>   Faculty of Physics, Astronomy and Applied Computer Science   >   Institute of Theoretical Physics   >   Department of Condensed Matter Theory and Nanophysics (ZTMSiN)   >   Prof. Adam Rycerz

All my UJ pages > This site > Page for students (PL) > USOSweb > ZTMSiN Page > RUJ search

Publications (co)authored by Adam Rycerz

For some some citation metrics, see Web of Science ResearcherID: F-6253-2014.

Journal articles:

  1. J.Spałek, R.Podsiadły, W.Wójcik, and A.Rycerz, Optimization of single-particle basis for exactly soluble models of correlated electrons, Phys. Rev. B 61, 15676-15687 (2000).
  2. J.Spałek, R.Podsiadły, A.Rycerz, and W.Wójcik, Exact Diagonalization of Many-Fermion Hamiltonian Combined with Wave-Function Readjustment: Application to One-Dimensional Systems, Acta Phys. Polon. B 31, 2879-2898 (2000).
  3. A.Rycerz and J.Spałek, Exact Diagonalization of Many-Fermion Hamiltonian with Wave-Function Renormalization, Phys. Rev. B 63, 073101 (2001), pp. 1-4.
  4. J.Spałek and A.Rycerz, Electron localization in one-dimensional nanoscopic system: A combined exact diagonalization-an ab initio approach, Phys. Rev. B 64, 161105(R) (2001), pp. 1-4.
  5. J.Spałek, A.Rycerz, and W.Wójcik, Exact Diagonalization of Many-Fermion Hamiltonian Combined with Wave-Function Readjustment II. Metallicity and Electron Localization in Nanoscopic Systems, Acta Phys. Polon. B 32, 3189-3202 (2001).
  6. A.Rycerz and J.Spałek, Electronic states, Mott localization, electron-lattice coupling, and dimerization for correlated one-dimensional systems, Phys. Rev. B 65, 035110 (2002), pp. 1-15.
  7. J.Spałek, A.Rycerz, and R.Podsiadły, Electron localization from the combined exact diagonalization - ab initio approach, Physica B, 312-313, 542-544 (2002).
  8. A.Rycerz, J.Spałek, and R.Podsiadły, Electron localization from the combined exact diagonalization - ab initio approach in one dimension, Physica B, 318, 338-340 (2002).
  9. A.Rycerz, J.Spałek, and R.Podsiadły, Defining metallicity and Mott localization in correlated nanoscopic systems, Acta Phys. Polon. B 34, 651-654 (2003).
  10. A.Rycerz and J.Spałek, On metal-insulator transition for a one-dimensional correlated nanoscopic chain, Acta Phys. Polon. B 34, 655-658 (2003).
  11. A.Rycerz and J.Spałek, Microwave absorption by the Josephson network in a low field: Application to ceramic high temperature superconductors, Physica C 387, 97-101 (2003).
  12. A.Rycerz and J.Spałek, Fundamental properties, localization threshold, and the Tomonaga-Luttinger behavior of electrons in nanochains, Eur. Phys. J. B 40, 153-165 (2004).
  13. E.M.Görlich, A.Rycerz, and J.Spałek, Electronic properties of correlated nanoscopic systems from the exact diagonalization combined with an ab initio approach, phys. stat. sol. (b) 242, 234-244 (2005).
  14. A.Rycerz and J.Spałek, Fundamental properties of correlated electrons in nanochains, Physica B 359-361, 1448-1450 (2005).
  15. A.Rycerz, and J.Spałek, Electronic structure and parity effects in correlated nanosystems, phys. stat. sol. (b) 243, 183-187 (2006).
  16. A.Rycerz, and J.Spałek, Conductance of a double quantum dot with correlation-induced wave function renormalization, Physica B, 378-380, 935-937 (2006).
