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Chapter 1

INTRODUCTION

1.1 Historical overview

Questions of the shape and the behaviour of celestial bodies intrigue human beings for many
centuries. Ancient and medieval scientists believed that round shape of the Sun, Moon and
Earth is one of the world principles and requires no further explanation. “Planets,” as objects
from eternal world, had to be of perfect shape — circle, ball etc. — as opposed to our imperfect
environment. Galileo Galilei was one of the first men who realized, that the Moon, from general
point of view, is an object similar to the Earth [9]. From this, and many other observations
(Fig. 1.1), he correctly concluded, that entire universe is governed by the same principles as the
Earth.

Nevertheless, Galileo Galilei had never asked why celestial bodies are round-shaped. As his
predecessors, he assumed that perfect, rosimape is natural.

Following centuries brought new observations and theories. This had changed situation
dramatically, leading to questions never asked before. Among them, some are still unanswered
and subject of recent research.

The milestone of modern science, the Newton’s theory of gravitation, was also essential to
realize the existence of problems we consider in our thesis. It revealed the fact, that spherical
shape of celestial bodies is just a direct consequence of gravitational attraction. This led to for-
mulation of the essential termself-gravitating bodySelf-gravitating body is thus by definition
the object bound together only by its own gravitational forces. Therefore, most of astronomical
objects, in contrast to e.g. rocks bound by molecular forces, are self-gravitating. The shape of
celestial bodies is then a result of physical laws. Fortunately, the simplest case of spherically
symmetric solution is also the most frequent. Nevertheless, counterexamples of non-spherical
bodies were found very early. The most intriguing was the mysterious shape of the planet Sat-
urn. In 1659 Ch. Huygens determined the correct shape of Saturn as a planet surrounded by
a thin disk not connected to the surface. Jupiter is also apparently flattened. Such observa-
tions indicated, that for some reason spherical shape is only approximation. Since Copernicus,
we know the rotation of the Earth. Astronomical observations show rotation of other celestial
bodies, and attempts were made to explain non-spherical shape by the influence of rotation.

Question then arises of the shape of rotating self-gravitating body. Isaac Newton discussed
flattening of a rotating body due to balance of gravitational and centrifugal force at poles and

*From experiments, brilliant Galileo Galilei correctly deduced the law, nowadays referred to as “Galileo in-
variance.” Free particles movement along straight lines, however, he treated as an approximation to the circular
trajectories with some big radius! This clearly shows how difficult is to reject common ideas — here about special
role of the circular orbits and ball shape.
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Figure 1.1: Galileo, using the telescope made by himself found mountains and “seas” on the Moon.
Therefore, celestial bodies are obviously of Earth-like nature. Nevertheless, his opponents refused to
watch by any telescope, and thus he was forced to prove this to be true by other arguments [9]. One
of them is result of the solar light reflecting analysis: perfectly smooth sphere reflects light (left) in
obviously different manner (bright spot) than “imperfect” light scattering from irregular surface (right).
Moon is resembling the latter case.

equator.

First quantitative theory was given by Maclaurin in his boéKTreatise of Fluxionsprinted
in 1742. This was also one of the first applications for the Newton’s new methods, referred
to as infinitesimal calculus. He was able to find the shape of surface for uniformly rotating,
homogeneous self-gravitating body. These ellipsoidal surfaces are referred to as Maclaurin
spheroids.

In the 19-th century C. Jacobi investigated further this problem. He found a result, which
importance was not realized even by himself. Namely, above some critical value (cf. AP-
PENDIX D) we have the two possible configurations of equilibrium. One is a Maclaurin
spheroid, the other is a triaxial ellipsoid. It shows, that three-dimensional solutions can be
found even for apparently axially symmetric problem! From 20-th century physics point of
view, we may say that Jacobi have found the first exampspohtaneous symmetry breaking

Progress made in late 19-th century and at the beginning of 20-th century led to many, but
mostly negative results [19], e.g. regarding what is not solution of the rotating body problem
(e.g. von Zeipel paradox [28]) or non-ellipticity of the surface [4]. Actually, solutions of a
general case of compressible differentially rotating object with a free surface were unknown
until development of numerical methods e.g. [7, 11, 24] and progress in computer hardware
in 70’'s and 80’s. Nowadays, the structure of rapidly rotating bodies can be investigated in
non-stationary hydrodynamical situations [2, 16], of e.g. mass flows in binary stars [23].

Hopefully, in a near future we will be able to finally solve also outstanding problems of
stellar rotation involving magnetic fields. At present however, we are still unable to compute
fundamental properties of the rotating Syrto make quantitative prediction of a solar cycle
period. Therefore development of simple analytical methods seems to be important for modelers
to understand their own results. We would like to overview such well-known methods in the

*Ch. Huygens in 1690 also published important results for rotating body structure. Nevertheless, he never
accepted Newton'’s theory of gravitation!
**The Sun is very slow rotator, compared to other stars.
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next section.

1.2 Simple analytical formulae

Some of numerous analytical attempts to calculate the rotating body structure, such as the clas-
sic work of Maclaurin on ellipsoidal figures of equilibrium [20] and the Roche [17] model are

Figure 1.2:The Maclaurin spheroid (upper) and the Jacobi ellipsoid (lower) for kinetic to gravitational
energy ratioF;, /| E,| = 0.1628. Both of them are of the same mass, volume (due to constant density)
and angular momentum. Difference in the shape is striking. The Jacobi ellipsoid is at the onset of the
dynamical instability. Total mechanical energy of the Jacobi ellipsoid is smaller than that of the Maclau-
rin spheroid of the same angular momentum. Therefore, if some energy dissipation mechanism operates
(e.g. viscosity, gravitational radiation) the Maclaurin spheroid will evolve towards triaxial shape. The
figures are scaled properly according to physical properties, cf. APPENDIX D of [28].
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still in use as excellent simple tools.

1.2.1 Uniformly rotating homogeneous bodies

One of the most important differences between the general rotating bodies and the uniform
(homogeneous) ellipsoid with axes, a,, a. is simple analytical form of gravitational potential
in the latter case:

Dy(2,y,2) = 7 G p[(a2 — 12) Ay + (a2 — y?) Ay + (a2 — 22) A] (1.1)

Expression above is valid for interior of the ellipsoid, and coefficiehts i = x,y, z are,
following [29], given by the formula:

i d
= 0,0 / 4 : (1.2)
0

(af +u)(a2 + u)(a2 4 u)(a? + u)

According to e.g. our general equation (2.42) of rotating equilibrium discussed in detail later,
at the surface/( = 0) we have:

1
+®, =7 Gp[(a) —2?) Ay + (a —y*) Ay + (aZ — 22)A2]+§QQ (2* +y*) = C = const,
(1.3)
where we have used centrifugal potentialfor rigid rotation (3.53), withz being the rotation
axis. We may write the above equation in a standard form of the ellipsoidal surface:

x Y z
Zteta=t 9
T Y z
with: _
1
a% =7 Gpd, - 55, (1.5a)
C 1,
% =wGpA,, (1.5¢)
where: B
C=rGp(aiA, + CL;Ay +a2A,) - C. (1.5d)

Additionally, because our rotating body is incompressible, we have:
4
V= 3 T 0alyGs- (1.5e)

The system of equations (1.5) can be solved, giving the shape.(i®,, a.) of a rotating with
angular velocityQ2 body of volumeV and densityp. Solutions of eq. (1.5) are tabulated in
Ref. [28]. There are two distinct types of rotating objects satisfying (1.5): axially symmetric
Maclaurin spheroidsaf, = a,) and genuine triaxial Jacobi ellipsoids,(# a, # a.). The
axisymetric solution withu, = a, is particularly easy to handle [20]. If we divide (1.5a) by
(1.5c) and collect relevant terms we get:

0? a?

10
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The integrals (1.2) can be expressed by elementary functiensifa,, and eq. (1.6) becomes:

_e(142¢&%) arccose — 3e*V/1 — €2
X = (1 _ 52)3/2

(1.7)

wherees = a,/a, is the axis ratio. Dimensionless parameteis widely used to describe the
rotation strength. Triaxial solutions do not appear until rotational kinetic to gravitational energy
ratio £, /| E,| exceeds the value 61375, i.e. x = 0.187.

1.2.2 Roche model

In the Roche model we approximate gravitational force by a point-mass potential
M

At the surface of the body we have:
M + 1927‘2 = const = GM (1.9)

Vri4 22 2 R,’

whereR,, is the polar radius. From the condition of balance between centrifugal and gravita-
tional forces at the equatag M / R? = R, Q?, we get the maximum equatorial radius:

JJGM
Re = G;'ZZ . (110)

Therefore, if centrally condensed body of magsand equatorial radiug, rotates faster than:

02 %4 %TRB 2
= = g 1.11
X~ oxGp 2R " 2nRe 3 (1.11)

wherep = M/V is the mean density, then matter will be lost from the equator due to the
centrifugal force. This estimate is based on the assumption that the volume of flattened due to
rotation body can not exceed the volume of a ball with the raffijusMore detailed calculations

of a volume bounded by the critical surface give better estimate.36 [17].

1.2.3 The postulate: need of simple models

Two simple models mentioned in previous subsections represent limiting cases of possible ro-
tating configurations: (1) a uniform body of constant density and (2) a centrally condensed body
where almost the entire mass is concentrated at one point surrounded by essentially a weight-
less rotating envelope. Both of them are widely quoted in various context [22]. We can find
them in many textbooks [17, 29, 28] as they are valuable educational tools. In contrast, methods
developed for compressible bodies are quite complicated (e.g. Claiaraut-Legendere expansion
in [28]), therefore not very useful.

In this thesis we propose simple analytical formula for compressible differentially rotating
barotropes which is able to produce sensible results for a wide range of parameters. This for-
mula can immediately give us approximate structure of rotating polytropes without involving
numerical computations. All we need is some basic algebra and knowledge of the Lane-Emden
functions.

*In cylindrical coordinates, cf. footnote on page 18s rotation axis.

11
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Chapter 2

BASIC EQUATIONS & FORMULAE

2.1 Derivation of basic equations

Our goal is to find the mechanical equilibrium of self-gravitating body of simple composition,
assumed to be well approximated by the barotropic Equation Of State (thereafter EOS):

p=p(p). (2.1)

Moreover, we neglect all effects related to viscosity, magnetic fields, general relativity correc-
tions, tidal forces etc. However, even under these numerous simplifying assumptions, we are
still unable to answer significant questions about properties of rotating body as e.g. if strong
meridional circulation may affect global mechanical equilibrium. But this model is not trivial,
as e.g. white dwarfs almost perfectly fit into this class of objects.

We will derive equations of the problem from basic physical principles. This simple deriva-
tion is relevant to our goal, but omits many important properties and problems related to stellar
gas-dynamics. Reader interested in properties of much more general rotating stellar objects is
referred to excellent textbooks of Tassoul [28, 29], and references therein. Fluid dynamics in
general is covered by e.g. [18].

2.1.1 Second Newton’s law for fluid element

Let us consider a smalfluid element of volumé’. From the second Newton’s lalv = ma,
the force acting on the element is equal to the acceleration multiplied by the mass of the element:

~ dv -
pvazp\/g—/pds (2.2)
S

wherep is density of the element, ar)ﬂ7 is the mass. The terW g, whereg is gravitational
acceleration, is the gravitational force acting on the element, and the remaining term represents
the force of external pressure.

We are going to eliminat& from (2.2). Let us multiply the last term in 2.2 by an arbitrary
constant vectok:

F, k=-— /pdS k (2.3)
S

*As usual in fluid mechanics, we assume that fluid element is small compared to typical scale of problem, but
still contain huge number of particles, so we can treat medium as a continuum.

13
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where we have denoted pressure forcdhyThe right hand side of the above equation is equal
to:

/pdS ~k:/pk -dS:/div(pk)dV:/(k-gradp—i—pdivk)dv.
% S J

\% \%
Because divergence of constant vedtas equal to zero, we get:

F, k=— /gradpdV k. (2.4)

\4

This is true for any vectok, so:

F,= —/gradp av. (2.5)

v

VolumeV is very small, and the integral can be replaced simply by
F, = — V gradp. (2.6)

We thus managed to eliminate the volufidrom eg. (2.2) which becomes

d ~ ~
w_ pV g —V gradp, (2.7)

Vv —
PV

and, finally, the second Newton'’s law for fluid element is:

dv
p o =rg—gradp. (2.8)

2.1.2 Material derivative

Equation (2.8) allows us to track particles moving in fluid. This approach (so-called Lagrangian
coordinates) is not relevant to our problem of differential rotatidbulerian approach, where
velocity, density and pressure fields are functions of time and space variables in fixed coordinate
system will be used here. Transformation from Lagrangian coordinates (2.8) to Eulerian ones is
made by substitution of the so-called material derivative of velocity field instead of acceleration:

dv Dv
-t 7 2.9
dt Dt (2.9)
Material derivative may be derived from a simple ,,rule of thumb” producing the correct result.

