Description

In process of testing relativistic generalized FermiDirac integrals, random reference floating-point numbers k from the range

$$
-1<k<k_{\max }
$$

are required. Numbers must have a form:
$k= \pm\left(1+\sum_{i=1}^{52} b_{i} 2^{i}\right) \times 2^{p}, b_{i} \in\{0,1\}, p=-1022 \ldots 1024$.

Goal of the project is to find a way to randomly sample all possible combinations of bits b_{i} and exponents p. However, we additionally require probability (histogram) of values

$$
\log _{10}(1+k)
$$

to be constant (uniform, flat) for entire range $-1<$ $k_{\min } \leqslant k \leqslant k_{\max }$. Values of $k_{\max }$ and $k_{\min }$ should be adjustable in the range $k_{\min } \geqslant-1+2^{-52}, k_{\max } \geqslant 256$. Preferred programming language: Mathematica.

Above is an example of the failed solution: probability (vertical) is not uniform, and empty strips are also present. Expected outcome: uniformly distributed points, without gaps ad/or patterns.

