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with neurons containing local joint distribution model as polynomial

1) Biological neural networks (BNNs) seem qualitatively superior to current
artificial (ANNSs). Biological neurons have thousands of connections, also to
itself, allowing to hide complex mathematics, also through bursting and
cancellation of colliding action potentials. Instead of such complex spiking NN
physical level, let us search for higher level "logical neuron” here: extracting
"biologically plausible” mathematics representing neuron dynamics.

Spiking: physical level, but what is logical: hidden math

2) While standard logical neurons like MLP (Multi-Layer Perceptron), KAN are
one-way (1W): focused on uni-directional propagation, biological axons
propagate in both directions (2W) e.g. for training, forming two-way neural
networks (2ZWNN). Also value prediction alone seems insufficient for animals -
it is crucial to estimate uncertainty, e.g. by propagating entire distributions.
Additionally, backpropagation is viewed as not biologically plausible -
biology needs local layer-wise training ways like information bottleneck.

Spiking: physical level, but what is ‘logical neuron’: hidden mathematics?

3) To catch up with biology, 2W logical neuron can be built as data structure
containing model of local joint distribution, e.g. among its connections.

This way substituting some variables and normalizing would give conditional
distribution, in any direction. Like in Bayes theorem but without it: straight
from joint distribtuion. By averaging we could also use inputs as distributions,
taking expected value (or median, mode) of output we can propagate values.

Joint distribution neurons as logical for BNNs:
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4) For joint distribution data structure, it is PDF p uniform 5) While local basis like Gaussians is useful for clustered data, for neurons 6) Basic formulas for 2D case assuming product basis of orthonormal (f’ (x))
very convenient to normalize variables to there is sought e.g. XOR operation - trivial to realize with polynomial. Generally, | e.g. polynomials - with (a ;;) as parameters contained by neuron with 2
nearly uniform in [0,1] (e.g. by x &> CDF(x) global basis like polynomials usually gives much better cross-validation connections, generally as many indexes as connections. Substituting and
or EDF by just sorting), then represent their = & / Q | like below - generalizes better: searching for general data description like | normalizing we get formulas for propagation as conditional distributions, or
joint density as just linear combination e.g. '-D'— 2 | moments here, instead of just assuming that "new points will be close to old their expected values, requiring to just transpose (permutate indexes) to
of polynomials, preferably in orthonormals E)/ % points” in local e.g. KDE or mixture models, also less convenient to represent. change propagation direction - seems simple enough to fit in biological.
basis allowing for independent MSE estimation. moments generalize well log-likelihood: mean lg(p) on random 25% test, 75% tralnmg Working on distributions we can also control mutual information /(X;Y).

decompose dependencies into mixed moments - control, accuracy, credibilty
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(nonlinear, adaptive, all-directional) artificial neurons p[Xi Y’Z)

How to model/estimate density from a data sample?
MSE fit polynomial p(x) = Y.rcpar f(x) (in (f) orthonormal basis)

also for joint distribution, non-stationarity, missing data

Moments/cumulants | p(x) = Yray f(x) | Machine learning, NN
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Neuron containing local joint distribution model — of its connections:
(aj) e.g. a;; matrix (d = 2) of mixed moments as neuron parameters
propagation as conditional densities/expected values E[x|y], E[y|x]
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7) First [0,1] (Legendre) orthonormal polynomials and their product basis
for 2,3 variables, allowing for hierarchical reconstruction of dependencies.
As fy=1, coordinates being 0 control normalization, there is no dependence
with such variables. Coefficients with single nonzero index describe marginal
distributions of variables, with two nonzero define pairwise dependencies,
with 3 triplewise, and so on hierarchically adding higher order dependencies.
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8) Analogously in d dimensions we need d index tensor representing joint
distribution. Given aj coefficient describes dependencies between variables of
nonzero indexes of j - in practice requiring to restrict e.g. to only pairwise
dependencies up to e.g. 4th moment (kurtosis). MSE estimation by averaging
can use exponential moving average instead for adaptivity. The 0 index
values can be missing, allowing to extract all available dependencies.

jZ

p>2 reglon ~14% of volume, ~62% of cases:

Also [0,1]% in h|gher dimensions, e.g. d = 3:

P32, x3) = ) oy fi,Gf, (), ()
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= conditional distributions without Bayes

MSE estimated from dataset X ¢ R3 :
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For considered statistical dependencies:

basis B of considered mixed moments

a; describes e.g. variance-variance between .
hierarchical e.g. d = 9: B 3 j = (000200020) °°

b1
a; = average of f; (x;) ... f;,(x4) over dataset - entire or:

- over a subset for missing data - we need only j > 0 coordinates as f, = 1

- aj*' = Aa; + (1 — Dfj(x) parameter evolution for nonstationary time series
mdependent ~ correlatlon coef. further statistical dependencies var-var
pair-wise N + ‘ N N
joint density ~ a11- a12 421° 422