Let v be a function of time and Cartesian coordinatés, y, z). We may write:

Dv  oOvdt 8vd_a: GV@ 8Vd_z

Dt Otdt T omdt  oydt  ozdt

*Let us imagine a star which is rotating faster at the center. After some time fluid elements near the cen-
ter do more revolutions compared to the outer part of a body. Therefore, trajectories of fluid elements become
progressively more twisted with time. In contrast, fixed in space, Eulerian coordinates are also constant with time.

14



Derivation of basic equations

Usingdz/dt = v,, dy/dt = v,, dz/dt = v, we get:
Dv  Ov ov ov ov

Di E—FUI%—FUya—y—FUZ%
Introducing the operator:
0 0 0
= (Vp =, Vy =, Uy — 2.10
VV (Uac 8x’vy ayavz 62) ( )
we may write the material derivative in the usual form:
Dv  0Ov
E—E-I—VV-V (2.11)
2.1.3 Euler equation
Finally, we get the Euler equation:
1
a—v—i—vv-v:——gradp—l—g. (2.12)
ot 0

In the equation of motion (2.12) we have the three unknown functions: the velocityfihe
densityp and the gravitational acceleratign Density is directly related to pressupeby the
Equation Of State (2.1), so pressure is not additional independent quantity.

2.1.4 Gravitational force
In the Newton'’s theory of gravitation, acceleratigican be derived from the potential:

g = —grad @, (2.13)
The gravitational potentiab, satisfies the Poisson equation:

Ad, = 4rGp, (2.14)

whereG = 6.672 - 107" m3s~2kg~! is the gravitational constant, apd= p(r) is, of course,
density of matter.

2.1.5 Continuity equation

To close the system of basic equations we need the additional equation: the conservation of
mass. Let us consider some volumevith boundaryS. We may write:

/pv-dS: —%/pdv, (2.15)

S \%

as a change of the total mass in the voluvhes equal to flux of matter leaviny through the
boundary surfac&. Using the Gauss theorem we get:

/ pv - dS = / div(pv) dV. (2.16)

S Vv

15
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Because the equation
/ % + div(pv)dV =0 (2.17)
Vv

is fulfilled for any volumeV the integrand must be identically equal to zero. This leads to a
differential form of mass conservation: the continuity equation
dp

5 + div(pv) = 0. (2.18)

2.1.6 Complete system of basic equations

The system of equations governing the motion of barotropic fluid consists of four (including
EOS) equations:

((;—:—i—vv'vz —%gradp—gradq)g, (2.19a)
Ad, = 4rGp, (2.19b)

% + div(pv) =0, (2.19¢)
p=p(p) (2.19d)

We are going to use equations (2.19) in case of a rotating star. Typically, we prescribe EOS
and the velocity field in some analytical form, and the continuity equation becomes fulfilled
automatically. Therefore, only two first equations in (2.19) are of particular interest in that case.

The above derivation tells us nothing about physical situations where barotropic EOS (2.1)
Is relevant. To know this derivation in a more general form, and discussion of specific cases
Is required. Particularly, (2.19) omit the problem of energy conservation and energy transport.
Stars are objects producing energy, thus applications of the (2.19) to stars are limited. If, for
example, we prescribe angular velocity profile= Q(r, z) in a star, we may be unable to find
the solution to energy transport equation. This is so-called von Zeipel paradox. Many authors
[29] thus quote objects governed by the system of equations (2.19) as “stars,” in opposition to
true stars, without quotes (“ 7). Nevertheless, if we are interested in mechanical equilibrium
(not thermal equilibrium), the structure resulting from (2.19) may be a very good approxima-
tion. Moreover, objects not producing energy, described by the barotropic EOS (2.1) do exist.
Namely, cold white dwarfs are perfectly described by egs. (2.19). We can now move on with
solving (2.19) in particular cases.

2.2 Equations of rotating self-gravitating body

Equations (2.19), of course, are much more general than we need, and govern all possible
dynamical situations. Therefore, we now restrict (2.19) accordingly to the problem of rotating
self-gravitating single body, floating freely in space.

2.2.1 Stationary solution for isolated body

Equations of fluid motion (2.19) govern any possible dynamical situation involving barotropic
fluid with Newtonian gravity. To discuss a particular case of rotation we have to make some
restrictive assumptions. First, it is safe to asssume that all quantities are time-independent

8V_ @_

To0. T (2.20)

16



Equations of rotating self-gravitating body

Let us note that this assumption does not describe a static situation, because velocity field is
non-zero. Trivial example of such a motion is defined by constant velocity field. Physically,
such velocity field describes motion of the entire considered object. Such motion does not
influence the physical properties so we may require:

/pv dV =0, (2.21)
J

i.e. the total linear momentum is equal to zero. Simply speaking, we will consider stars at rest.

2.2.2 Hydrostatic equilibrium

The casev = ( describes the hydrostatic equilibrium:
1
; grad p = —grad ®,. (2.22)

For self-gravitating body the outer surface of a star is a sphere of radiugysand its density
distribution is spherically symmetric. This is in great contrast to case of a rotating star, where
the surface may be any function (in spherical coordindtes: R(6, ¢)) which is unknown

a priori. This introduces serious problems, e.g. setting of boundary conditions for Poison
equation becomes extremely difficult, as we do not know boundary surface. Only for simplest
cases of uniform rotation, we are able to prove ellipsoidal shape of the boundary. In general itis
impossible to say anything more than the object is somewhat flattened due to centrifugal force.

2.2.3 Bernoulli's law
If v # 0 andov /ot = 0, the Euler equation (2.12) becomes:

1
vV :.v = ——gradp — grad @, (2.23)
P
We can write this equation in a more convenient form. First, let us introduce the enthalpy
1
h(p) = ;dp. (2.24)

Because = p(p), we may write:

oh d 1 1
Vh(p) = a—pr =% (/ p dp) Vp = ;Vp. (2.25)

As we can see, the first term of the right-hand side of the Euler equation can be rewritten as:
1
-Vp=Vh (2.26)
P

To simplify the Euler equation further we use the identity:

1
vV .v = 3 gradv? — v x rotv (2.27)
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Collecting all the gradient terms we get:
1 2
Vih+®,+ V| =Vvx rotv. (2.28)

The above equation is sometimes referred to as Gromeka-Lamb equation. Incase@ft = 0
this leads to Bernoulli's equation:

1
h + 51}2 + &, = const (2.29)

In rotating starsv x rotv # 0 but in particular cases it is possible to write equation very
similar to Bernoulli's law. Actually, to obtain Bernoulli-like formula, we need only satisfy
v x rot v = grad f, where f is some function, and this is possible for so-called barotropic
rotation law.

2.2.4 Pure rotation

To ensure that rotation is exclusive type of motion in our self-gravitating body, we may put:
v =1Q(r, 2) ey, (2.30)

where cylindrical coordinatéqr, z, ¢) were used. Heré) is angular velocity. The motion
defined by (2.30) is referred to as simple rotation, pure rotation or permanent rotation.

2.2.5 Centrifugal force

Substitution of the velocity field (2.30) into the Euler equation (2.12) leads to the following
formula:

1
rQ(r, z)% e, = ~ gradp + grad ®.. (2.31)
P
The equation above differs from the equation of hydrostatic equilibrium (2.22) only by the term
a.=—rQ(r, 2)%e,. (2.32)

We identify this term with the centrifugal acceleration. This is a result we should expect for a
rotating star.

2.2.6 Poincaré-Wavre theorem

Up to now, we have presumed that the angular veldRityay be any function of variables
andz: Q = Q(r, z). This is not true, and it can be seen as follow. Let us take:he(V x) of
eq. (2.28):

rot(v x rotv) =0 (2.33)

The left-hand side of eq. (2.28) disappears dusot@rad(-) = 0 identity. Eq. (2.33) is very
useful, because it involves the velocity fieldonly. This equation has to be satisfied by any

* If not explicitly specified, since now, we always use cylindrical coordinates. They are defined in the usual
form: x = r cos ¢,y = r sin ¢, z = z, where(z, y, z) are Cartesian coordinates.
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Equations of rotating self-gravitating body

velocity satisfying also the Euler equation. So let us substitute our simple rotation law (2.30)
into (2.33). After some algebra we get:

oQ(r, z)
0z

This equation can be satisfied onlyif= 0 or Q = Q(r). Former case is not interesting (no
rotation), but the latter case is a very important result: for barotropic fluid the angular velocity
has to be constant over family of cylinders. Such rotation law is also referred to as barotropic
rotation law. This includes very important cd3e= const: so-called uniform or rigid rotation.

This result is somewhat surprising, and has been formulated as ReM&eare theorem:

2rQ(r, z)

= 0. (2.34)

THEOREMI
We define effective gravity as a sum of gravitational and centrifugal acceleration:

G=g+rQ(r2)%e,. (2.35)

For self-gravitating body in a state of permanent rotation the four following statements are
equivalent:

(i) Angular velocityt2 is constant over cylinderQ = Q(r).
(i) Surfaces = const andp = const coincide.
(iif) Effective gravityG can be derived from potential.

(iv) Effective gravityG is normal to surfaceg = const.

As an example, we prove equivalence of (i) and (ii). The opergteracting on both sides of
time-independent Euler equation, in form (2.23), after use of eq. (2.27) is:

1
V x |—gradp+ (V x v) X V:| =0. (2.36)
p

Using simple rotation velocity field (2.30), after some algebra we get:

Q 1
2002 g; ?) ey =V (;) x Vp. (2.37)
Vectorsu, = V(1/p) = —p~2Vp andu, = Vp are normal to surfaces = const and

p = const, respectively. Thus, the expression:

\Y (%) X Vp =0 (2.38)

Is a mathematical formulation of the fact that surfapes const andp = const coincide. If
Q = Q(r), LHS of eq. (2.37) is equal to zero; if isobaric and isopycnic surfaces coincide, RHS
of eq. (2.37) is equal to zero, afidhas to be function of only, what ends the proof.

It is very important to notice, that for barotropic EOS (2.1) pressure is function of density
only, and RHS of eq. (2.37) is identically zero. That is why EOS (2.1) excludes non-cylindrical
(pure) rotation, and “cylindrical” rotation law2 = (r) is often referred to abarotropic
rotation law.
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2.2.7 Equation for rotating body

Point (iii) of Poincare-Wavre theorem is of great practical importance, because it allows us to
simplify the rotating body equation (2.31). This provides a result similar to Bernoulli’s formula
(2.29).

Let us introduceentrifugal potentialb..:

d.(r) = —/fQ(f)2 df. (2.39)
0

We can easily see that:
grad @, = —r Q%,, (2.40)

I.e. the centrifugal force can be derived from potential. This is a direct consequence of the point
(iii) of Poincae-Wavre theorem, as the Newtonian gravitational force is potential.
Now, the equation (2.31) using centrifugal potenfialdefined above, and enthalpy (2.26)
becomes:
Vih+o,+ 0] =0, (2.41)

or even simpler:
h(p) + @, + . = C' = const, (2.42)

where(' is an arbitrary constant. The eq. (2.42) is the most important form of the equation for
rotating self-gravitating body. Using Poisson equation (2.14) we may get single equation for
e.g. densityp. Equation (2.42) is still very difficult to solve, but it is significant step forward
as we now have only one equation to solve. However, we still do not know if the continuity
equation (2.18) is fulfilled.

2.2.8 Continuity equation & axial symmetry of the solution

Now we examine properties of continuity equation in case of a rotating star. Let us substitute
simple rotation (2.30) into eq. (2.18). Vd® not assuméhat density is time-independent, and
usep = p(r, z, ¢,t). Then we get:

8p dp

Q : 2.43
En +Q(r,z) = 90 =0 ( )

Fortunately, we can find exact analytical solution to the equation above, and the result is:
p(T, Z7¢7 t) :ﬁ(T,Z,Qb—Qt) (244)

wherep(r, z, ¢) is an arbitrary function of three variables. Substitution of function (2.44) into
eq. (2.43) gives
ap

/N 0p(r.2,0) | 0p(r.2,0) _
+Qa¢ Q o o = (2.45)
This confirms that the solution is correct. It is a bit confusing, for density shows time depen-
dence although velocity field (2.30) is not time-dependent.

