Errata for the 1st edition of "Lectures on Classical and Quantum Theory of Fields"

page	is	should be
15, below (1.46)	$a_{\pm}(\vec{k}) = \frac{C(\pm\omega(\vec{k}), \pm\vec{k})}{(2\pi)^2 \sqrt{4\pi\omega(\vec{k})}}$	$a_{\pm}(\vec{k}) = \frac{C(\pm\omega(\vec{k})/c, \pm\vec{k})}{(2\pi)^2 \sqrt{4\pi\omega(\vec{k})}}$
30, formula for S_{NG}	$-(\dot{X}^{\mu}\dot{X}_{\mu})(X^{\prime\mu}X_{\mu}^{\prime})$	$-(\dot{X}^{\mu}\dot{X}_{\mu})(X^{\prime\nu}X_{\nu}^{\prime})$
30, Exercise 2.2(a)	$dX^{\mu}(t,x)dX_{\mu}(t,s) = \dots$	$dX^{\mu}(t,s)dX_{\mu}(t,s) = \dots$
95, formula next to the last	$\dots = \psi(x')^{\dagger}\dots$	$\dots = \psi(x)^{\dagger} \dots$
95, formula (5.27)	$\ldots = \overline{\psi}(x') \ldots$	$\dots = \overline{\psi}(x)\dots$
97, the last formula	$\psi'_{R,L}(x) = P_{\pm}\psi'(x),$	$\psi'_{R,L}(x') = P_{\pm}\psi'(x'),$
104, 3rd line from the bottom	anti-commutes	anticommutes
118, 9th line from the top	The functions $h_i(\vec{k})$,	The test functions $h_i(\vec{k})$,
130, 10th line from the top	$\overline{\psi}=\gamma^0\psi^\dagger$	$\overline{\psi}=\psi^\dagger\gamma^0$
134, the first formula	$\Sigma_3 v_s^{(\pm)}(\vec{p}) = s v_s^{(\pm)}(\vec{p})$	$\Sigma_3 v_s^{(\pm)}(\vec{p} = 0) = s v_s^{(\pm)}(\vec{p} = 0)$

page	is	should be
134, 3rd line from the top	the Dirac particle.	the Dirac particle at rest.
134, formula (6.80)	$(v_r^{\epsilon}(\vec{p}))^{\dagger}v_s^{\epsilon'}(\vec{p}) = \dots$	$(v_r^{(\epsilon)}(\vec{p}))^{\dagger}v_s^{(\epsilon')}(\vec{p}) = \dots$
138, formula (6.94)	$\frac{1}{\sqrt{n!m!}}$	$\frac{1}{\sqrt{N!M!}}$
138, 7th line from the bottom	are absent. The	are absent. Below we assume that $N \geq 1, M \geq 1$. The
138, the line next to the last	$\sum_{n=0}^{N} r_n + \sum_{i=0}^{M} s_i$	$\sum_{n=1}^{N} r_n + \sum_{i=1}^{M} s_i$
139, formula (6.95)	$\sum_{i=0}^{N} \omega(\vec{q_i}) + \sum_{j=0}^{M} \omega(\vec{p_j})$	$\sum_{i=1}^N \omega(ec{q_i}) + \sum_{j=1}^M \omega(ec{p_j})$
139, formula (6.98)	$\sum_{j=1}^{M} p^k$	$\sum_{j=1}^{M} p_j^k$
155, formula in the middle of the page	$rac{d\hat{\phi}_I(t,ec{x})}{dt}=\ldots$	$rac{\partial \hat{\phi}_I(t,ec{x})}{\partial t} = \dots$
155, formula in the middle of the page	$rac{d\hat{\pi}_I(t, \vec{x})}{dt} = \dots$	$rac{\partial \hat{\pi}_I(t, ec{x})}{\partial t} = \dots$

page	is	should be
161, subtitle 7.2	Functions: Wick	Functions. Wick
175, in all formulas	$\left(:\tilde{V}_{Ig}[\tilde{eta}]: ight)$	$\left(ilde{V}_{Ig}[ilde{eta}] ight)$
193, formula (8.17)	$A_1^{ren} \binom{(0)2}{k} = 0$	$A_1^{ren}(({k \choose k})^2) = 0$
198, Fig. 8.9, the right leg of the graph	little right-arrow	little left-arrow
202, formulas (8.33), (8.34)	coefficient $rac{\lambda_0^2}{12(2\pi)^8}$	without this coefficient
213, 4th line from the top	\ldots the pair (λ_0,m_0^2)	\ldots the pair (λ, m^2)
234, formula (10.14)	$ ilde{U}(\sigma_0,L(\Lambda)a)$	$\tilde{U}(\sigma_0,\hat{L}(\Lambda)a)$
234, 3rd formula from the bottom	$\frac{\partial L(\Lambda)^{\nu}_{\ \mu}}{\partial \omega^{\rho\lambda}} = \dots$	$\left. \frac{\partial L(\Lambda)^{\nu}{}_{\mu}}{\partial \omega^{\rho \lambda}} \right _{\omega=0} = \dots$
237, 3rd line from the bottom	\dots which $e^{i\chi(\Lambda)}=1.$	which one can choose $e^{i\chi(\Lambda)}=1$.
316, Fig.13.4(a)	p+g	p+q