Single–particle density of states

The evolution of the single–particle density of states (cf. Section 3.4.1 for the

definition) with varying ladder geometry is illustrated in Figures 5.11 and 5.12.

In the molecular crystal range a = amin and for the planar ladder geometry (i),
the quasiparticle peaks are well–defined for small values of b . 3a0 (cf. Figure

5.11a). With increase b they get closer to each other, and the incoherent part of

the spectrum increases in strength and forms the quasi–continuous subbands (cor-

responding to the bonding and the anti–bonding bands) for the intermediate range

of b/a0 = 4 ÷ 5. These bands evolve to the discrete peaks, corresponding to the

ground (H0
2) and excited (H−

2 ) molecular states. The bonding band in the ladder

with perpendicular molecule orientation (ii) shows an identical behavior (cf. Fig-

ure 5.11b) as described above. The antibonding band for such ladder geometry

has the form of a discrete peak for any b, as predicted by the dispersionless form

of Eq. (5.9), obtained for t2 = t3.

The density of states for the planar ladder (i) with a fixed b = 2a0 and vary-

ing a (cf. Figure 5.12) evolves from the set of discrete peaks in the molecular–

crystal range of a ∼ 1.5a0, to the strongly incoherent spectra for the intermediate

a/a0 = 2 ÷ 4, and again to the set of peaks when the system halves into separate

chains of N/2 atoms. The ladder of N = 12 atoms has also a minimal charge–

gap for a ≈ 2.5a0, comparable with the separation of quasiparticle states due to

the geometrical quantization of the momenta. Such a picture suggests a metallic
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molecules. True periodic boundary conditions (PBC) are used.
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behavior in the large N limit, that we verify by estimating the Drude weight in

the next Section. One should also note that the spectrum shown in Figure 5.12 has

significantly smaller discontinuity (the charge gap) than other cases analyzed in

this thesis for the same system size N = 12 (cf. Figures 3.12 and 5.11).

5.4.2 Charge stiffness

The Drude weight (charge stiffness) for the ladder is defined analogously as that

for the atomic chain in Eq. (3.38), but with the current operator 3.39 replaced by

jp = i
∑

i<j,σ

tij(a
†
iσajσ − a†jσaiσ)(δ‖i,j‖,2 + δ‖i,j‖,3), (5.12)

where the neighbor distance ‖i, j‖ is given by Eq. (5.2) and δkl denotes the Cro-

necker delta. We again use the normalized Drude weight given by Eq. (3.48),

providing that the kinetic energy includes now the terms present in the current

operator (5.12), namely

〈Ψ0|Ht2 |Ψ0〉 = t2
∂

∂t2
EG and 〈Ψ0|Ht3 |Ψ0〉 = t3

∂

∂t3
EG, (5.13)

where the Hellman–Feynman relation is applied to the ladder Hamiltonian (5.1).

The results presented in Figure 5.13 show that in the molecular–crystal range

(a = amin) the system conductivity has a clear residual character due to the finite
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PBC or ABC to minimize the ground–state energy for a given a.
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system size N , and vanish with the growing N , regardless whether the parallel

(i) or the perpendicular (ii) molecule orientation (cf. Figures 5.13a and 5.13b,

respectively) has been taken. Thus, we obtain the direct confirmation, that the

close–shell molecular crystal configuration (cf. also the density of states in Figure

5.11) corresponds to the band–insulating state.

The situation changes dramatically when we analyze the conductivity along

the planar ladder as a function of the bond length a, as presented in Figure 5.14.

In this case we observe the well–defined conductivity maxima around a ≈ b,
which evolves into a narrow peak when the finite size scaling of the linear form

ln |D∗
N | = a +

b

N

is performed with 1/N → ∞ (cf. the solid lines in Figures 5.14a and 5.14b). The

position and the intensity of such a peak evolves gradually with a, as shown in

Figure 5.15, but always remains well–separated from the residual conductivity for

the Mott–insulating state (a≫ b), present due to the finite–size effects. The pres-

ence of the conductivity peaks around a ≈ b proves the existence of the dielectric

catastrophe, similar to those discussed for the generalized Hubbard model with

an alternating atomic energy (Resta and Sorella, 1999), present when the system

switches between the band– and Mott–insulating states.
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The above results for the conductivity, together with those concerning the

charge gap (cf. Section 5.3.3) and the single–particle density of states (cf. Sec-

tion 5.4.1), motivated us to draw phase diagram for the planar ladder as Figure

5.16. In such a system with a dielectric catastrophe, the narrow metallic phase

around a ≈ b is sandwitched in between the band– and the Mott–type insulating

phases for a . b and a & b, respectively. The limiting lines were obtained from

the inflection points ofD∗ vs. a, ploted in Figure 5.15. We observe that the middle

part of the metallic phase (corresponding to the maximal conductivity) is placed

to the right of the effective quarter–filling line obtained for the band model in Sec-

tion 5.3.2 (and close to the ED data concerning the effective band filling, cf. Figure