Actually, such solutions are realized in reality as non-axisymmetric uniformly rotating bod-
ies, e.g. Jacobi ellipsoids (cf. Fig. 1.2). Their time-dependence of density(t) is usually
not relevant, because it can be easily eliminated using simple transformation to co-rotating
frame of referencep = ¢ — Q1 t. Generally, this is impossible, becaudet const.
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Summary of the rotating barotropes

However, if we are looking for solutions wheé® /0t = 0, from (2.44), we immediately
get very important result: our star is axially symmetrioMe would like to point out, that
non-axisymmetric static solutions are only possible for uniform rotafior- const. Any
“marriage” of “triaxial” (non-axisymmetric) structure with differential rotation leads to fully
dynamical problem. Usually, rotation is faster at the center, and outer parts of “triaxial” body
are “delayed” with respect to the core, forming structure similar to spiral arms. Such a behaviour
Is seen in many hydrodynamical simulations of the rotating bodies [26].

2.3 Summary of the rotating barotropes

The following picture of our problem emerges. Under the following assumptions:
e Our body is self-gravitating
e EOS is barotropic
e Pure rotation is the only movement allowed
we found the following properties of the solutions of Euler equations (2.19):
e Angular velocity is constant over cylinders
¢ Density distribution is axially symmetric and time-independent
e Density satisfies eq. (2.42)

The rotating object satisfying conditions listed above is referred bmastrope Objects which

do not satisfy the PoincarWavre theorem are referred tolzocline Any attempt to solve

the structure of differentially rotating barotropic stars has to concentrate on solving equation
(2.42) of rotating body structure. Next chapter will provide an elegant and relatively simple
approximate solution of that equation.

*Symmetry with respect to equatorial plane, intuitively obvious, is difficult to prove. Such a symmetry always
exists ifQ = Q(r) cf. discussion of the Lichtenstein theorem in [28].
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Chapter 3

ANALYTICAL APPROXIMATE METHOD
FOR DIFFERENTIALLY ROTATING
BAROTROPES

3.1 Dual nature of the rotating barotrope equation

In previous section we have derived equation which has to be satisfied by the density stratifica-
tion in a rotating barotrope:
h(p) + ®.+ ¢, = C. (3.1)

Centrifugal potentiafb. is fixed and given by priori defined angular velocit§2(r). The con-

stant value”' is a free parameter. This parameter defines a family of solutions in similar manner
as does the central density for non-rotating polytropes. In (3.1) we have the two unknown
functions: the density and the gravitational potentidl,. We still need an additional relation
between the density and the gravitational potential. Such a relationship exists in Newtonian
theory of gravitation. It can be formulated either in differential or integral form.

3.1.1 Differential form of the equation

Gravitational potential and density are related by means of Poisson equation. We then need to
solve the following system of equations:

h(p) + .+ @, =C, (3.2a)

Ad, = 47G p. (3.2b)
9

Eq. (3.2) can be written in the form of a single equation with one unknown function. Laplacian
of eq. (3.1) allows for elimination of gravitational potential using the Poisson equation giving:

1
LY Ay arGpt AD, = 0. (3.3)
p Op

This is non-linear, inhomogeneous, second-order, parabolic differential equation for the density
distribution p(r, z) in two dimensions. Major difficulty, however, is not related to the form of
eg. (3.3), but arises when one attempts to fix boundary conditions for it. The shape of boundary
(surface) of a rotating star is not an initial part of the problem, but it is one of the final results!
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Unfortunately, in general case of compressible and differentially rotating*sadface may be
any function of angle from the rotation axis.

This leads to serious problems. Analytic continuation into the complex plane, convert-
ing equation (3.3) into hyperbolic type was used by Eriguchi [7] to avoid these difficulties.
Boundary problem can be replaced by initial-value problem, leading to powerful computational
numerical method — so-called EFGH method [6, 8, 10].

3.1.2 Integral equation form of the equation

Difficulties with differential form of the basic equation for rotating body stimulated research on
alternative methods. System of equations (3.2) may be written as well as:

h(p) + .+ &, = C, (3.4)

O, (r) = -G / %f’f, (3.4b)

where instead of the Poisson equation, we have used its formal integral solution. This immedi-
ately leads tantegral equatiorof rotating self-gravitating body:

h(p)+<I>c—G/ PE) pi_ o (3.5)

v — 1|

In this equatiorp(r) is an unknown function we are solving fdr,(r) andh(p) are functions
resulting from our astrophysical problem, afids a free parameter. Centrifugal potential
is responsible for rotation, enthalgyp) is defined by the EOS, and the parametedefines
family of solutions with the same rotation pattern and equation of state, but different total mass.
The integral equation is essential to derive our approximate formula. We take a closer look at
the properties of eq. (3.5).

3.2 Properties of the integral equation

3.2.1 Integral operatorRk
We may write our equation in a concise form:
h(p) + ®e + R(p) = C, (3.6)

whereR is an integral operator acting on density, here in cylindrical coordinatese):

Rﬁq RS(T) 2 ) )
sz—a/’/t/ plr' ) .
0 —Ru(r) 0 V(1 sing’ —rsing)? + (1" cos ¢’ —rcos)? + (¢ — 2)?
—Rs(r

(3.7)
Hered’r' = r'dr'dz'd¢’ is volume element. In (3.7) we have explicitly assumed axial symmetry
(i.e. p does not depend ap) and planar (with respect to= 0 plane) symmetry, i.e. boundary
surfaces below and above= 0 are both described by the functidty(r); R,, is the equatorial
radius of a self-gravitating body. Integral operai(p) gives gravitational potentiab,.

*Incompressible, uniformly rotating bodies possess ellipsoidal surface.
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15 -

1.0 4

E(ik)

0.5

00 I I I I I I I I

Figure 3.1:Complete elliptic integral of the first kindy, for the imaginary
argumentE (i k). E(0) = w/2, klim E(ik)=0.

3.2.2 Two-dimensional kernel

Integration over variable in (3.7) can be made analyticalty

I

7 dé - (3.8)
/ V(r'sing’ —rsing)? + (1’ cos ¢’ —rcos¢)? + (z' — 2)?

— E(ik) 2 4rr’

BV G e A G A G

FunctionE is complete elliptic integral of the first kind [1]:

/2
1
E(k) = 0/ — i (3.9)

If reader is confused by an imaginary number in the argument of the elliptic function (3.9),
we note that if K is real anél > 0, then £ (ik) is real (Fig. 3.1). One can avoid the imaginary
argument using e.g. the following identity:

| k
E(zk)_mE(m> (3.10)

Usage of the imaginary argument leads to somewhat shorter expression for the integral (3.9).

*Two definitions of elliptic integrals may be encountered, cf. APPENDIX C.
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Our integral operator is now two-dimensional:

Req RS(T) / / /
E‘ I !
R(p)E—4G// pr2)r BGK) g, (3.11)
Y N G e

Reduction of integral dimension from three to two is natural for axisymmetric problem.
It is also important from practical point of view, as computational time spent on calculating
2D integral is shorter compared to 3D integrals. Method presented above is an alternative to
expansion of integrand in (3.9) into spherical harmonics series.

3.2.3 Boundary conditions

Actually, to derive our analytical formula explicit knowledge of integral oper&an terms
of e.g. coordinates is not needed [21], but is very useful for clarifying many aspects of the
problem.

For example, explicit form (3.11) dR suggests, that instead of a single unknown function
p(r, z), we have the two functions, including shape of the boundary suface). Let us
examine this topic in detail.

If we prescribe some form of the functidi,(r), and try to solve integral equation (3.5),
then, from purely mathematical point of view, we could get some solutibhis solution, how-
ever, is likely to be unphysical, because physical solutions have to obey additional constraints:
density has to be finite andr, z) > 0. Additionally, on the boundary surface, for gases we
expectp(r, z) = 0. This strongly suggests introduction of additional equation connecting two
unknown function(r, z) and R(r):

p(r, Rs(r)) = 0. (3.12)

This gives integration limits in (3.11) as an implicit function, given by eq. (3.12).
In situations like described above, theory of integral equations commonly employs the fol-
lowing trick. Using the Heaviside (unit step) function:

1 ifxz>0
O(z) = = 3.13
(z) {0 if 2 <0 (3.13)

we may write the integral operator (3.11) as:

B p(r', 2 r' E(ik) .y
R(p) = —4G [/9 (p(r, 2)) N CET T, dz dr, (3.14)

where A denotes integration area. We assume only thafusually of rectangular shape,

cf. Fig. 3.2) is big enough to fit our rotating star inside. Using the form (3.14) we have the
boundary conditions incorporated directly into integrand. As we can see, the integral form of
our basic equation (2.42) overcome the problem of boundary surface and leave us with one
integral equation (3.6) with one unknown functipfr, z).

*If such a solution exists, what is not obvious, and is difficult to prove in our case of non-linear problem.

26



Properties of the integral equation

Figure 3.2:Shaded area defines the integration area for integral op&ator
typical case of rotating body. Two methods exist for specification of that area:
(1) introduction of a new function for boundary shape or (2) incorporating into
integrand ofR the unit step functiod(p). In the latter case we are integrating
over fixed area of e.g. rectangular shape.

3.2.4 Nonlinearity of integral equation

Let us write again our integral equation:
h(p) + P.+ R(p) =C (3.15)

where the integral operator is:
R(p) = //K(T, rz,z2)0 (p(r,,z,)> p(r', ) dr dz, (3.16)
A

and the kerneK reads:

oy Pl 2)r E(k) B o
e VG EEEE ' \/<r’—r)2+(z’—z)2-

If the functionh(p) is non-linear, then the entire integral equation (3.15) is non-linear. En-
thalpy h(p) is a linear function only if the equation of state takes the form p?, cf. (3.63),
which is not particularly interesting case from physical point of view. Therefore almost all
interesting cases are governed by non-linear enthalpy dependence on density.

We would like to point out, that from purely mathematical point of view, integral operator
R (3.16) is also non-linear, due to presence of Heaviside function (3.13), which is obviously
non-linear in general case. This seems to be contrary to well-known superposition rule for the
gravitational potential. Actually, physical density is non-negative quantity, and indeed, f
thend(p) = p is a linear function. In general, however, we are unable to avoid negative density
at all steps of the solving procedure for equation (3.15). Fortunately, we do not want to satisfy
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p > 0 for all steps leading to solution, but we only demand 0 for the final result. As we will
see in the next sections, our approximate solution of eq. (3.15) is unable to produce accurate
results, if we reject negative values of enthalpy for initial zeroth-order function.

3.2.5 Canonical form of integral equation

Equation (3.6) has a form of non-linear Hammerstein equation [12]. Actually, Hammerstein
considered one-dimensional equations, but we also can use his transformation into canonical
form [25]. Introducing new unknown functioft

f=C—-3o.—h(p), (3.17)

and additional functior¥":
F(f)=h"(C—®.— f), (3.18)

equation (3.6) becomes:
f=RIF(f)]. (3.19)

Closer look at equations (2.42) & (3.17) reveals the physical meaning of canonical unknown
function f in the sense of Hammerstein. Itis simply gravitational potehtigl. Canonical form
(3.19) allow us to find our approximate formula, as it is explained in the next section.

3.3 Derivation of the analytical formula

3.3.1 Von Neumann series

Derivation in this section is based on our article [21]. In section 3.1 we have discussed properties
of the integral equation (3.6) for a rotating self-gravitating body. This equation has a form of
the Hammerstein non-linear integral equation (3.19). Canonical form indicates the method of
solving. For linear functio' in (3.19), the equation could be easily solved by the von Neumann
series (cf. APPENDIX A). This strongly suggests to try the following iteration scheme:

fi =RIF(fo)l,
fo =RIF(A)],

(3.20)
fn = R[F(fnfl)]

In case of general non-linear equation we are unable to prove convergence of the sequence
(3.20). This can only be made for special cases e.g. the linear Fredholm equation (cf. AP-
PENDIX A). Fortunately, it has been shown that the sequence (3.20) is convergent for a wide
range of applications. An iteration procedure of this type was successfully applied in the self-
consistent field method of Ostriker & Mark [24], in HSCH11] method and other. All of
them are numerical methods. However, we have found very interesting analytical approximate
solution of the integral equation (3.6) based on the iterative scheme (3.20).

