Project description

Goal of the project is to compute integral of the form

$$
I[f(x)]=\int_{0}^{\pi} f(x) \sin x \mathrm{~d} x
$$

using as few as possible calls of the function $f(x)$, assumed to be very intense computationally, however ,smooth". For example, to evaluate $f(\pi / 2)$ one might require few hours of CPU time. To solve the problem Gaussian quadrature should work:

$$
I\left[W_{2 n+1}(x)\right] \equiv \sum_{i=0}^{n} w_{i} W_{n}\left(x_{i}\right)
$$

Analitycal solution for $n=1$

$$
\begin{gathered}
x_{0}=\frac{\pi}{2}-\frac{1}{2} \sqrt{\pi^{2}-8}, \\
x_{1}=\frac{\pi}{2}+\frac{1}{2} \sqrt{\pi^{2}-8}, \\
w_{0}=w_{1}=1
\end{gathered}
$$

Numerical solution for $n=2$:

$$
\begin{aligned}
& x_{0}=0.5581950867965893545098494001963, \\
& x_{1}=1.5707963267948966192313216916398, \\
& x_{2}=2.5833975667932038839527939830832, \\
& w_{0}=0.4558404080391222561098574237169, \\
& w_{1}=1.0883191839217554877802851525663, \\
& w_{2}=0.45584040803912225610985742371686 .
\end{aligned}
$$

For project solution to be considered at all, $n>6$ is required. Additionally, one can assume vanishing derivatives of $f(x)$ at interval endpoints: $f^{\prime}(0)=f^{\prime}(\pi)=0$.
where $W_{n}(x)$ is arbitrary polynomial of the order $2 n+1$, and above equation becomes identity.

Integral is then evaluates using:

$$
I[f(x)] \simeq \sum_{i=0}^{n} w_{i} f\left(x_{i}\right) .
$$

