Errata for the 2nd edition of "Lectures on Classical and Quantum Theory of Fields"

page	is	should be
15, below (1.46)	$a_{\pm}(\vec{k}) = \frac{C(\pm\omega(\vec{k}), \pm\vec{k})}{(2\pi)^2 \sqrt{4\pi\omega(\vec{k})}}$	$a_{\pm}(\vec{k}) = \frac{C(\pm\omega(\vec{k})/c, \pm\vec{k})}{(2\pi)^2 \sqrt{4\pi\omega(\vec{k})}}$
30, the formula for S_{NG}	$-(\dot{X}^{\mu}\dot{X}_{\mu})(X^{'\mu}X_{\mu}^{'})$	$-(\dot{X}^{\mu}\dot{X}_{\mu})(X^{'\nu}X_{\nu}^{'})$
30, Exercise 2.2(a)	$dX^{\mu}(t,x)dX_{\mu}(t,s) = \dots$	$dX^{\mu}(t,s)dX_{\mu}(t,s) = \dots$
120, the first line	The functions $h_i(\vec{k})$	The test functions $h_i(\vec{k})$
136, formula (6.80)	$(v_r^{\epsilon}(\vec{p}))^{\dagger}v_s^{\epsilon'}(\vec{p})=\ldots$	$(v_r^{(\epsilon)}(\vec{p}))^\dagger v_s^{(\epsilon')}(\vec{p}) = \dots$
140, 12th line from the top	are absent. The	are absent. Below we assume that $N \geq 1, M \geq 1$. The
140, 5th line from the bottom	$\sum_{n=0}^{N} r_n + \sum_{i=0}^{M} s_i$	$\sum_{n=1}^{N} r_n + \sum_{i=1}^{M} s_i$
140, formula (6.95)	$\sum_{i=0}^{N} \omega(\vec{q_i}) + \sum_{j=0}^{M} \omega(\vec{p_j})$	$\sum_{i=1}^N \omega(ec{q_i}) + \sum_{j=1}^M \omega(ec{p_j})$
141, formula (6.98)	$\sum_{j=1}^{M} p_i^k$	$\sum_{j=1}^{M} p_j^k$

page	is	should be
155, formula in the middle of the page	$\frac{d\hat{\phi}_I(t,\vec{x})}{dt} = \dots$	$\frac{\partial \hat{\phi}_I(t,\vec{x})}{\partial t} = \dots$
155, formula in the middle of the page	$\frac{d\hat{\pi}_I(t,\vec{x})}{dt} = \dots$	$\frac{\partial \hat{\pi}_I(t, \vec{x})}{\partial t} = \dots$
175 and 176, many places	$\left(:\tilde{V}_{Ig}[\tilde{\beta}]:\right)$	$\left(ilde{V}_{Ig}[ilde{eta}] ight)$
193, formula (8.17)	$A_1^{ren} \binom{(0)^2}{k} = 0$	$A_1^{ren}(\binom{0}{k}^2) = 0$
198, Fig. 8.9, the right leg of the graph	little right-arrow	little left-arrow
201 and 202, formulas (8.33), (8.34)	coefficient $\frac{\lambda_0^2}{12(2\pi)^8}$	without this coefficient
213, 2nd line from the top	$ \dots$ the pair (λ_0, m_0^2)	the pair (λ, m^2)
232, formula (10.14)	$ ilde{U}(\sigma_0,L(\Lambda)a)$	$ ilde{U}(\sigma_0,\hat{L}(\Lambda)a)$
235, 5th line from the bottom	\dots which $e^{i\chi(\Lambda)}=1.$	which one can choose $e^{i\chi(\Lambda)}=1$.
313, Fig. 13.4(a)	p+g	p+q