*This is true only inside a star. Physical gravitational potential is well-defined for the entire space, while the
function f is defined only for stellar interior.
**HachisuSelf-Consistenfield method.
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Derivation of the analytical formula

3.3.2 First term of the series

First term of the sequence (3.20) is:
fi=RIF(fo)]. (3.21)
Let calculate the right-hand side of the equation above. According to (1)) is:
F(fo) = h[C ~ fo— @, (3.22)
but, due to definition (3.17)y = C — ®. — h(py), SO that:
F(fo) =h7'C = C+ @+ h(po) — @) = 27 [h(po)] = po, (3.23)
becausé,~! is a function inverse td. We simply get
fi =R(p). (3.24)
Using definition of the canonical function (3.17),= C' — ®. — h(p;), and
C =@, — h(py) = R(p). (3.25)

This is our first order approximation for density distribution For given approximate
density distributiorpy, we expect, from formula (3.25), to calculate better approximatjomn
a general case gf, explicit (usually numerical) integration in eq. (3.25) is inevitable. This was
motivation of the numerical methods development. But if we are able to calculate numerically
first order approximation, it is obvious that we are able to calculate arbitrary number of terms
(3.20). Calculating only first term in (3.20) seems to be pointless for such a case, as we are
ready to repeat this integration as many times as needed.

3.3.3 Zeroth-order approximation

Sometimes we are able to calculate the integral in eq. (3.25), as e.g. for constant density ball
or point mass. However, it is also possible to eliminate the integral operator from eq. (3.25) for
a wide class of compressible objects. Consider a special case of equation (26Xxfori.e.
with no rotation:

h(p) +R(p) = C. (3.26)

When we use a function which satisfies eq. (3.26) as zero-opgleagproximation
h(po) + R(po) = Co, (3.27)
integration in eq. (3.25) can be easily eliminated:

C'— @ — h(p1) = R(po) = Co — h(po). (3.28)

3.3.4 First order approximation for the enthalpy

Finally, collecting relevant terms of eq. (3.28) on the right-hand side, our formula takes the
form:
h(p1) = h(po) — Pc + C = C. (3.29)

Formula (3.29) reveals importance of enthalpy. Clearly, enthalpy (2.24) is the most relevant
physical quantity for description of a rotating body structure. This is not surprise, as e.g.
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Eriguchi & Muller [7] have found increase of convergence rate for their computational method
if, instead of density, quantity X = p7~! is used. For polytropic EOS (3.61), quantityis
proportional to enthalpy (3.63). Actually, rate of convergence for series (3.20) is fast enough to
get sensible results from the first-order approximation (3.25). Enthalpy is thus more convenient
physical quantity than density, and we may write

hl = ho - CI)C -+ C - Co. (330)

We have got very simple expression (3.30). Functions denoted by subscript ‘0° are simply
distributions of physical quantities of non-rotating barotropic stars. In case of polytropic EOS
(3.61) density and enthalpy are given by Lane-Emden functidngase of general barotropic
EOS (2.1) we have to find zeroth-order distribution by means of solving ordinary differential
equation of hydrostatic equilibrium (2.22). Centrifugal potenbgldefined in (2.39), is known,
according to our assumption of permanent rotation (2.30) and PéiwWavre theorem (p. 19).

3.4 Properties of the approximate formula

According to eq. (3.27) the constany is directly related to zeroth order densjty. For given
po We are able to determin@,, andvice versa Therefore, we should write our formula as:

hy = ho(Co) — ®. + C — C, (3.31)

where we indicated explicitly one-to-one relation betwégrand . Eq. (3.31) has the two

free parametersC’ andCj. As we have already pointed out, the consi@nh eq. (3.6) labels

the family of solutions with different total mass, but the same physical conditions i.e. EOS
and rotation law. Simply speaking; defines the size of a star we are looking for. Constant
Cy and the associated functign(C,) should be adjusted to find approximatién as close

to solution of eq. (3.6) as possible. To do this we have to define mathematical criteria of the
approximation accuracy. We will use virial test (3.47), which is a popular astrophysical tool for
testing numerical schemes [24].

3.4.1 Re-arrangement of the formula

Manipulating bothp, and C is very inconvenient. Instead of this we may try to find equa-
tion (actually defined by”) for which h is best zero-order approximation. This is, of course,
equivalent problem. Zero-order approximatiaiiCy) is then fixed now. We define new con-
stant value:

AC =Cy—C, (3.32)

and our first-order formula becomes
hy = hy — ®. — AC. (3.33)

Now, hg is a fixed function. Advantage of the eq. (3.33) over eq. (3.30) is clear: now we have
to manipulate single real numbarC instead of manipulating both, and functioni,.

3.4.2 Structure of the formula

Fig. 3.3 presents schematic graphs of first two terms in eq. (3.33), explaining the meaning of
AC. Actually, an enthalpy distribution is function of two variables:= h(r, z). Rotation

*Cf. APPENDIX B on page 58.
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Figure 3.3:0verview of various terms in the formula (3.33).

however, acts most strongly along the equatorial plare 0, therefore equatorial plane has
been chosen to overview of our formula in Fig. 3.3. Important valueA@fare denoted as
C®. The most general case is shown in Fig. 3.3. In particular cases some of cofistanis
not exist:C'¥ —if h, monotonically decreases tero andC? — if h, decreases faster thdn
grows. This depends on the baoth and®.. Vertical dot-dashed line in Fig. 3.3 indicates that
CY = &.(R,), whereR, is the radius of non-rotating star. The dashed curve fragment below
the axis reflects ambiguity of the Lane-Emden function continuation to negative values.

The role of constanAC is clear from Fig. 3.3: it defines a cutoff value for sum of two
positive functiong,, and—®... We have chosen = 1 Lane-Emden functiosin r /r to prepare
Fig. 3.3. In this caseLane-Emden function behaviour is oscillatory, and the centrifugal poten-
tial may be strong enough to rise the entire functigr- ¢, aboveh =0 plane, cf. Fig. 3.3. This
extremal case makes importance/®f’ obvious: using a tempting value &C' = 0 we get
infinite equatorial radius. This example shows, that valua©fhas to be determined carefully.
Nevertheless, it is not a trivial task.

3.4.3 Physical interpretation of the formula

Structure of our formula reflects our physical intuition as to the behaviour of the rotating objects
as follow:

Non rotating object is described by spherically symmetric distribution of the
enthalpyhy(r, z),

Rotation, namely the centrifugal force, moves matter outward, acting against
Il. gravity. This is realized by the addition of the (minus) centrifugal potential:
ho(?“, Z) - (I)c(r)’

*And any other odd polytropic numbercase.
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But matter flows from central region to outer part of a body, therefore density
[I. (thus enthalpy, cf. (3.63)) in the central region has to be decreased - this is
realized by subtraction of the constant valNé'.

3.4.4 Values of constants in the formula

Essential part of the formula (3.30) are consta@nendC. Determination of constal¥C' = C' — Cj
is crucial, and decides whether our formula becomes accurate or fails completely.

Question thus arises what value ot should be chosen. First, we try get overview of the
AC general properties.

If the value of AC' is chosen too low or negative, equatorial radius of the
enthalpy approximation may become infinite. This case, however, is not
possible if zeroth-order enthalpy monotonically decreases to minus infinity,
as e.g. for Lane-Emden functions with even polytropic indexin other

l. words, limiting value ofAC, denoted ag’® in Fig. 3.3 equal to minimum
value C¥ = min(hy — ®.), may not exist, as a functioh, — ®. may
not possess minimum. The value &t should be chosen, of course, to be
greater tharC'®. If C(©) does not exist, in principle any value froro
could be considered.

The value ofAC = —®.(R,), denoted ag'V) in Fig. 3.3, seems to be of
great importance, because it divides enthalpy distributions into two classes.
If AC < CM, we shift functionh, — ®. down, but not enough to avoid
negative values of zeroth-order approximation. Negative values are unphys-
Il. ical, so intuitively we would like to reject those valuesAt'. Moreover,

in many interesting cases, continuation of Lane-Emden function beyond first
zero-point with negative values leads to complex values. Detailed examina-
tion of the formula accuracy have shown failure of this idea — negative values
of hg are required to get accurate results.

Another interesting value oAC' is the central enthalp§(r = 0,z = 0)

of non-rotating configuration, denoted in Fig. 3.3@%). If we put AC

slightly aboveC®), in our approximation for enthalpy distribution a central
[1. hole appear. Such toroidal configurations are then possible to obtain within

framework of our approximation, but they are far beyond applicability of our

formula. Moreover, such configurations are likely to be unstable, thus out of

physical importance.

For values above maximuthC' = max(hy — ®.) the enthalpy is identically
IV. zero. Actually, from (3.33); is negative, but we are cutting off negative
values in final result.

3.4.5 Summary of the approximation procedure

Let us summarize procedure leading to approximate enthalpy distribution for differentially ro-
tating bodies:

1 We choose non-rotating, spherically symmetric initial enthalpy distribu-
tion hy.
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2 We prescribe rotation laf = €)(r), and calculate centrifugal potential ac-
' cording to definition (2.39).

We chooseAC and calculaté:; from (3.33)

4, Any negative part of enthalpy calculated that way is cut off.

5 Remaining positive function is our approximate enthalpy distribution of the
' rotating body.

3.5 Analytical solutions for AC

The procedure steps 1-5 formulated in the previous subsection require knowledgeaf the
We discuss the proposed methods in this section.

3.5.1 The simplest method foAC
Our first proposition for constant in eq. (3.33) is:
AC = =D (Ry). (3.34)

The value of AC (C™ in Fig. 3.3) defined above may be used as a first step towards more
accurate value. It is very simple to calculate, and in many interesting cases can be computed
analytically. Therefore, our formula takes the form:

hi = hy — ®. + ®.(Ry), (3.35)

where all quantities are usually known. Unfortunately, global properties of rotating body (cf.
Table 3.1, Fig. 3.8, 3.9) are poorly predicted. Nevertheless, the shape of the iso-enthalpy con-
tours in the central region is almost unaffected by small chang&€bfFormula (3.35) is then
excellent tool for those who are interested in quantitative outlook of the rotating body internal
structure.

3.5.2 Averaged centrifugal potential
We may also try to substitute our formula (3.33) into basic equation (2.42):
ho — ®.+ AC + &,4(hy) + &, = C, (3.36)

and using eq. (3.32) we get:
ho 4+ ®4(hy) — Cp = 0, (3.37)

but, according to eq. (3.27)y — Co = —R(po) = ©,(ho) and thus
®y(ho) = Dy(h1). (3.38)

This equality is true only if
ho = hi, (3.39)

whereh; is calculated from eq. (3.33), and we obtain:

—d, = AC. (3.40)
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1.0

Figure 3.4:In general, continuation df,,(*)
Lane-Emden functions to negative values
leads to the complex numbers. There- 5 |
fore, we have to modify original Lane-
Emden equation. Unfortunately, such a
modification cannot be done unambigu-
ously. Two possible modifications (as de-
scribed in text) lead to functions marked 0'0'_
by solid and dashed lines, respectively.
Fortunately, these two solutions do not
differ significantly for values slightly be-
low zero. As it is marked by dotted hori- -0.5
zontal line, ifw > —0.15, differences be-
tween these two functions are almost neg-
ligible.

-1.0 -

In eq. (3.40) above, the left-hand side is a function, while the right-hand side is constant. Equal-
ity (3.40) is then fulfilled only in trivial cas&C' = &, = 0. To handle this problem, we propose
to average the centrifugal potential,

D, = (Vy)™! / ®,. d°r, (3.41)
Vo

over the voluméd/, of a non-rotating initial configuration. Using the averaged valué gf),
we are able to calculatdC: .
AC = —d,. (3.42)

A method used to calculate the average valuebpf(3.42) is in principle free to choose.
Eq. (3.41) is just the simplest possibility.

Remarkable property akC' given by the average value of centrifugal potential (3.41) is that
(3.42) is always below-®.(R,) i.e. C™" from Fig. 3.3. We can see this as follow. The mean
value theorem states that any average value is always between minimum and maximum value
in a given area. Centrifugal potential is a monotonic function with a maximum=at and a
minimum* atr = R,. Therefore any average over volumeldt= R, ball satisfies inequality:

AC = —d, < —®.(Ry) = CV (3.43)

This statement does not depend on the averaging method. In this case continuation of initial
functionhg to negative values is required for successful approximation. This important result is
confirmed by numerical calculations using virial test.

3.5.3 Continuation of the zeroth-order initial approximatiork, to negative
values

We continue discussion of the behaviour of functions describing structure of non-rotating barotropes
beyond the first zero-point. From physical argument we are unable to tell how to extend such

*Function—®.. is non-negative. We consider extremadgfover volume of ball with a radiugy.
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functions, because quantities like pressure and density are always non-negative.

From mathematical point of view, there is no reason to avoid negative values, and we do
not expect any difficulties. Unfortunately, physically interesting cases, like non-relativistic de-
generate electron gas EOS, leads to equations with fractional power terms. Such equations are
subject to continuation with complex values. This is extremely bad behaviour, as these values
are used to predict physical quantities like enthalpy, density, pressure etc. Simple, but successful
modification of the basic equation is, however, possible to avoid these problems.