5.7c). This suggests that the interaction prefers the closed–shell, band–insulating

configuration in the correlated state, presumably due to the smaller charge fluctu-

ations along the ladder axis.

5.5 A brief summary

In this Chapter we applied EDABI method to the analysis of the properties of

fermionic ladders as function of their geometrical parameters: the bond length

a and the intermolecular distance b. The principal results presented here are the
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following:

• The existence of a critical intermolecular distance b
(i)
crit and b

(ii)
crit, for which

the ground–state energy of the separate atomic chains is lower that for the

ladder, and the convergence of these values with the coordinational number,

suggested by the comparison with the analogical results for the H4 cluster.

• A nontrivial charge order induced by the long–range part of the Coulomb

interactions regardless of the molecule orientation.

• The validity of a simple molecular–crystal perturbation approach in descrip-

tion of the ladder with an optimized bond length amin.

• The deep charge–gap minimum and the conductivity peak for the planar

ladder with varying bond length a, separating the band– and the Mott–type

insulating phases.

The last result shows the presence of the dielectric catastrophe and the result-

ing metallic phase of the ladder, in agreement with existing studies of different

parametrized models, for which the i.e. the electric polarizability become singular

when the insulating order changes from the band– to the Mott–type (Resta and

Sorella, 1999).
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Chapter 6

Concluding remarks

In this thesis, we have analyzed the ground–state, the spectral, and the transport

properties of finite nanochains, clusters, and fermionic ladders, within the novel

(EDABI) method of approach to the strongly correlated electron systems. For the

chains and ladders, we proposed the microscopic criteria for the crossover transi-

tion from a nanometal to the localized spin system in one dimension, which was

analyzed in relation to spectral and transport properties obtained with the help

of the Lanczos technique for an optimized Gaussian–type STO–3G basis. In the

first case, the criterion based on the Tomonaga–Luttinger theory was shown to be

of qualitative for the nanosystems of N 6 16 atoms, in which the metallic and

insulating features coexist for the half–filled band case. The distinction between

the Fermi– and Luttinger–liquid behavior has been discussed on the example of

the electron–momentum distribution in both theories. The system also shows the

metal–insulator transition with the increasing lattice parameter at the quarter fill-

ing. For the case of fermionic ladders, however, an analogical criterion based on

the band theory and the weak–coupling renormalization group analysis by Fab-

rizio (1996) proves valuable in estimating the dielectric catastrophe point, when

the system transforms from the band– to the Mott–type insulating phase, show-

ing the metallic behavior for an intermediate range of the lattice parameter. The

analysis of H4 cluster stability, together with that for the ladders, shows an in-

teresting convergence with the coordination number, in direct correspondence to

the structural transition from the molecular to the atomic phase, predicted for the

solid hydrogen at ultra–high pressure.

Among the future applications of our method are the following topics:

(i) A direct treatment of the realistic 1D systems with the single–band extended

Hubbard model. This most straightforward application concerns only a lim-

ited class of materials. However, as the Hilbert space of various organic con-

ductors can be effectively reduced by choosing only the highest occupied-

103
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(HOMO) or the lowest unoccupied (LUMO) molecular orbitals per struc-

tural unit, this direction seems realizable.

(ii) Application to other models tractable within the Lanczos technique, e.g. the

t−J model for planar clusters. This aspect looks very interesting due to the

recently discovered superconductivity in the NaxCoO2 · yH2O compound,

providing new ideas about the effective dielectric constant modification, in-

duced by H2O presence.

(iii) The combination of the approximate methods of solving parametrized Ha-

miltonians with a simultaneous ab initio readjustment of the Wannier func-

tions. This approach, i.e. for the case of Gutzwiller method (possibly com-

bined with few Lanczos steps) will allow us to consider 3–dimensional sys-

tems of a larger size. The study of correlated electrons in materials such as

the metallic hydrogen, or truly 1D systems (e.g. carbon nanotubes), seems

tractable.

