Zadanie 1.

Find approximate numerical solution to the Laplace'a equation in 2 dimensions

$$
\Delta f(x, y)=0
$$

in the square $[0, \pi] \times[0, \pi]$ with boundary condition resulting from known analytical exact solution

$$
f(x, y)=\Re e(\sin z+z), \quad z=x+i y
$$

To achieve goal, discretize interval $[0, \pi]$ into $N-1$ cells and use derivative formulas derived previously. Resulting linear system cast into matrix form

$$
A \cdot x=b .
$$

where x denotes discrete values $f_{i j} \equiv f\left(x_{i}, x_{j}\right)$ on the grid $\left\{x_{i}, y_{j}\right\}$.

Analyze structure of the $(N-2)^{2} \times(N-2)^{2}$ matrix A

- non-zero elements
- structure of the matrix

Linear system solve using solvers

- LU decomposition
- sparse matrix,
- multidiagonal,
- iterative,
- other, e.g. using GPU (see Project IV).

Analyze CPU and memory utilization, and compare results to known analytical formulas.

Zadanie $\mathbf{2}^{*}$.

Similar to previous, but inside disk of radius $R=1$, with Dirichlet condition defined by function $u(\phi)$. Compare with analytical formula

$$
f(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} u(\phi) \mathrm{d} \phi
$$