We concentrate on a polytropic EOS. Physical quantities for polytropes are expressed in
terms of Lane-Emden functions (cf. APPENDIX B). As we have pointed out, for the original
Lane-Emden equation

dPw  2dw

dx? + x dx
solutionw(x) has no real negative valuesifis a fraction, e.gn = 3/2. We can easily modify
last term of eq. (3.44) to get required behaviour of the solution. If we substitute:

" — 4w, (3.45)

" =0, (3.44)

or:
ot w" — L+ sign(w) |w], (3.46)

then forw(z) > 0 we get the same solution as for (3.44). For both substitutions, (3.45) and
(3.46) we get real values beyond the first zero-point0f). Nevertheless, no hint exists to
help us to choose between (3.45) and (3.46). From practical point of view, we found very small
difference (cf. Fig. 3.4) between solutions of Lane-Emden equation modified according to (3.45)
and (3.46), respectively, if:(x) << 1. In contrast to global quantities, the surface region of
our approximation may be significantly affected by theses differences. This, at least partially,
explains a poor approximation to axis ratio (cf. Fig. 3.10, 3.11) of the rotating configuration.

Modification (3.45) leads to solutions of eq. (3.44) similar to those for even (integer)
while (3.46) leads to odd-like behaviour. In our calculations we will consequently use the
modification (3.45).

3.6 Numerical determination of AC

3.6.1 Virial theorem

Scalar virial theorem for rotating stars states that:

2By — |E,| +3 ///p(r)d3r20, (3.47)
14

whereF), is rotational kinetic energy:

B = % / / / o(r) ()2 dPr, (3.48)

andr denotes distance from rotation axis, is gravitational energy:

i ) o o
Eg:—ﬁG/--~/Wd3rd3r. (349)

VxV

Remaining term is the volume integral of presspréll integrals in (3.47) are over the entire
volumeV of a star. Derivation of the virial equations in general case can be found in e.g. [3].
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3.6.2 Virial test of the formula

Using virial theorem we are able to find the best possible valuef If for some value oAC
the virial test is satisfied, we suppose that for this value we get the best approximation.
Let us define the virial test parametér

2F, — |E,| + 3 [ pd®
g - 2B =B +3 [ pdr (3.50)
| Eg
This parameter reflects departure from the global equilibrium. For any structure in equilibrium,
the virial test parameter is equal to zero.
We demand, the constait”' to satisfy:

Z(hg — ®, — AC) = 0. (3.51)

3.6.3 Other methods

Although the virial test seems to be a natural method for determination how close the global
equilibrium is approached, we may also use other criteria.

Direct comparison of rotating star structure given by numerical procedwg(r, =), and
our approximate formula, (r, z) should be made using e.g. the least squares method. There-
fore, our free parametekC could be determined from the requirement:

/ [ ho — B — AC — hpu | d°r = min. (3.52)

If successful, such a method would provide us with simple fitting formulae for numerical
results.

3.7 Widely used angular velocity profiles

At present, we are unable to derive angular velocity profile inside rotating stars from basic
principles, e.g. from stellar evolution. It is not even known, whether strongly differentially
rotating objects are present in the Universe. Therefore, we are almost free in making decision
what is rotation law inside our object.

Nevertheless, most of possible rotating laws can be immediately excluded on basis of the
stability analysis (cf. APPENDIX D). Examples of angular velocity profiles presented in the
following subsections obey basic stability criteria.

3.7.1 Rigid rotation

Rigid (aka uniform, homogeneous) rotation is a motion with the constant angular velocity
Q(r) = €. This is the most carefully studied example and numerous successful methods
exist there. This is fortunate for us, because our method seems to fail if rotation is uniform.
Some astrophysicists state, that only homogeneous rotation is allowed, due to internal stress
forces. These forces (viscosity, magnetic fields) force rotation to be rigid. Our knowledge of
such forces in usually very exotic stellar interiors is unfortunately poor. Therefore, we cannot
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exclude differential rotationin stellar interiors. Itis more than probable, that strong differentia-
bility exists in massive stars at late stages of evolution [13, 14]. Recent results show, however,
that rotation strength and differentiability may be smaller than previously calculated [15].

If Q@ = const, the centrifugal potential is very simple:

@,:—%Q&r% (3.53)
Let us note, that for rigid rotatio®, —— —oo, in contrast to differential rotation, where
usually®, —= const**. This, at least partially, explains why centrally condensed bodies are
unable to store large amount of angular momentum. These objects, are usually of a big radius,
therefored,. fast reaches huge values. Our approximation (3.33) shows direct relation between
. and distortion of a star. Accordingly, in case of rigidly rotating centrally condensed body it
is impossible to maintain sensible deformation evefifis small. In contrast, for differential
rotation, ®. may be small for a big radius, even in case of enormous angular velocity at the
rotation axis.

3.7.2 The j-const rotation law

In our thesis we have used so-calledonst and-const rotation laws of Eriguchi & Muller [7].
Both of them are stable, cf. APPENDIX D.
The j-const ( — angular momentum) angular velocity profile is defined by:

Q
Qr) = ———. (3.54)
1+ (r/A)
According to (2.39), centrifugal potential is:
2.2
O.(r) = —190—7”2. (3.55)
21+ (r/A)
The namej-const reflects the behaviour of (3.54) tér— 0:
A?%Q A2%Q
Qr) = e (3.56)

Specific angular momentum is definedjas p Q(r) r2. ThereforeQ(r) behaves as for rotating
body withj = const.
If A — oothenQ(r) — € i.e. it corresponds to the uniform rotation.

3.7.3 Thewv-const rotation law

Thewv-const ¢ — velocity) rotation law is defined by:

Qo
Qr) = - A (3.57)

*Qur discussion is for strong differentiability and high rotation rate, where the mechanical equilibrium is
significantly affected by the centrifugal forces. Some sort of the differential rotation has to be present in the stars,
to drive the magnetic field generation via dynamo mechanism. Usually, rotation required by the stellar dynamo
is not strong enough to distort a star. Nevertheless, close connection of differential rotation and magnetic fields
beyond any doubt. At present we may only guess processes driving magnetic fields in such objects as magnetars.

**This is generally not true, becauQ¢r) may exhibitconst-like behaviour. Nevertheless, widely used rotation
laws (3.54, 3.57) satisfy this condition.
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/e,
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Figure 3.5:Angular velocity profiles (upper) and resulting centrifugal potentials (lower) in cage of
const rotation law (3.54, 3.56). Horizontal axis is scaled in units of equatorial rédjus-our cases of
differentiability are shownA = 0.01 Ry (solid), A = 0.1 R, (dashed)A = R, (dotted) and4 = 10R,
(dash-dotted). For extremal differentiability (solid) angular momentum is concentrated at the rotation
axis, and the centrifugal potential is constant over outer parts of a body. In contrast, almost uniform
rotation (dash-dotted, dotted), leads to monotonically increasing centrifugal potential.
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According to (2.39), centrifugal potential is:

d.(r) = —Q2 A

1
—In(1 A)l. :
[y n(l+r/A) (3.58)
Similarly to the case described in the previous subsection, the marnest reflects the
behaviour of (3.57) fod — 0:
AQy Qo
Qr) = ~—.
(r) A+r r
Accordingly, because of the relatian = Q(r)r between angular and linear velocity(r)
behaves as for matter rotating with constant linear velacity
Again, if A — oo then{(r) — Qy = const.

(3.59)

3.7.4 Stoeckley’s angular velocity

In numerical calculations [27], the following differential angular velocity profile has been used:

Q(r) = Q. exp <—a %2) : (3.60)

whereR, is the equatorial radius. The Solberg criterion requires, for stability reagehs, < 1.
As we can see from this example, if angular velocity is decreasing too fast with the radius (e.g.
exponentially), we can easily violate the Solberg-Hgiland criterion of stability.

3.8 Testing our formula

3.8.1 The polytropic EOS

The most popular example of barotropic equation of state (2.1) is the polytropic EOS defined
as:

p(p) = K p, (3.61)
wherey is referred to as the polytropic exponent. Polytropic index defined by the equation:

1
y=1+—. (3.62)

The most relevant properties of non-rotating polytropes are summarized in APPENDIX B.
We will use the structure of differentially rotating polytropes computed in [7] as reference
data to test quality of our approximate formula (3.33).

3.8.2 Rotating polytropes
In case of polytropic EOS (3.61) the enthalpy is:

K~
h(p) = 7L 3.63
(p) 1 (3.63)
Zeroth-order approximation of density (the density of non-rotating polytrope, see: [17], AP-
PENDIX B) with n-th Lane-Emden functiom, is:

n ArG n=1
Po = Pec [wn(Ar)] s A2 = n—[(’ypcn . (364)

39



Section 3.8
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Figure 3.6: Angular velocity profiles (upper) and resulting centrifugal potentials (lower) in case of

v-const rotation law (3.57, 3.58). Axes units and description the same as in Fig. 3.5. Four cases of
differentiability are shown.
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and our formula for density becomes:

n

pr=|p"w, — (®. 4+ AC), | | (3.65)

b
nK-y
whereAC is calculated from (3.40), (3.34) or (3.51).

Now we concentrate on = 3/2 polytrope. In our calculations and figures we will use
47G =1, p. = 1 and K = 2/5. Now the formula (3.65) becomes:

pr = (w, — &, — AC)"?, (3.66)

3.8.3 Global properties of rotating polytrope

To test the accuracy of our approximation we have calculated the axis ratio, total energy, kinetic
to gravitational energy ratio, and dimensionless angular momentum. The axis ratio is defined
as usual as:

(3.67)

where R, is distance from the centre to the pole aRg, is the equatorial radius. The total
energyFy,;:

Etot = (Ek + Eg + U)/EO (368)
is normalized by:
M5
EO = (47TG)2?, (369)

and the dimensionless angular momentum is defined as:

2 _ 1 1/3
J 47 G M0/3 Pma

whereM and.J are the total mass and angular momentum, respectiygly, is the maximum
density. Quantities (3.67)-(3.70) are computed numerically (cf. APPENDIX C) from (3.66),
with given angular velocity)(r) and chosem\C'. We measure strength of rotation using rota-
tional to gravitational energyratio:

(3.70)

B=—r (3.71)

3.8.4 Properties ofAC

Figure 3.7 show results of the three methods proposed for proper evaluathar. dis we will
show in the next subsections, the formula (3.33) can be significantly improved by using virial
test (3.47) to determinAC'. In contrast to results obtained from simple analytical values (3.34,
3.40),AC from eq. (3.51) requires iterative numerical solution of the equation involving multi-
ple integrals for gravitational energy, kinetic energy etc. This virtually cancels the convenience
given by simplicity of our formula.

Fortunately, a closer look &tg — log plot (Fig. 3.7) of functionsAC'(Q)y) reveals the fact
that they are just straight lines. This strongly suggest, that power law

AC = a (Q)" (3.72)

*To avoid misunderstands, we note that bathand £, are calculated for the rotating body, not initial spheri-
cally symmetric configuration.
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O || e 2 3 —F,w/Ey ViraltestZ Z AC AC

0.25 | 1.01 8.41x 107> 0.004 2.50 x 107 0.01 0.01 0.01 0.01
0.50 || 1.05 3.38 x 107* 0.02 1.00 x 107° 0.03 0.04 0.03 0.03
0.75] 1.15 7.64 x 107* 0.04 2.20 x 1075 0.07 0.10 0.07 0.08
1.00 || 1.19 1.37x 1072 0.07 3.80x 107° 0.12 0.17 0.12 0.14
1.25 || 1.31 217 x 107 0.10 5.56 x 107° 0.19 0.28 0.19 0.21
1.50 || 1.46 3.12x 1073 0.15 7.38x107° 0.27 0.43 0.27 0.31
1.75 || 1.68 4.40 x 1073 0.20 8.93 x 107° 0.36 0.63 0.37 0.42
2.00 || 1.98 5.90 x 107* 0.26 9.89 x 1075 0.47 0.89 048 0.55
2.25 | 245 T7.55x107% 0.32 1.01 x 1074 0.57 1.22 0.60 0.69
2.50 || 3.30 9.30 x 107® 0.38 0.94 x 10~* 0.67 1.66 0.75 0.86
2.75 || 580 1.10x 1072 0.44 0.84 x 107* 0.75 222 090 1.04

Table 3.1:Properties ofi = 3/2 polytropic model (3.66) witfj-const rotation law and = 0.2Ry. AC

is calculated from eq. (3.40) ansiC from eg. (3.34). The virial test parameter in the latter case is labeled
by Z. By little change fromAC to AC one can notice significant improvement of the virial test. In both
cases the virial test suggest strong deviation from equilibrium, especially for strong rotation. Actually,
the virial test parameter is a function of th&'. We can require the virial theorem to be satisfied, by use
of another value foAC, the solution of eq. (3.51). The results can be improved significantly in this way
— compare with Table 3.2 and Fig. 3.9.

can be used to re-derive results of (3.34), (3.40) and (3.51). This is not interesting in case of
analytical formulae (3.34, 3.40), asC' ~ 2 naturally appears there. Indeed, fitting power law
givesa = 2.00 in both cases, as we expected.