HCRNN: “KAN-like parametrization, but with many advantages

e can propagate in any direction like biological neural networks,
* propagate values or probability distributions,

e interpretation of parameters as mixed moments,

e consciously add triplewise and higher dependencies,

9) Can degenerate
to very popular
KAN: Kolmogorov-
Arnold networks
if only pairwise

dependecies, * inexpensive evaluation of modeled mutual information,
offering many » additional training approaches, e.g. direct estimation,
improvements.t tensor decomposition, information bottleneck of hidden layer

f[x_] := Exp[x[1] - x[2]° - x[3]° + x[41°]; d = 4;
m=4; n = 1000; SeedRandom[1]; points,
fs = Expand[Table[LegendreP[i, x] *Sqrt[(2i+ 1)] /.x -» 2x - 1, {i, m}]];
X = RandomVariate[NormalDistribution[@, 1], {n, d}]; Y =Map[f, X];
inX = Table [normEDF [X[All, i]]], {i, d}]; inY = normEDF[Y];
nX = Transpose [Table [inX[i] [X[All, i]], {i, d}]1]; nY =inY[Y];
md = 4; X = Flatten[fs[[1;; md] /. x » nX, {{2}, {3, 1}}]; (+ features «)
mu=1;V = Transpose[fs[[1;; mu] /. x> nY];
as = Flatten[Transpose [X].Y]| /n;
cp=1/2+Expand[Partition[as, md] .fs[[1;; md]] / Sqrt[12];
Print[Row[ {ListPlot [Transpose[{nY, Y}]], "of sum of below:
Row[Table[cf = cp[[i]] /. x -» inX[i] [x];
Plot[cf, {x, -2, 2}, ImageSize » 130], {i, d}]]
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KAN-like example: 1-paremeter function, summation

E[x|y,z] = normalized Y a;ofj(y) + X a10;fj(2)

f[x] reconstructed from n=1000 points:

(normalized)
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10) Neurons containing joint distribution also allow for online control of
often the most valuable e.g. for training and explainability: (conditional)
entropy, mutual information evaluation - in just bits of information one
variable says about another, invariant to permutations and bijections. For HCR
it can be approximated with just sums of squares of our moments/neuron
parameters: nontrivial between variables of interest. Together with MSE
estimation of (a ) coefficients from dataset, we get simple HSIC-like formula.

Information theory [nats = bits/In(2)]:
entropy, mutual information for HCR
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11) Biological neurons should use only local connections also for training.
To improve prediction, it should maximize information about the desired
output, but also minimize about the input to remove noise - allowing to
optimize content based only on neighboring layers (local), preferably using
mutual information as evaluation - information bottleneck approach, with
formulas here as in HSIC (Hilbert-Schmidt Information Criterion) articles, but
replacing their local basis of Gaussians, with global of polynomials/moments.

Naftali Tishby, information theoretic view — permutation, bijection independent
Markov process between layers, first extract/compress essential information
reducing mutual information [bits] H(X) = I(X;T,) = I(X;T,) = -

Information bottleneck (Tishby): for X - T — Y optimize iIT}f I(X;T)— BI(T;Y)

inf 1(X;T) 8 0 —©0. N\ sup I(T;Y)
D, Q Q '@ »
compression @ : : : @ O prediction
PN NN o {Teé

optimize 9 qasse® O layer-wise

content of O _ propagation:
— ho h,, - Vv . .
intermediate biologically
layers plausible

Ky (x,x") = (¢(x), p(x")
HCR: many global poly (f;) for normalized

I ~ HSIC = Tr(Ky, K,)

n X n as sample size

¢ Gaussian: local, width?

12) Summary with formulas for 3 variables. While single neuron can be
directly trained or updated, for intermediate layers it is more difficult, but
we can always treat such network as just KAN-like parametrization and train
with gradient descent. One of additional training options is estimating high
order tensor as dependencies, and try to automatically decompose it into
smaller tensors - allowing to shift all nonlinearities to first/last layer.
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~ HCR neuron/ ! normalize | x < CDF(x) ~ U[0,1]  empirical/param.

Re.duc':ed to ~KAN for . C . (?ll ‘0 [ HCR joint density | p(x,y,2) = Yijeen @i 10 0)fe(2)
pairwise-only dependencies | fnormalize CDR) [ siafic estimation [ mean: ayy. = 3 Xeyaret AGI 0@

iti : o CDF : szoﬁg{dt? from X dataset X

Additionally: DF L dynamic (EmA) | S e
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if norm.
i e
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estimation/update,
propagate values or propagation:
probability distributions, [P¢17.2) |
interpretation: moments, ,.irwise

- cheaply calculate entropy, “KAN: 7/ k=0

| propagation? 2 2v/3 Xjagjo fi(y) \,‘i\\:‘ if normalized

HX) ~ — $jepy(a)”  [nits]

IX;Y) ~ z:J' By ijeay (aUXi.v))z
basis optimization | M; ;, = a;j SVD: MM" =¥, 0; viv!l
».2) > x 9i(x) = Xjvi; fj(x) v v =8y
i)} = {9:(0)} fi = Livug Qjjk = X1V Ajk
How to train intermediate layers/variables?
- standard backpropagation of a;, gradients
- Information bottleneck method for neurons
-up/down propagation
+ a;, estimation/update

plx,v,z) for d =3

entropy,
mutual
information

mutual information,
additional training e.g.
tensor decomposition,
information bottleneck
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