(iv) Closely related to the above is a combination of the dynamical–mean field

treatment with ab initio methods, which seems promising e.g. for the study

of hydrogen metallicity in 3D, as well as for other strongly correlated elec-

tron systems.

It would be also very interesting to test experimentally presented results on

“toy” nanoscopic systems, such as linear chains of single–electron quantum dots

(with steered gate potential), or for K/Na atoms wrapped in C60 fullerenes.

In conclusion, we have implemented EDABI method in a number of nanosco-

pic situations. The method is sound in those cases. In general, the single–particle

basis readjustment closes the solution of the parametrized models and as such

should constitute a standard part of the approach to the strongly correlated sys-

tems. This is simply because in those systems the interaction among the particles

must be treated before each of the electrons relaxes to its final single–particle

wavefunction in the many–particle correlated state. Hopefully, new methods will

be developed to extend this theoretical approach to the extended systems as well.



Appendix A

The Gaussian 1s–like basis

In this Appendix we provide a detailed formulas for the interaction parameters

calculated in the atomic basis (primed notation in Sections 3.1.1 and 3.1.2), when

atomic 1s–like functions are represented as Gaussian–type orbitals.

A.1 Gaussian contraction and basis optimization

We start from defining the 1s–like orbital center on i–th lattice site as a linear

combination (contraction) of m Gaussian functions

Ψi(r) =
∑

a

βaΨ
(a)
i (r), Ψ

(a)
i (r) =

(
2Γ2

a

π

)3/4

e−Γ2
a(r−Ri)

2

. (A.1)

The coefficients βa and Γa (a = 1 . . .m) are adjusted to minimize the atomic

energy on a single site, so the contraction (A.1) takes the form close to Slater 1s
function (see Appendix B) in the energy space. To perform such optimization, we

consider the on–site Hamiltonian

Hi(r) = −∇2 − 2

|r−Ri|
(A.2)

(in the atomic units), matrix elements of which are equal to

〈Ψ(a)
i |Hi|Ψ(b)

i 〉 = 3 · 25/2(ΓaΓb)
7/2

(Γ2
a + Γ2

b)
5/2

− 27/2(ΓaΓb)
3/2

π1/2(Γ2
a + Γ2

b)
. (A.3)

One should also remember about the nonorthogonality of the Gaussians compos-

ing the contraction (A.1), namely

〈Ψ(a)
i |Ψ(b)

i 〉 =
(

2ΓaΓb

Γ2
a + Γ2

b

)3/2

. (A.4)
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Then, we proceed as follows. First of all, to reduce the number of degrees of

freedom in Eq. (A.1) we take into account the exponential decay of Φi(r) and

postulate the coefficients Γa in the form of geometric series

(Γa, a = −k . . . k) =
(
q−kΓ0, . . . , q

−1Γ0,Γ0, qΓ0, . . . , q
kΓ0

)
; (A.5)

where we suppose an odd number of Gaussians m = 2k + 1, and define two

adjustable parameters Γ0 and q. For a given Γa one can perform a simultaneous

diagonalization of matrix with elements given by Eq. (A.3) and the metric form

(A.4), to obtain the coefficients βa corresponding to the ground– (1s) or excited–

state (2s, 3s, etc.) wavefunctions. Since the corresponding eigenergies depends

only on two adjustable parameters Γ0 and q, an appropriate optimization can be

performed numerically.

The resulting ground–state energies of a hydrogen atom are listed in Table A.1.

The results presented in this thesis were obtained for contractions ofm = 3 Gaus-

sians (STO–3G basis in quantum chemistry), which provides an accuracy on the

level of 1% in the energy (cf. Table A.1) and requires a reasonable computational

effort on calculating the interaction parameters. The corresponding ground– and

first–excited state wavefunctions for m = 3 and m = 7 Gaussians are ploted in

Figure A.1 and compared with the exact Slater 1s and 2s orbitals.