Completely non-trivial, however, is the virial test. We are able to calculaiefrom the
power law withae = 2.18. For example, values presented as a dotted line in Fig. 3.7 can be
calculated simply with use of eq. (3.72) with= 0.08 anda = 2.18. This greatly simplifies
calculatingAC, and allow us to use the formula in analytical form satisfying the virial test
automatically.

Nevertheless, it should be carefully studied if exponent 2.2 has the universal character
or depends on e.g. polytropic index, rotation law etc.

3.8.5 Improvement of the formula by the proper choice &C'

We have made a comparison of our= 3/2 model (3.66) withj-const rotation law andl =
0.2R, for different values ofAC' with the results of Ref. [7] (Table 1b). Table 3.1 shows our
results forAC' from eq. (3.40). The value akC' from eq. (3.34) and the corresponding virial
test paramete? is included here for comparison. Table 3.2 shows global properties of our
approximation withAC' equal to the solution of eq. (3.51), i.e. satisfying the virial theorem.

A direct comparison of values from Tables 3.1 and 3.2 to those in Table 1b of [7] may be
difficult, because our driving parameter is central angular veldejtywhile in [7], following
successful approach of [11], the axis ratio (3.67) is used. More convenient in this case is com-
parison of figures prepared from data found in Table 1b of [7] and our tables. This is especially

42



Testing our formula
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Figure 3.7: Dependence ofAC on €, given by eq. (3.34) (dashed), calculated from (3.40) (solid)
and given by virial theorem constrain (3.51) (dotted). Both values estimated by (3.40, 3.51) are below
AC =—d.(Ry) i.e. M) from Fig. 3.3. It shows, that continuation of Lane-Emden equation to negative
values is required for successful approximation of the rotating body structure. From the lower panel
(log — log plot), we can see that all three choices/®f’ are represented by straight lines, so they are
power functions of2,. Density distribution was given by eq. (3.66) witiconst angular velocity with

A = 0.2R,.
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0.5

0.4 -

10

Figure 3.8:E,/|E,| ratio as a function of the square of dimensionless angular momejttdan our
model (3.66) withn = 3/2, Q¢ = 1.5 andA = 0.2Ry. Solid line represents numerical results of [7]. We
see that our formula prediction is in good agreement with numerical resyitsif0.1. Results using
AC from eq. (3.40) are marked by crosses. Results satisfying virial theakimfiiom eq. (3.51)) are
represented by circles. As it is apparent from figure abdw€, has no influence on this relation, and
cannot improve accuracy of the formula (3.33).

10 12

Figure 3.9: Total energy versug?. We can see a great improvement of the results Witk from

eg. (3.51) marked by'. AC from eq. (3.40) &) gives incorrect behaviour of the total energy. Solid

line represents results of [7], circles and crosses are result derived from our approximate formula (3.66)
with AC from virial test (3.51) and eq. (3.40), respectively. The approximation satisfying the virial
equation gives results resembling the numerical calculations. The parameters of model are given in the
caption of Fig. 3.8.

true, because the axis ratio is not well predicted by our formula (cf. Fig. 3.10 and Fig. 3.11),
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Q € 52 3 —E,1/Ey Virialtest|Z| AC

0.25 || 1.01 8.30 x 107° 0.004 2.05x 107 9x107°  0.004
0.50 || 1.05 3.22x107* 0.02 098 x10™® 3 x107* 0.02
0.75 ] 1.11 6.86x107* 0.03 2.10x10° 3x10° 0.04
1.00 || 1.20 1.14x10"% 0.06 3.50x 107> 4 x107° 0.08
1.25 || 1.33 1.65x107% 0.08 5.14x107° 6 x 107* 0.13
1.50 || 1.51 220x 107* 0.11 6.84x107° 4 x10~* 0.19
1.75 || 1.74 277 x 1072 0.13 855x 10> 3 x107° 0.27
2.00( 204 332x10° 0.16 1.00x10™* 1x103 0.37
2.25 (247 3.89x107% 0.18 1.18x107* 9x107* 0.48
250 || 3.12 4.40x1073% 020 133x107* 3 x107* 0.62
2751 434 493 x1072 0.22 150x107* 1x10°° 0.77

Table 3.2:The same model as in Table 3.1, but nA' is derived numerically from eq. (3.51). The
virial test parameter shows accuracy of solution to eqg. (3.51). Comparison with Table 3.1 and Table 1b
of [7] shows significant improvement of the total energy. The axis ratio is also closer to the results of
numerical calculations, and the stability indicatbis not unreasonably high. See also Figs 3.8-3.11.

while global properties,.;, j2, 3, cf. Figs. 3.8, 3.9) and virial test parametérare in good
agreement ify < 0.1.

Fig. 3.8 shows that our approximation is valid urtil~ 0.05, and begins to diverge from
numerical results strongly fo¥ > 0.1. Both values ofAC' (3.40,3.51) give similar behavior
here. HoweverAC from the virial test produces better results, ahdalues are more sensible
for the strongest rotation.

In contrast, the total energy (3.68) is very sensitivétd. The value ofAC' from eq. (3.40)
produces the wrong resultz,,; begin to increase foj? > 7 - 1073, while numerical results
give monotonically decreasing,,;. The use ofAC from (3.51) instead gives correct result, cf.
Fig. 3.9.

While the global properties of our model are in good agreement with the numerical results
for 3 < 0.1, the axis ratio tends to be underestimated, even for small valugs &fig. 3.10
and Fig. 3.11 show minor improvements when we Agefrom the virial test (3.51) instead of
the mean value (3.40).

This subsection clearly show how important is the value of congk&it The best results
are produced witl\C' from eq. (3.51), therefore this value will be used in the next subsections
to investigate the influence of differential rotation parametemd type of rotation law on our
formula accuracy.

3.8.6 Effects of differential rotation

In addition to the results from previous subsectipregnst withA = 0.2 R,) we have calculated
properties of the almost rigidlyA = 2R,) and extremely differentially{ = 0.02R,) rotating
model with the same rotation law.

In all three cases we are able to find value\af' satisfying eq. (3.51). However, this is not
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Axis Ratio

0.0 0.1 0.2 0.3 04 0.5
E,/|E

Figure 3.10:Axis ratio versus3. We see that our formula>(x) underestimates the axis ratio. The
choice of AC satisfying the virial theoren] improves the situation a bit. Solid line again is the result

of [7].

Axis Ratio

0 2 4 6 8 10 12

Figure 3.11:Axis ratio vs;j2. The same as in Fig. 3.1AAC from eq. (3.50) ¢) gives a better approxi-
mation to axis ratio compared to formula (3.4&))(

enough to find the correct solution, because other parameters describing the rotating body may
be wrong. This is clearly shown in Fig. 3.12, wheteersus;? eq. (3.70) is plotted for three
cases of differential rotation. An apparent discrepancy4fot 2R, exists. Bothj-const and
v-const angular velocity profiles behave as rigid rotation in this case. Thus we conclude that our
formula is unable to predict correct structure in the case of uniform rotation even if the rotation

is small.
If the rotation is concentrated near the rotation axis, as in4he 0.02R, case, our re-
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Testing our formula

Qo € 52 3 —Et/ Ey Virial test|Z| AC

0.01 |/ 1.04 610x107% 1.9x10™* —1.83x1077 9x10°  0.01
0.02 || 1.20 296 x107° 87x107* —880x 1077 1x107*  0.06
0.03 || 1.84 1.26x107* 29x103 —-358x10% 5x10* 0.15
0.035 | 2.30 449 x107* 7.0x107% —1.13x10° 3x10° 0.24

Table 3.3:Properties of our approximate sequence in casgafnst rotation law withtd = 2Ry, i.e.
almost uniform rotation. In spite of the fact that the virial test is fulfilled with an accuracy of the order of
10—, a comparison of the data in this table with the numerical results (cf. Fig. 3.12) clearly shows that
our formula fails in the case of rigid rotation.

Q|| e 72 B —Ew/E, Viraltest|Z| AC

25 || 1.01 1.45x107* 0.02 0.44 x 1075 4 %107 —0.01
50 || 1.05 4.73x 107 0.07 1.42x 1075 3x 1074 —0.02
75 || 1.12 831 x107* 0.12 247 x 107° 4 %10 —0.03

100 || 1.23 1.17x 1073 0.16 3.36x107° 2x107* —0.02
150 || 1.55 1.63 x 1073 023 465 x10° 4x10°* 0.07
200 || 2.06 1.96 x 107® 0.28 5.50x 107> 3 x 10~* 0.24
250 || 2.95 2.21 x 1073 0.32 6.12x10° 1x10~* 0.49
300 || 5.76 2.42x 1073 0.34 6.64x107° 3 x107* 0.83

Table 3.4:Properties of sequence wifhconst rotation law ford = 0.02Ry.

sults and the numerical results are of the same order of magnitude. Quantitative agreement is
achieved only for very small values 6. Let us note that in this cas®C' required by virial
theorem (3.51) is slightly below zero (Table 3.4). This example shows/hamay also be
negative. All three cases are summarized in Fig. 3.12.

The results from this section show, that our formula is able to find the correct structure of
the rotating body for differential rotation only. The range of application varies with differential
rotation parameters, and the best results are obtained in the middle range Ke—=for2R,.

With the extremal cased(= 0.02R,) the quality of our results is significantly degraded.

In next subsection we examine, if this statement depends on the rotation law.

3.8.7 Rotation law effects

In addition to the previously described cases, we have calculated the global properties of our
model in the case of theconst angular velocity profile, with parametets= 0.2R, (Table 3.5)
andA = 0.02R, (Table 3.6). The results witd = 2R, are not presented, because they are
similar to thej-const case (cf. Table 3.3), where both functiél(s) behave as for uniform
rotation, and our formula fails in this case.

Figures 3.13 and 3.14 show very good agreement of the global physical quantjtigs (
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0.3

10'1-5
= 10‘2-5
+ -
10° 5 o
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Figure 3.12:Stability indicator3 versus;j? for j-const angular velocityl¢g — log plot) for three values

of A. Quantitative agreement between our formula (symbols) and the numerical results ([7], lines) is
achieved forA = 0.2Ry if § < 0.1. This case is presented as solid line and crossesAFer0.02 Ry

we have results of the same order, but they are identical only where the rotation strength is very small.
This case is presented by dotted line and circles. Our formula fails (dashed line and diamonds) in case
of rigid rotation.
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Testing our formula

Q0 € 52 3 —E,1/Ey Virialtest|Z| AC

0.25 | 1.05 3.29x10™* 0.01 099 x 10> 9x10=°  0.01
0.50 || 1.21 1.41x1073 0.05 4.26x107° 2x107*  0.05
0.75] 1.63 3.80x107® 0.11 1.12x10°* 2x10* 0.13
1.00 || 231 9.22x107% 0.21 252x10* 3 x107*  0.27
1.25 || 5.26 1.44x 1072 0.31 3.87x107*  5x107*  0.47

Table 3.5:Properties of our model with-const rotation law andl = 0.2Ry.

0.3

4o

E/E

0.1 4

0.0
15

Figure 3.13:The 3(j2) for v-const rotation law withA = 0.2R, (dashed, crosses) antl= 0.02R,
(solid, circles), where lines refers to [7] and symbols refers to our formulasdthfrom (3.51). In this
case we have good quantitative agreement with numerical results in both casg$ tto.

E,,;) with numerical results for the entire range of rotation strength covered by both methods.
The most extreme casd (= 0.02) also behaves well. The axis ratio (Fig. 3.14) however, clearly
distinguishes between approximation and the precise solution. Results are quantitatively correct
only for small rotation parameters, g§< 5- 1072 i.e. 3 < 0.1.
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Qp € 52 3 —E,1/Ey Virialtest|Z| AC

1.0 || 1.02 9.81 x10™® 0.004 030x107° 7x10°  0.01
2.0 | 1.09 3.94x10~* 0.015 1.20 x 107° 1x107*  0.04
30 121 896x107* 003 275x107° 7x10"*  0.09
4.0 || 141 1.63x10"% 0.06 5.00x10™> 5x107* 0.17
50| 1.73 265 x107% 0.09 809x10° 1x10™* 0.27
6.0 || 2.24 4.08x107% 0.13 1.23x107* 3x107*  0.39
7.0 || 3.03 6.05x10"% 0.17 1.77x10* 2x10* 0.55
8.0 || 460 846 x107% 022 238x10* 3x10"* 0.75

Table 3.6:Properties of-const sequence fot = 0.02Ry.

