Commentary on
“Lectures on Classical and Quantum Theory of Fields”

1. In the second edition, the chapter “Relativistic Spinor Fields” has
been modified, especially in the part devoted to the Majorana field.
Pseudoclassical fermionic field, which has anticommuting compo-
nents, 1s now discussed in the new Section 5.5.

2. We plan to add a chapter on QED in the Coulomb gauge. It will
be posted on this web page when ready.

3. Writing a textbook is an opportunity to think about various funda-
mental concepts. Inevitably, one notices loopholes in existing expla-
nations, but also interesting possibilities for research. In the case of
theory of fields there are plenty of them. Two examples are given
below.

4. Let us have a look at the notion of pseudoclassical fermionic
fields. It is rather abstract concept. Such fields are neither quan-
tum nor classical. We expect that total energy, total momentum,
etc., of truly classical fields have numerical values (in a system of
units). In the case of pseudoclassical fields, the Noether theorem
gives expressions which are elements of the Grassmann algebra,
not numbers. On the other hand, quantum fields are represented by
operator-valued distributions, which involve an infinitely dimensio-
nal Hilbert space, while in the standard description of pseudoclas-
sical fields it is assumed that their components at each point of the
spacetime belong to a finite dimensional Grassmann algebra, and
that algebras at different points are independent.

The question arises what is mathematical definition of integral of
pseudoclassical field (or of a product of such fields) over spacetime.
Does it suffice to regard it as a formal expression which has all alge-
braic properties of an integral, but which does not have any definite
value? In such approach we do not care about convergence of the
integral because convergence is not even defined.

One can have questions also about derivatives of the pseudoclassical



fields. Is the r.h.s. of the expression
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defined at all? Remember that ¢*(z + a e(,)) and ¥*(z) belong to
different Grassmann algebras if a # 0. Here ¢, is the unit four-

vector with components e’(/w = 0.
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We regard the derivative as a linear transformation of the Grassmann
elements ¢)*(z), namely
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The kernel of this transformation is singular. Hence partial derivati-
ves of pseudoclassical field might require a regularization!
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Such approach to pseudoclassical fields is sufficient for calculations
of Feynman'’s path integrals. Nevertheless, I think there is a need of
a more complete mathematical treatment.

5. Quantum fields are operator-valued distributions. Therefore, expres-
sions such as [d*z ¢*(z), where ¢(x) is a free scalar field, are ma-
thematically incorrect. As discussed in the textbook, we should use
its regularized version, e.g.,
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where g(x1, T2, x3,z4) is a fixed test function. Such test function is
smooth and it vanishes at infinity. However, it turns out that the pre-
sence of it breaks relativistic invariance (the Poincaré symmetry). In
order to preserve this symmetry, we use the Pauli-Villars regulariza-
tion instead of the test function. This is equivalent to replacing the
test function g with certain distribution. Expression (1) then beco-
mes a convolution of distributions. Nevertheless, it works at least
in the perturbative expansion. It is rather intriguing that in such a
relativistically invariant regularization we use distributions, not test
functions. This may be regarded as a hint that relativistic fields are
distributions of a special kind. What exactly are these special featu-
res?