One additional comment should be made about introducing the inverse orbital

size α. Here we define the renormalized 1s–like orbital as

Ψi(α, r) = α3/2
∑

a

βaΨ
(a)
i (αr), (A.6)

TABLE A.1: Ground–state energy (in Ry) for the system with 1s–like orbital com-

posed of m Gaussians and their deviation from the exact value (−1 Ry). The

corresponding optimal contraction parameters Γ0 and q are also provided.

m Γ0 q EG EG + 1
1 0.5319 2.0000 -0.848826 0.151174

3 0.8920 2.2092 -0.991686 0.008314

5 1.2282 1.8927 -0.999125 0.000875

7 1.6142 1.7382 -0.999874 0.000126

9 2.0685 1.6440 -0.999978 2.20·10−5

11 2.6036 1.5792 -0.999995 4.48·10−6

13 3.2275 1.5309 -0.999999 1.03·10−6

15 3.9443 1.4928 -1.000000 2.69·10−7
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108 APPENDIX A. THE GAUSSIAN 1S–LIKE BASIS

that is equivalent to the transformation Γa → αΓa, whereas the coefficients βa
of the contraction (A.1) remains unchanged. One can easily check, that such

transformation does not affect the overlap integrals (A.4), so the normalization of

the 1s–like orbitals defined in Eq. (A.6) is preserved for any α. Thus, provided

the microscopic parameters can be determined analytically for a given α (cf. next

Section), the corresponding ground–state energy of an interacting system is calcu-

lated and the inverse orbital size α is subsequently obtained within the framework

of EDABI method (cf. Section 2.1).

A.2 Microscopic parameters

The scalar product of the Gaussian contractions (A.1) localized on the lattice sites

i and j (the overlap integral) is given by

Sij =
∑

ab

βaβb〈Ψ(a)
i |Ψ(b)

j 〉 ≡
∑

ab

βaβbSab(Rij), (A.7)

where Rij = |Rj −Ri|, and

Sab(R) =

(
2ΓaΓb

Γ2
a + Γ2

b

)3/2

e
−

Γ
2
aΓ

2
b

Γ2
a+Γ2

b

R2

=

(
gab
Gab

)3

e−
1

2
(gab/Gab)

2R2

, (A.8)

as we define

gab = (ΓaΓb)
1/2, and Gab =

(
Γ2
a + Γ2

b

2

)1/2

. (A.9)

Here and in the following formulas we do not introduce explicitly the inverse

orbital size α, as in Eq. (A.6), since α 6= 1 corresponds to simple rescaling of

the coefficient Γa → αΓa. Having estimated the scalar product Sij in Eq. (A.7),

we can define next the Wannier basis composed of the Gaussian–type orbitals by

applying Eqs. (3.9), (3.10) and (3.11) for 1D chain (note that Sij ≡ S|i−j|) or the

corresponding formulas for the systems of other geometries.

Analogously, the hopping integral for the sites i and j can be expressed (in the

atomic basis) as follows

t′ij =
∑

ab

βaβb〈Ψ(a)
i |T |Ψ(b)

i 〉, (A.10)

where the single–particle operator T (r) is defined by Eq. (3.4), the matrix ele-

ments 〈Ψ(a)
i |T |Ψ(b)

i 〉 are given by

〈Ψ(a)
i |T |Ψ(b)

i 〉 = τ0 +
∑

k

τikj , (A.11)
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where we define

τ0 = 〈Ψ(a)
i | − ∇2|Ψ(b)

i 〉 =
(
gab
Gab

)7 (
3G2

ab −R2
ijg

4
ab

)
e−

1

2
(g2

ab
/Gab)

2R2
ij (A.12)

and

τikj = 〈Ψ(a)
i | 2

|r−Rk|
|Ψ(b)

i 〉 = −2Sab(Rij)
erf(

√
2GabRikj)

Rikj
. (A.13)

The special function erf(x) is defined in the standard manner

erf(x) =
2√
π

∫ x

0

e−t2dt; (A.14)

we also introduce the three–site distance

Rikj =

∣∣∣∣Rk −
[
Ri +

Rij

1 + (Γa/Γb)2

]∣∣∣∣ . (A.15)

If Rikj = 0, one can avoid the singularity by using the limit

lim
x→0

erf(ax)

x
=

2a√
π
, (A.16)

that comes obviously from the definition of erf(x) in Eq. (A.14). Thus, in the case

when i = j = k Eq. (A.11) reduces to the form

〈Ψ(a)
i |T |Ψ(b)

i 〉 = 3
g7ab
G5

ab

− 25/2g3ab
π1/2G2

ab

,

that is exactly equal to Eq. (A.3) for the on–site term.