3.9 Applicability of our formula

3.9.1 Formula accuracy vs stability

The Main conclusion from accuracy tests is that our very simple formula can give good global
properties of a differentially rotating self-gravitating body, e.g. the total energy (3.68) or di-
mensionless angular momentum (3.70) for the stability paramkiteithe ranged-0.05. But,
according to stability analysis of [16], secular instability for highly deformed, with “toroidal”
density stratification, objects may set at values as low.@33. From this point of view, our
simple formula (3.33) is able to predict properties of differentially rotating objects with stability
parameter range of all physically relevant (i.e. stable) objects. Nevertheless, final conclusion
requires much more detailed accuracy testing, involving direct comparison of reference results
for a wide range of polytropic index and for non-polytropic EOS.

3.9.2 Failure for rigid rotation

Itis a bit surprising, that our formula works for differentially rotating bodies, producing accurate
results, at least in small angular momentum limit, while completely fails for rigid rotation. The
latter case is considered simpler and easier to handle. We wold like to propose criterion which
may be used to determine when the formula fails.

Let us examine the behaviour of our formula (3.33) near the ra@diusf non-rotating con-
figuration described by an enthalpy distributian

(ho — @, — AC)
or ’

r=Rg

hi(r,z =0) >~ ho(Ry) — ®.(Ry) — AC + (r — Rp) (3.73)

where, of coursehy(Ry) = 0. Now we can find an approximate equatorial raditisof a
rotating configuration from equatidn (R;,0) = 0:

1
Ry~ Ry + — [®.(Ro) + AC], (3.74a)

*As a reference method, e.g. HSCF [11] numerical algorithm may be used.
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15

Figure 3.14:E,.; versus square of dimensionless angular momenttinSymbols description is the
same as in previous figure, Fig. 3.13.

Axis Ratio

0.0 0.1 0.2 0.3
E,/|E)

Figure 3.15:Axis ratio versugs for v-const rotation law. Symbols description is the same as in previous
figures, Fig. 3.13 and Fig. 3.14.

oo Q=0 Q(Ro)? + Oho| (3.74b)

or or
r=Ro r=Ryp
whered®../0r has been calculated using definition of the centrifugal potential (2.39). Both co-
efficientx and expressio®.(Ry) + AC are usually negative. From eq. (3.74a) we can see, that
the radiusR; of our approximation will be equal t&, only if AC'is a boundary valu€'™ from
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Figure 3.16: The enthalpy distributions forn = 3/2 polytropic sequence with-const rotation
law. Parameters of rotation are: upper row, from left: differentiabilty= 0.02Ry; central an-
gular velocity: g = 75,150,200, 250; middle row: differentiability A = 0.2Ry; central angular
velocity: Qy = 0.5,1.0,1.5,2.0; bottom row: differentiabilityA = 2Ry; central angular velocity:
Qo = 0.01,0.02,0.03,0.035.

Fig. 3.3. This does not lead to the best approximation (cf. TABLE 3.1, Fig. 3.7) — we have to
useAC # —d.(Ry). Actually, in particular cases presented in this thesis (&.from virial
test), AC > C(), and the radius of rotating configuratid) > R,. In effect, differentiability
parameterd, usually defined relatively to the radius of non-rotating configuration, is changed.
In other words, we get accuratsolution, but for another differentiability parameter than de-
fined initially. The strength of this effect is affected by both departur&6ffrom —®.(Ry)
and the value of parameterof linear function (3.74a). Differencé.(R,) — AC increases with
the rotation strength. For example, using centrifugal potential (3.56), andd@¢h&rom (3.72)
we get

AC + d, ~ a¥*? — bQ?, (3.75)

butb > a (cf. Fig. 3.7) and expression above is negativelipof physically interesting range.
Therefore the radius of the rotating configuration computed from our formula is always greater
than Ry,. The parameter is responsible for the departure rate.1[f< is very small the effect
will also be small, even for strong rotation.

We are ready to discuss cases of differential and uniform rotation. For differential rotation,
usuallyQ(Ry) ~ 0 (cf. Fig. 3.5, 3.6). Therefore; ~ 0h/0r|,—g, do not depend on the rota-
tion strength, but only on EOS. Accordingly, the radius change is small for strong differential

*From e.g. virial test (3.50) point of view.
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Applicability of our formula

Figure 3.17:Properties of the enthalpy distributions for= 3/2 polytropic sequence with-const
rotation law. Parameters of rotation are: upper row, from left: differentiability= 0.02Ry; central
angular velocity: Qo = 1,3,5,7; lower row: differentiability A = 0.2Ry; central angular velocity:
Qo = 0.5,0.75,1.0, 1.25.

rotation, ifOh/Or|.—g, is big, as forn = 3/2 polytropic case considered in previous sections.
For uniform rotation small increase &, leads to significant decrease|af. This leads to
the differentiability parameted change, and we are simply unable to compare our sequence of
the rotating models with the sequence of constant paraméters
Accordingly, we propose the following criterion:

D.(Ry) + AC

1 7
wRo < (3.76)

for simple test if our formula is able to produce accurate results. This criterion simply rejects re-
sults with huge increase of the equatorial radius relative to the initial rétjiuBefinite answers
regarding relevance of such a criterion, and related problem of corrections to differentiability
parameter4, require further research.
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Figure 3.18:Another sequence of the = 3/2 polytropic models withj-const rotation law. Sequence
defined bygA2? = 0.1. Non-rotating enthalpy distribution is presented in the upper-left corner. Values
of Qy and A are, from upper-left: (0.0,-), (1/4, 0.63), (1/2, 0.45), (1, 0.32), (2, 0.22), (4, 0.16), (8, 0.11),
(16, 0.08), (32, 0.06), (64, 0.04), (128, 0.03) and (256, 0.02).

3.10 Conclusions and future prospects

3.10.1 Importance of approximate formula

The results of our thesis can be regarded as a next small step forward in our knowledge of
the stellar rotation problems. Nowadays, these problems are usually attacked by means of
numerical algorithms and simulations. Nevertheless, popularity of very simple idealized models
like Maclaurin/Jacobi ellipsoids and Roche model, indicate need for such tools. Lack of deeper
understanding, and difficulties with immediate application of numerical algorithms are possibly
important reasons why we are still using approximate formulae in spite of their imperfection.
Our formula fall in a class of very simple tools. It is able to provide the internal struc-
ture of differentially rotating self-gravitating barotropes with acceptable accuracy. Iso-density
contours of our, = 3/2 polytropic model are virtually identical to numerical results [21] if ro-
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tation strength is small enough. From this formula which is barely sum of enthalpy, centrifugal
potential and some constant value we have found such properties like polar “cusp,” off-center
density maximum and the “concave-hamburger” surface shape. Some important relationships,
as e.g. kinetic to gravitational energy ratioversus dimensionless angular momentgfnare
obtained properly. Virial test, commonly used as a test for numerical results can be satisfied to
an arbitrary accuracy within framework of our model. The main difficulty lays in proper choice
of the constant value in the formula. The best results require numerical solving of equation in-
volving multiple integrals. However, once calculated, these values are ready to use. Moreover,
guantitative description of the internal structure does not require knowledge of that constant,
as it only leads to redefinition of iso-enthalpy contours. In cases where zeroth-degree enthalpy
and centrifugal potential are elementary functions, e.g- 1 polytrope withuv-const orj-const
angular velocity profile, the formula allows us to express result in a closed analytical form:

(r.2) sin v/r? + 22 n 1 Q3A?%r? 1 Q3A%r?
r,z) = = - =
LT VT2 214242 214 /A2

where K =1/2, 471G =1, p. =1, Q(r) = Qo /(1 + r?/A?) and AC follows from eq. (3.34).
Quiality of the approximate formula above may be put in question, nevertheless no result of this
kind was known for compressible body distorted due to differential rotation.

In general, the problem of differential rotation is considered to be very difficult. All results
were obtained by means of numerical calculations. Our formula gives new insight in these re-
sults, showing that in huge part they are modification of enthalpy distribution due to centrifugal
potential. It also reveals meaning of the enthalpy as a relevant physical quantity for description
of rotating barotropic stars. This has a significant influence on numerical convergence rate, as
noted by Eriguchi & Miller [7].

(3.77)

3.10.2 Application of approximate results

Our approximation may be used as an initial guess for initial algorithms. Usually (e.g for
HSCF) itis enough to use flat initial distribution to start iteration, but possibly we may get faster
convergence if we start from our formula. The method of Eriguchi &llst, however, requires

initial guess to be very close to the final result. This is achieved by subsequent calculations
of a sequence of similar models, beginning with known non-rotating structure. Even if we
are interested in just one rapidly rotating model, we have to calculate the entire sequence. It
may significantly increase computational power required. If one uses our approximate rotating
structure, the algorithm hopefully will start successfully. Our formula may be also used as a fit
to data produced by numerical methods for later use in a much more convenient form.

3.10.3 Area of further research

Derivation and analysis of our formula provided new insight in structure of differentially rotat-
ing self-gravitating bodies. It also has opened new problems and questions.

Our analysis has shown that virial test can be satisfied to an arbitrary accuracy. It is also
true for extremely distorted approximate models. These models are not in equilibrium, as we
can infer from e.g,3(;%) comparison to the results of [7]. This is not surprise, as virial test is
necessary, but not sufficient condition for equilibrium. Therefore, we could consider also other
tests e.g. direct comparison to numerically derived structure. This requires development of
appropriate software and least-square fits of our formula to computed results. This way we will
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also check out quality of our formula as a fitting tool, and possibly will find further methods of
the formula improvement.

Another very interesting possibility is the power law dependence®@iq. (3.72) satisfying
the virial theorem. The exponeat~ 2.2 has been found for = 3/2 polytrope withj-const
rotation law. It should be examined if power law can be used in other cases. Possibly the
exponenty has a universal character.

Continuation of the Lane-Emden functions to negative values leads to a small ambiguity.
Nevertheless, some of the rotating model properties, namely the shape of the surface may be
sensitive to particular choice of the continuation method, e.g. the axis ratio of our models could
then possibly be adjusted to correct apparent underestimation of this important quantity.

Failure for uniform rotation may a be result of the differentiability change, due to increase
in the radius of rotating configuration. This may also affect structure of differentially rotating
models. Therefore our results could be corrected to reduce influence of this effect. Potentially,
our formula could be improved this way to become relevant also for homogeneous rotation.
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APPENDIX A: LINEAR INTEGRAL EQUATIONS

Consider linear integral equation:

ﬂ@=/K@@ﬂ@@+mn (A1)

This equation is classified as a linear Fredholm’s integral equation of the second kind. Let us
define linear (integral) operatdi:

b
K(H) = [ Ke.o) 1)y (A-2)
and the operatdk:
H(f) =K(f) +g. (A-3)
We can write the Fredholm’s equation as:
f="H(f). (A-4)
Series of the form: .
@) =) Krg(x) (A-5)
n=0

is referred to as the von Neumann series. Partial sum of the von Neumann series can be also
calculated from recursive expression:

ferr = H(fw), (A-6)

with fo =0, f1 = g(z), etc.
The following theorem can be proved: If the functigfx) is integrable in the range, b],

and:
1

K A-7
rgagggl (@)l < 73—, (A-7)
then the functiory, such that
flw)=>_ K"g(x) (A-8)
n=0

is a unique integrable solution to the Fredholm’s equation of the second kind (A-1).
In terms of the recursive expression, we may write this solution as:

f(z) = lm fi(z), (A-9)

k—o0

wheref; is defined in (A-6).
More information on integral equations can be found in e.g. Ref. [25].
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APPENDIX B: LANE-EMDEN FUNCTIONS
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Figure B-1: Lane-Emden functions,(z) for n = 0,1,2,3,4,5,6,7,8,9. Let note increasing with
polytropic index the radiug of a configuration. Fon > 5 radius is infinite.

Structure of non-rotating polytropes is a standard approximation for real stars. This is also
required for our approximate formula as an initial zeroth-order approximation for rotating ob-
jects. We begin with the equation (2.42) without rotatidn & 0):

h+®,=C. (B-1)
Laplacian of the equation (B-1), according to Poisson equation (2.14) is:
Ah +47Gp = 0. (B-2)

EOS (3.61) gives the relation (3.63) between enthalpy and density. By inverting this relation we
get:

Ah + 47G (7—_1) W = 0. (B-3)
Koy
Introducing new independent variabteand a functionu(z):
X=r \/ e (7—_1> h(n=D/2, (B-4a)
K~y
h(z) = hew(z), (B-4b)

whereh,. is the central enthalpy, we get:

Aw+w" =0 (B-5)
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1000+

Figure B-2:Radius of a Lane-Emden configuration, i.e. locus of Lane-Emden zero-poif¥ | = 0)
as a function of polytropic indeR(n). If n approaches, = 5 (i.e. p ~ p%%), the radius goes to
infinity.