  17. J.Tworzydło, B.Trauzettel, M.Titov, A.Rycerz, and C.W.J.Beenakker, Sub-Poissonian shot noise in graphene, Phys. Rev. Lett. 96, 246802 (2006), pp. 1-4.
  18. A.Rycerz, Entanglement and transport through correlated quantum dot, Eur. Phys. J. B 52, 291-296 (2006).
  19. A.Rycerz, J.Tworzydło, and C.W.J.Beenakker, Valley filter and valley valve in graphene, Nature Physics 3, 172-175 (2007).
  20. J.Spałek, E.M.Görlich, A.Rycerz, and R.Zahorbeński, The combined exact diagonalization - ab initio approach and its application to correlated electronic states and Mott-Hubbard localization in nanoscopic systems, J. Phys.: Condens. Matter 19, 255212 (2007), pp. 1-43.
  21. A.Rycerz and J.Spałek, Josephson network as a model for inhomogeneous superconductor: A microwave power absorption, Acta Phys. Polon. A 111, 581-594 (2007).
  22. A.Rycerz, J.Tworzydło, and C.W.J.Beenakker, Anomalously large conductance fluctuations in weakly disordered graphene, Europhys. Lett. 79, 57003 (2007), pp. 1-5.
  23. P.Recher, B.Trauzettel, A.Rycerz, Ya.M.Blanter, and C.W.J.Beenakker, A.F.Morpurgo, Aharonov-Bohm effect and broken valley-degeneracy in graphene rings, Phys. Rev. B 76, 235404 (2007), pp. 1-6.
  24. A.Rycerz, Diatomic molecule as a quantum entanglement switch, Physica B, 403, 1534-1536 (2008).
  25. A.R.Akhmerov, J.H.Bardarson, A.Rycerz, and C.W.J.Beenakker, Theory of the valley-valve effect in graphene nanoribbons, Phys. Rev. B 77, 205416 (2008), pp. 1-5.
  26. A.Rycerz, Nonequilibrium valley polarization in graphene nanoconstrictions, phys. stat. sol. (a) 205, 1281-1289 (2008).
  27. J.Wurm, A.Rycerz, I.Adagideli, M.Wimmer, K.Richter, and H.U.Baranger, Symmetry Classes in Graphene Quantum Dots: Universal Spectral Statistics, Weak Localization, and Conductance Fluctuations, Phys. Rev. Lett. 102, 056806 (2009), pp. 1-4.
  28. A.Rycerz, Aharonov-Bohm Effect and Valley Polarization in Nanoscopic Graphene Rings, Acta Phys. Polon. A 115, 322-325 (2009).
  29. A.Rycerz, P.Recher, and M.Wimmer, Conformal mapping and shot noise in graphene, Phys. Rev. B 80, 125417 (2009) pp. 1-14.
  30. A.Rycerz, Magnetoconductance of the Corbino disk in graphene, Phys. Rev. B 81, 121404(R) (2010), pp. 1-4.
  31. A.Rycerz, Electron Transport and Quantum-Dot Energy Levels in Z-Shaped Graphene Nanoconstriction with Zigzag Edges, Acta Phys. Polon. A 118, 238-243 (2010).
  32. A.Rycerz, Aharonov-Bohm and relativistic Corbino effects in graphene: A comparative study of two quantum interference phenomena, Acta Phys. Polon. A 121, 1242-1245 (2012).
  33. A.Rycerz, Random matrices and quantum chaos in weakly-disordered graphene nanoflakes, Phys. Rev. B 85, 245424 (2012), pp. 1-20.
  34. A.Rycerz, Strain-induced transitions to quantum chaos and effective time-reversal symmetry breaking in triangular graphene nanoflakes, Phys. Rev. B 87, 195431 (2013), pp. 1-9.
  35. G.Rut and A.Rycerz, Pseudodiffusive conductance, quantum-limited shot noise, and Landau-level hierarchy in biased graphene bilayer, Phys. Rev. B 89, 045421 (2014), pp. 1-12.
  36. G.Rut and A.Rycerz, Minimal conductivity and signatures of quantum criticality in ballistic graphene bilayer, Europhys. Lett. 107, 47005 (2014), pp. 1-5.
  37. G.Rut and A.Rycerz, Conditions for Conductance Quantization in Mesoscopic Dirac Systems on the Examples of Graphene Nanoconstrictions, Acta Phys. Polon. A 126, A114-A117 (2014).