The most important feature of the Gaussian–type orbitals is their capability of

calculating the three– and four– site interaction terms in the atomic basis. This is

because the product of two Gaussians has still a Gaussian form, so all the integrals

reduce to the form of the intersite Coulomb repulsion K. Namely, the generic

four–site term

V ′
ijkl =

∑

abcd

βaβbβcβd〈Ψ(a)
i Ψ

(b)
j |V |Ψ(c)

k Ψ
(d)
l 〉 (A.17)

consists of the elements

〈Ψ(a)
i Ψ

(b)
j |V |Ψ(c)

k Ψ
(d)
l 〉 = Sac(Rik)Sbd(Rjl)K(Rijkl, Gac, Gbd), (A.18)
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where the four–site distance

Rijkl =

∣∣∣∣
[
Ri +

Rik

1 + (Γa/Γc)2

]
−
[
Rj +

Rjl

1 + (Γb/Γd)2

]∣∣∣∣ , (A.19)

and the Coulomb integral for the Gaussians of the inverse sizes Γ1 and Γ2, centered

at the distance R, is equal to

K(R,Γ1,Γ2) =
2

R
erf

[ √
2Γ1Γ2R

(Γ2
1 + Γ2

2)
1/1

]
=

2

R
erf(g212R/G12). (A.20)

The compact form of Eq. (A.20) was achieved with the help of the variables sim-

ilar to those defined in Eq. (A.9), namely

g12 = (Γ1Γ2)
1/2, and G12 =

(
Γ2
1 + Γ2

2

2

)1/2

.

When Rijkl = 0 we again use the limit (A.16), obtaining e.g. the on–site Hubbard

term in the form

Uabcd = 〈Ψ(a)
i Ψ

(b)
i |V |Ψ(c)

i Ψ
(d)
i 〉 = 4

π1/2

(
gacgbd
GacGbd

)3
g212
G12

.

This completes our review of the Gaussian–type orbital approach, since one

can substitute the one–particle elements in the atomic basis, defined by Eqs. (A.10–

A.15) to an appropriate formula in Wannier basis (i.e. to Eqs. (3.12) and (3.13) in

the case of 1D chain), and proceed analogously with the two–particle elements

given by Eqs. (A.17–A.20).



Appendix B

Slater–type orbitals

In this Appendix we have collected the expressions for the matrix elements in the

atomic (primed) basis composed of the Slater 1s functions defined by

Ψi(r) =

(
α3

π

)1/2

e−α|r−Ri|, (B.1)

where the inverse orbital size α is the variational parameter adjusted to reach

the ground–state energy minimum within the EDABI method (cf. Section 2.1).

This Appendix follows the previous formulation of our method for the Slater–type

orbitals (Spałek et al., 2000; Rycerz and Spałek, 2002).

For the sake of completeness, we start from the overlap integral of the Slater

orbitals localized on the site i and j

Sij = 〈Ψi|Ψj〉 = eαRij

(
1 + αRij +

1

3
α2R2

ij

)
, (B.2)

whereRij = |Ri−Rj|. The above expression is used to determine the coefficients

β and γ in the expansion (3.9) via Eqs. (3.10) and (3.11); one should note that

for 1D chain Sij ≡ S|i−j|. Hence, the Wannier basis composed of Slater–type

functions is constructed and we can estimate the microscopic parameters.

B.1 Single–particle elements

The expansion (3.9) leads to two–site terms in the atomic energy ǫa and to and

three–site terms in the hopping integrals. Namely, in the expressions (3.12) and

(3.13) the atomic energy ǫ′a is

ǫ′a = 〈Ψi|T |Ψi〉 = α2 − 2α+
∑

j 6=i

[
− 2

Rij
+ e−2αRij

(
2α+

2

Rij

)]
, (B.3)
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FIGURE B.1: Configuration of coordi-

nates used to calculated the three–site

terms τikj in the hopping integral t′ij for

the electron transfer j → i induced by

the Coulomb potential of k–th ion.

where the single–particle operator T (r) is given by Eq. (3.4). Note the appearance

of the long–range part ∼ (−2/Rij), as one would have in the classical limit.

The evaluation of t′ij is not so straightforward as one can see from the expres-

sion

t′ij = 〈Ψi| − ∇2 −
∑

k

2

rk
|Ψj〉 = τ0 +

∑

k

τikj , (B.4)

where rk = |r−Rk|, τ0 represent the simple part and τijk is the three–site part.