For spherical symmetry, the Laplace operator becomes:

1o (,0
Finally, we get the famous Lane-Emden equation:
1 0 ([ ,0w n

Solutions of eq. (B-7) with initial conditions:
w(0) =1, w(0)=0, (B-8)

define a set of special functions,(x) referred to as Lane-Emden functions.
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APPENDIX C: CALCULATING GLOBAL QUANTITIES

In this appendix we will address some technical details concerning calculations of integrals used
in the text. We encounter integralg I, of the following form:

27
_ d¢ -
he 0/ \/(7” sing’ — rsing)? + (1 cos ¢’ — rcosp)? 4 (2" — 2)27 (C-1)
2w 2w /
—n (C-2)

= 0/0/ V(' sing” —rsing)2 + (r cos ¢ — rcos)? + (27 — 2)?

These integrals are results bf|r — r'| term in the Newtonian gravitational energy and grav-
itational potential. Both of the integrals, I, can be computed analytically, using the special
function

/2
dy
») = C-3
and the result is: 1 5(p)
_ p i}
= \/(r—r')Q—l—(z—z')z’ (C-4)
B 8 f(p) )
= V=24 (2 =22 (©-3)
where: ,
4rr
b= (r—r)?4+(z—2)% (C-6)
Proof:

We rewrite denominator of thg in the form:

27
d¢
I — .
1 0/ \/(r'2 + 72 —2rr cos(p — @) + (2 — 2)?

After variable change according to:

% = ¢7 CO$(¢ — ¢l) =1-2 SiH2 ¢, d(b, = -2 d¢

using definition (C-6), we get:

7

2 72 &)
\/(r —7r')2 4+ (z— z')2¢/27 /1 + p sin? w‘

Integrand is a periodic function with the peridd = 7. Definite integrals of any periodic
function f(x) over closed intervdbe, 5« + T do not depend obx:

I =

»x+T

-~ / f()dr = = (P(se+T) = F(3)) = (¢ + T) ~ () =0,

2
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where F(z) is primitive function (" = f) and, according to the periodic character of the
function f(z), of course,f(s» + T') = f(s). Accordingly, /; does not depend op. Using

¢ = m/2 we get:
w/2 w/2

S QR -
.9 - .9 )
D V14 psin©y J V14 psin“e
what ends the proof. As the integraldoes not depend an, we immediately gef, = 27 I;.

The functionf is directly related to elliptic integrals. Unfortunately, two (at least) definitions
for elliptic functions are in use. Usually, one defines elliptic integral of the first kind as:

¢
dip
F(k, :/ , C-7
=) ey 0
and complete elliptic integral as:
w/2
7 dyp
E(k)=F (k, = :/ : C-8
m=r(3)= | e (©8)
Sometimes these functions are defined by:
¢ "
Fim.) = [ __ (c-9)
/ v 1—msin“1
and complete elliptic integral as:
w/2
E(m) (C-10)

— P, ™) = a9
_F(m72) O/Vl—msin%b'

We may easily conver'(m, ¢), E(m) to F(k, ), E(k) simply by substitutionn = k2. Our
function f becomes, by the first definition

f(p) = E(i/p), (C-11)
but, from the second definition: B
f(p) = E(=p). (C-12)
The following identity is very useful in calculations involving integrals similaft@nd/5:
! [F (?, k) F (? - k>] — E(ik) (Cc-13)
2 2 2

One should carefully check out definitions of elliptic integrals before using foregoing expres-
sions.

Now we write explicitly formulae for axially symmetric density distributions, pe= p(r, 2).
Gravitational energy of the self-gravitating axially symmetric body is:

B :47TG/R/R/R/R S0 o2 P 2) o g (C-14)
! (r—r)2+(z—2)? ’

0 -R 0 —R
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wherep is defined in (C-6), and the functiof(p) is simply the complete elliptic function (C-
12, C-11), according to relevant definitioR. should be chosen big enough to contain density
distributionp(r, z). The area outside the surfaefe:, z) = 0 is empty, and does not contribute to
gravitational energy,. This may be ensured by adding to the integrand of (C-14) the following

expression: ;o
0(p(r,2)) 0(p(r,z)),

whered is the unit step function (3.13). Integrél, is calculated numerically with use of
Monte Carlo method, to avoid problems with singularities of the integrand.

Other integrals, i.e. the total angular momentum, kinetic energy, mass and internal energy
in cylindrical coordinates are straightforward. The angular momentum is given by:

R
J:27T/
0

The kinetic (rotational) energy is:

R R
= //p V2 ridrdz. (C-16)
-R

0

R
M:27T/
0

These integrals are calculated numerically. Any method may be used here, as integrands are just
finite, smooth functions of two variables. Values.bfE),, M and E, are required to calculate
virial test parametef and dimensionless global quantities e/ |E,|.

p(r Yridrdz. (C-15)

blv\:u

The total mass is:

p(r,z)rdrdz. (C-17)

:lc\:o
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APPENDIX D: STABILITY OF THE ROTATING OBJECTS

From our approximate formula (and by other methods) we are able to compute structure of dif-
ferentially rotating self-gravitating bodies. Actually, only a fraction of them is of (astro)physical
interest — real world objects, in contrast to purely mathematical solution, havestalile All
examples given in this thesis are chosen to satisfy stability conditions.

We now list stability criteria relevant to discussion in our thesis.

The global stability

For non-rotating spherically symmetric stars, with polytropic EOS (3.61) and Newtonian grav-
ity, the following criteria holds:

e If polytropic exponenty > ~.. = % (equivalently if polytropicindexn < 3) then the
object isstable

e If polytropic exponenty < ., = % (equivalently if polytropicindexn > 3) then the
object isunstable

e If polytropic exponenty = ., = % (equivalently if polytropicindexn = 3) then the
object ismarginally stable

Here we have defined the critical value-of

4
cr — 5 D-1
Yo =3 (D-1)

Rotation tends to stabilize object against collapse. The problem of the stability of rotating
(especially differentially rotating) bodies has not yet been fully solved. However, the follow-
ing criterion derived for uniformly rotating polytropes is widely used. We define the effective
polytropic exponent:
O et 1) D.2

Yeff _Vcrma ( - )
whereg is the rotational kinetic energy to gravitational energy ratio (3.71). The valukei®f
never greater thaty2 (see text below); = 2/5 = 0.4 is also highly unlikely, as e.g. dynamical
instability limit for Maclaurin spheroid is 0.2738. Therefore, from (D-2), the critical polytropic
exponent is always reduced if rotation is present. Accordingly, stable rotating objects with
polytropic indexn > 3 (v < 4/3) may exist.

Stability of angular momentum distribution

In differentially rotating stars we have to answer a question, whether prescribed angular velocity
profiles leads to a stable object.
It can be proved, that in stable object the angular momentum per unit mass has to decrease
outward. This is the Solberg criterion. We may write this stability condition as:
0

ar (7’49(7", 2)2) > 0. (D-3)

As an example we check out if the angular velocity profiles used in our thesis are stable with
respect to the Solberg criterion. Let the angular velocity be:
Qo

Q(T) = m (D'4)

63



APPENDIX D

The Solberg criterion requires:

d ;.4 0 g 1 7\ ¢
gy [ =202 g |24 2~ Q) (A) > 0. (D-5)
As we can see, it < 2 then our rotation law is stable against small perturbations for any
differentiability A. If ¢ > 2 then, taking into account maximum radius of a g&r(i.e. the
equatorial radius) we get:

A> Ro (¢/2-1)"° ~ Ry (D-6)

because expressidg/2 — 1)'/¢ is of the order ofl for ¢ > 2. Differentiability A cannot be

too small A << 1), i.e. we are unable to concentrate too much angular momentum in a central
region of a star. Physical intuition as to this instability is simple: centrifugal force in the central
region is strong enough to remove matter (and thus angular momentum) from the core.

Secular & dynamical instability

It is intuitively obvious, that rotating body cannot possess too much angular momentum, be-
cause like for solid rotating bodies, centrifugal forces tend to disrupt it. What is then maximum
amount of rotation allowed? Almost 300 hundred years ago Maclaurin [20] work raised this
guestion, and the problem is still investigated [2, 16].
Various combinations of physical quantities may be used as rotation strength indicator. The
most widely used by astrophysicists is the ratio of the total kinetic engrggnd modulus of
the gravitational energy,, denoted by3 (3.71). From virial theorem (3.47) we can get the
following estimation:
_ B 1 3[pdr 1
Bl 2 2 |E[ — 2

because pressure is non-negative quantity. Actually, it is impossible to reach the value of
0.5, because dynamical instability is encountered. T or less.

Stability analysis for uniformly rotating bodies leads to the following conclusions. For
polytropic indexn < 0.8, behaviour of rotating compressible body closely resembles rotating
constant density bodies. Therefore, stability analysis of the Maclaurin spheroids and Jacobi
ellipsoids is representative. Namelyfif< 0.1375, rotating body is stable. Beyoritl= 0.1375
at least two possible equilibria exist: the axially symmetric Maclaurin spheroid and the triaxial
Jacobi ellipsoid. As Jacobi ellipsoid fgr > 0.1375 has lower total mechanical energy, so-
called secular instability is possible. This leads to transition of axially symmetric configuration
into non-axisymmetric one, if dissipative processes are present, e.g. viscosity. If dissipative
process do not operate or its strength is small, then Maclaurin spheroid can store as much as
E), = 0.27|E,| of kinetic energy. Triaxial bodies are dynamically unstable at significantly lower
5 of 0.16.

Completely different behaviour is found for centrally condensed bodies, i.e. with polytropic
index ofn > 0.8. Such uniformly rotating barotrope is unable to store large rotational kinetic
energy, because centrifugal force exceeds gravitational force well before any instability could
occur. This leads rather to equatorial mass loss, not a global instability of a body. Situation
becomes much different if, like in our thesis, differential rotation is taken into account. Stability
analysis in that case is still in progress, and generally requires dynamical simulations of rotating
configurations. Both secular and dynamical instability may set at significantly lower values,
compared to uniform, rigidly rotating bodies. For example articles [2, 16] report the onset of
secular instability att = 0.04 and dynamical instability at = 0.14. Nevertheless, too much

B (D-7)

64



angular momentum in the central region may lead to violation of Solberg and Hgiland criteria
(D-3).

General rotating star may be also subject of other instabilities, e.g. related to energy transfer
and mixing, but they are beyond the scope of our simple barotropic models. Reader is referred
to textbook of Tassoul [29] and to Sect. 2.3 of [13] and references therein.
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broken symmetry, 8, 20
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rigid rotation, 37
continuity equation, 15, 16
axisymmetric solution, 20

differential rotation, 21
dimensionless angular momentum, 41

effective gravity, 19
elliptic integral of the first kind, 25, 62
enthalpy, 17, 41
EOS, 13
equation
barotropic fluid, 16
rotating barotrope, 20
rotating barotrope (differential form), 23
rotating barotrope (integral form), 24
equation of state, 13
barotropic, 13
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Euler equation, 15
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Hammerstein integral equation, 28
canonical form, 28

Heaviside function, 26

HSCF, 28

hydrostatic equilibrium, 17

integral equation, 24, 27
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Fredholm, 58
Hammerstein, 28
kernel, 26
linear, 28, 58

Jacobi ellipsoids, 8-10, 20, 65

Lane-Emden functions, 30, 59
continuation, 34

Maclaurin spheroids, 8-10, 65
material derivative, 15

Newton’s second law of action, 13

Poincae-Wavre theorem, 19, 30
Poisson equation, 15
polytropic

density, 41

enthalpy, 41, 59

EOS, 39

exponent, 39

index, 39

Roche model, 11

rotating barotrope, 21

rotating barotrope equation
differential form, 23
general form, 23
integral form, 24

rotation
differential, 37, 39
homogeneous, 36
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pure, 18
rigid, 36
simple, 18
uniform, 36
rotation law
j-const, 37
v-const, 39
barotropic, 19
stability, 64
Stoeckley’s, 39

self-consistent field method, 28
self-gravitating body, 7, 13, 16
Solberg criterion, 39, 65
spontaneous symmetry breaking, 8
stability

dynamical, 65

global, 64

secular, 65
symmetry

axial, 21

equatorial, 21

total energy, 41
unit step function, 26

virial test, 36
parameter, 36
virial theorem, 35
Von Neumann series, 28, 58
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