  38. G.Rut and A.Rycerz, Magnetoconductance of the Corbino disk in graphene: Chiral tunneling and quantum interference in the bilayer case, J. Phys.: Condens. Matter 26, 485301 (2014), pp. 1-12.
  39. G.Rut and A.Rycerz, Quantum-limited shot noise and quantum interference in graphene based Corbino disk, Philos. Mag. 95, 599-608 (2015).
  40. G.Rut and A.Rycerz, Trigonal warping, pseudodiffusive transport, and finite-system version of the Lifshitz transition in magnetoconductance of bilayer graphene Corbino disks, Phys. Rev. B 93, 075419 (2016), pp. 1-14.
  41. A.Rycerz, Pairwise entanglement and the Mott transition for correlated electrons in nanochains, New J. Phys. 19, 053025 (2017), pp. 1-15.
  42. D.Suszalski, G.Rut, and A.Rycerz, Lifshitz transition and thermoelectric properties of bilayer graphene, Phys. Rev. B 97, 125403 (2018), pp. 1-10.
  43. D.Suszalski, G.Rut, and A.Rycerz, Thermoelectric properties of gapped bilayer graphene, J. Phys.: Condens. Matter 31, 415501 (2019), pp. 1-8.
  44. D.Suszalski, G.Rut, and A.Rycerz, Mesoscopic valley filter in graphene Corbino disk containing a p-n junction, J. Phys. Mater. 3, 015006 (2020), pp. 1-17.
  45. D.Suszalski, G.Rut, and A.Rycerz, Conductivity scaling and the effects of symmetry-breaking terms in bilayer graphene Hamiltonian, Phys. Rev. B 101, 125425 (2020), pp. 1-10.
  46. D.Suszalski and A.Rycerz, Adiabatic Quantum Pumping in Buckled Graphene Nanoribbon Driven by a Kink, Acta Phys. Pol. B Proc. Suppl. 13, 907-913 (2020).
  47. A.Rycerz and D.Suszalski, Graphene disk in a solenoid magnetic potential: Aharonov-Bohm effect without a two-slit-like setup, Phys. Rev. B 101, 245429 (2020), pp. 1-6.
  48. D.Suszalski and A.Rycerz, Adiabatic pumping driven by a moving kink in a buckled graphene nanoribbon with implications for a quantum standard for the ampere, Phys. Rev. B 102, 165408 (2020), pp. 1-10.
  49. A.Rycerz, Wiedemann–Franz law for massless Dirac fermions with implications for graphene, Materials 14, 2704 (2021), pp. 1-20.
  50. A.Rycerz and P.Witkowski, Sub-Sharvin conductance and enhanced shot noise in doped graphene, Phys. Rev. B 104, 165413 (2021), pp. 1-7.
  51. A.Rycerz and P.Witkowski, Theory of sub-Sharvin charge transport in graphene disks, Phys. Rev. B 106, 155428 (2022), pp. 1-12.
  52. G.Rut, M.Fidrysiak, D.Goc-Jagło, and A.Rycerz, Mott transition in the Hubbard model on anisotropic honeycomb lattice with implications for strained graphene: Gutzwiller variational study, Int. J. Mol. Sci. 24, 1509 (2023), pp. 1-22.
  53. A.Rycerz, K.Rycerz, and P.Witkowski, Thermoelectric Properties of the Corbino Disk in Graphene, Materials 16, 4250 (2023), pp. 1-16.
  54. A.Rycerz, M.Fidrysiak, and D.Goc-Jagło, Strain-induced Aharonov-Bohm effect at nanoscale and ground state of a carbon nanotube with zigzag edges, J. Magn. Magn. Mater. 587, 171322 (2023), pp. 1-4.
  55. A.Rycerz, K.Rycerz, and P.Witkowski, Sub-Sharvin Conductance and Incoherent Shot-Noise in Graphene Disks at Magnetic Field, Materials 17, 3067 (2024), pp. 1-20.
  56. A.Rycerz, The Quantum Transport of Dirac Fermions in Selected Graphene Nanosystems Away from the Charge Neutrality Point, Materials 18, 2036 (2025), pp. 1-35.