The part τ0 is easy to calculate; since we have

τ0 = 〈Ψi| − ∇2 |Ψj〉 = α2e−αRij

(
1 + αRij −

1

3
α2R2

ij

)
. (B.5)

The three–site part is more cumbersome, as it reduces to the following integral

expression

τikj = −
∫
d3rΨ∗(ri)

2

rk
Ψ(rj) = −2α3

π

∫
d3r

e−α(ri+rj)

rk
. (B.6)

To calculate the integral we introduce the spheroidal coordinates (λ, µ),

aλ = ri + rj, aµ = ri − rj, d3r =
πa3

4
(λ2 − µ2)dλdµ, (B.7)

where a ≡ Rij . The regimes for λ and µ are: 1 6 λ < ∞, −1 6 µ 6 1. This

transformation leads to the following expression for rk:

rk =

√
a2

4
(λ2 − 1)(1− µ2) +

(
λµ
a

2
− h
)
, (B.8)

where h is the z-coordinate of the middle point of the Coulomb potential well

caused by the k–th ion (cf. Figure B.1). Integrating with respect to µ we obtain

τikj = −α3a2
∫ ∞

1

dλ exp(−αaλ)
{[
λ2
(
1 + (2h/a)2

)
+ b/2

]
×
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× log
(2hλ/a− 1)−

√
(2hλ/a− 1)2 + b

(2hλ/a+ 1)−
√
(2hλ/a+ 1)2 + b

+

+(3hλ/a− 1/2)
√
(2hλ/a+ 1)2 + b

−(3hλ/a+ 1/2)
√
(2hλ/a− 1)2 + b

}
, (B.9)

where b = (λ2 − 1) [1− (2h/a)2]. This integral simplifies substantially if either

k = i or k = j, i.e. for h = ±a/2. Then, taking simple limiting expression we

obtain that

τijk = −2α3a2
∫ ∞

1

dλλe−αaλ = −2αe−αRij (αRij + 1). (B.10)

Substituting (B.10) to (B.4) we obtain e.g. the hopping integral for H2 molecule

(Spałek et al., 2000).

In the general case, we have to evaluate the integral (B.9) numerically. For

this purpose, one makes the change of variable λ = 1/t to integrate over the finite

interval 0 < t < 1 (one has to use a variable summation step, since the integrand

is logarithmically divergent at t = 1). When using the Simpson method (Burden

and Faires, 1985) one has to evaluate the integrand in 300÷ 400 points to achieve

the accuracy 10−6 Ry; this procedure requires a negligible time compared to that

required to determine the ground state energy.

B.2 Interaction parameters

Two particle elements V ′
ijkl = 〈ΨiΨj |V |ΨkΨl〉 can be evaluate analytically for the

Slater–type orbitals only in the special cases of the two–site terms, as listed below

(Slater, 1963)

V ′
iiii ≡ U ′ =

5

4
α, (B.11)

V ′
ijij ≡ K ′ =

2

R
− αe−2αR

(
2

αR
+

3

2
αR +

1

3
α2R2 +

11

4

)
, (B.12)

V ′
iiij ≡ V ′ = α

[
e−αR

(
2αR+

1

4
+

5

8αR

)
− 1

4
e−3αR

(
1 +

5

2αR

)]
, (B.13)

V ′
ijji = V ′

iijj ≡ J ′ =
12

5R

[
S2C + S2 logαR− 2SS ′Ei(−2αR)

+ (S ′)2Ei(−4αR)
]
+ αe−2αR

(
5

4
− 23

10
αR− 6

5
α2R2 − 2

15
α3R3

)
; (B.14)
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where R is the distance between two different of the sites i, j, k, and l,

S = e−αR

(
1 + αR +

1

3
α2R2

)
, S ′ = eαR

(
1− αR +

1

3
α2R2

)
, (B.15)

C = 0.57722 is the Euler constant, Ei(−x) = −
∫ ∞

x

e−t

t
dt. (B.16)

In other situation, when consider the three– or four–site terms among Vijkl, the

numerical integrations becomes so computationally extensive, that an application

of the Gaussian–type orbitals (cf. Appendix A) is much efficient. An interesting

approach, combining the evaluation of all possible integrals in the Slater basis and

only the three– and four– site interaction terms in Gaussian, have been recently

proposed (Kurzyk et al., 2003). In such a method one should, however, check

carefully for the convergence with the number of Gaussians to control the errors,

whereas when applying entirely the Gaussian–type orbitals, as in this thesis, one

stays in the framework of variational methods that guarantee the resulting ground–

state energy to be higher than or equal to its exact value.
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