Articles in proceedings and books:

  1. J.Spałek, A.Rycerz, W.Wójcik, and R.Podsiadły, in Open Problems in Strongly Correlated Electron Systems, ed. by J.Bonca et al. (Kluwer Academic Publishers, 2001) pp. 443-445
  2. A.Rycerz and J.Spałek, in IX School on High Temperature Superconductivity, eds. A.Szytula, A.Kolodziejczyk (Krakow, 2002), pp.201-218; e-print arXiv:cond-mat/0106188.
  3. A.Rycerz, J.Spałek, R.Podsiadły, and W.Wójcik, in Lectures on the Physics of Highly Correlated Electron Systems VI, ed. F.Mancini, AIP Conf. Proc. Vol. 629 (New York, 2002) pp. 213-222.
  4. J.Spałek, E.M.Goerlich, A.Rycerz, R.Zahorbeński, R.Podsiadły, and W.Wójcik, in Concepts in Electron Correlations, eds. A.C.Hewson and V.Zlatic, Proc. NATO Adv. Res. Workshop, Kluwer Academic (Dortrecht, 2003) pp. 257-268.
  5. A.Rycerz, J.Spałek, R.Podsiadły, and W.Wójcik, in Lectures on the Physics of Highly Correlated Electron Systems VII, ed. F.Mancini, AIP Conf. Proc. Vol. 678 (New York, 2003) pp. 313-322.
  6. J.Spałek, A.Rycerz, E.M.Goerlich, and R.Zahorbeński, in Highlights of Condensed Matter Physics, AIP Conf. Proc. Vol. 695 (New York, 2003), pp. 291-303.
  7. E.M.Goerlich, J.Kurzyk, A.Rycerz, R.Zahorbeński, W.Wójcik, and J.Spałek, in Molecular nanowires and other quantum objects, eds. A.S.Alexandrov et al., Kluwer Academic (Dortrecht, 2004) pp. 355-375.
  8. A.Rycerz and J.Spałek, in Lectures on the Physics of Highly Correlated Electron Systems VIII, eds. A.Avella, F.Mancini, AIP Conf. Proc. Vol. 715 (New York, 2004) pp. 235-244.
  9. B.Trauzettel, J.Tworzydło, M.Titov, A.Rycerz, and C.W.J.Beenakker, Minimum conductivity and maximum Fano factor in mesoscopic graphene, Proceedings of the VIth Rencontres du Vietnam, Hanoi, Vietnam, 2006. [see authors' version]
  10. A.Rycerz, Transition to Quantum Chaos in Weakly Disordered Graphene Nanoflakes, Chaotic Modeling and Simulation (CMSIM) 1, 35-43 (2012); e-print arXiv:1112.5078.
  11. A.Rycerz, Nonstandard Transition GUE-GOE for Random Matrices and Spectral Statistics of Graphene Nanoflakes, in Recent Advances in Graphene Research, ed. Pramoda Nayak, InTech, DOI:10.5772/64240 (2016) pp. 91-110; e-print arXiv:1604.03783.

Dissertations:

SUBMITTED:



Contents © 2015-2025 by Adam Rycerz. This page was last updated on April 29, 2025.