
15
1

14
1

13
1

12
1

8
1

9
1

A N SSYMMETRIC UMERAL YSTEMS
Jagiellonian	University methods if using e.g.:your data is written with

...0

0
0

1

1
1

2

2

3

3
3 4

5

5 6

7

7

8

8 9

10

10

11

11

12

12 13

14 15 16 17 18x’

x

x’	»	x/Pr(s) s=0

s=0

s=1

s=1

e.g.							x = 1 4 6 9 13 18s=0 1 1 1 1

...0

0

0

1

1

1 2

3

3

3

4

4

5

5
5

6

6

6

7

7
7

8

8

9

9

10 11 13 14 15 16 17 18x’

x

s=0

s=0

s=1

s=1

some asymmetric	binary	system for Pr() = 1/4, Pr() = 3/40 1

odd even

redefine even/odd numbers - modify their densities:

e.g.				 	= x 1 2 5 11 23 47
s=0 1 1 1 1

4 8

12

2 4

6 9 134

2

2

x	= 4
r » 0.321

x	= 5
r = 0.25

x	= 6
r » 0.241

x	= 7
r » 0.188

1

00
11

10
01

-

- -

-
0

0

d				d						produced bits2 1

1

12

		decoding:
x ® s , new x

 ®	 , +4 6a d
 ® , + 5 4b 2d	+ d
	® , 6 4a
 ®	 , 7 5a

encoding:
s	=	a

example: encoding decoding

x	: 4 5 7 4 6 4 5 5

s	=	b

s	

bits

b a a a a b b

Pr()=3/4					a

Pr()=1/4b
newX
decodingTable

nbBits

100 00 01

4 5 6 7

1. Approximate	probabilities
as p	»	L		/L												

p »
3

160

0

p »
8

161

1

p »
5

162

2

2. Spread	symbols:	L of symbol s
(fast, step = 5)

2*. Scramble
(4 block cycle)

key

3. Enumerate	appearances
from L			to	2L		- 1
L =16, = 3, = 8, = 5L L L

16

16

C(s, x)

x

s=0

symbol

pre-renormalization x

s=1
s=2

nbBits	to read to return to I

3

3
3

24

0

5

5
2

20

2

11 10 0 0 011 0 1 1 101 0 0

2 2 2 2

15

30

1

14

28

1

13

26

1

12

24

1

11

11
1

22

1

10

10
1

20

1

9

9
1

18

1

8

8
1

16

1

1 1 1 1 11

6

6
2

24

2

7

7
2

28

2

8

16

2

9

18

2

4

4
2

16

0

5

5
2

20

0

0 0

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

29

30

30

31

31

19

19

18

18

17

17

x

4. Renormalize to make x remain in I = {L, ..., 2L-1} range

t = decodingTable[x]; use(t.symbol); x	® t.newX	+	readBits(t.nbBits);

{t = decodingTable[x]; use(t.symbol); x ® t.newX + readBits(t.nbBits); }

tmp

newX	= x << nbBitstmp

decodingTable[x]:
(symbol,
nbBits,
newX)

5.	Encode/decode - e.g. decoding 11100001101010011

x: 25 23 16 17 1930 28 18 27 24 23 29 26
bits

s

2 1 3 0

s

s s

s

s

example of tANS	construction for L=16 states and size 3 alphabet

secure PRNG

a

b c

0

0

1

1

(pre�ix,)	Huffman	coding	
(also unary, Golomb, Elias, etc.)

 fast	(>300MB/s/core)
no multiplication, needs sorting

but 	Pr() ~ 2inaccurate: s
e.g. for Pr()=0.01, Pr()=0.99a b

uses 1 bit/symbol

arithemtic/range	coding
 slow	(<< 100MB/s/core)

uses multiplication
uses nearly Pr()accurate	 s

e.g. for Pr()=0.01, Pr()=0.99a b
uses ~0.08 bits/symbol

 fast	(> 500MB/s/core)
uses nearly Pr()accurate	 s

e.g. for Pr()=0.01, Pr()=0.99a b
uses ~0.08 bits/symbol

-r

a

a

b

b

0 1

P
as

t:
 c

o
m

p
ro

m
is

e

o
r

?

N
o

w
: A

N
S

XL

Apple: LZFSE () compressor default since 2016 in iPhone, MactANS

Shannon	entropy

ANS:	"asymmetrize"	numeral	system	for	chosen	probability	distribution
uABS	(uniform, 2006): direct generalization of binary system (p = 1/2)
'odd' numbers below : remaining 'even':

tANS	(tabled, 2007): put into table with renormalization, building automaton

Example	for binary system:
C(, x) = 2x + s s

" " ® x	= 01111 47
assuming 1/2-1/2 distribution

for rANS (range ANS):
" " ® x	= 01111 18

 thanks tomore compressed
better probability agreement:
" " is closer to 1/4 - 3/401111

Coding with accurate	probabilities	requires buffer	handling fractional	bits
This buffer in arithmetic	coding is - to work onrange	 expensive	

ANS	advantage:	 	store	information	in	just	a	single	natural	number	x

Analogously	for	large	alphabet: 	(range, 2013) is used as rANS simpler
many times fasterdirect replacement for arithmetic/range coding -

Handles adaptive	modi�ication	of	probabilities, is good for vectorization.

Now symbol	stream	®	very	large	number	x, for long there is needed
renormalization: ensure e.g. by regularly

transferring accumulated	(also)	bits in	buffer	x « bitstream			fractional

DNA	compression - currently default is CRAM	() in popular SAMtoolsrANS

~3x	faster	decoding,	~5x	encoding,	much	better	compression	than	zlib/gzip:

And many more, e.g. () Google	Draco 3D data compressor (of geometric meshes and point clouds), new	coming	every	yearrANS
JPEG	XL () was standardized (ISO), mainly from Google,	to , also improving old photosrANS replace 1992 JPEG	"using 1/3 size"

Nearly all data we use is compressed,	reducing �ile size up to 1000 times (for video)
, after transformations and predictions, obtains event/symbol	streamData	compression

This stream usually �inally undergoes entropy	coding: translating symbols	into	bits
We need n bits to choose from 2 possibilities, what if we know percentage of '1' in 0/1 sequence? n

 x	®	x-th	appearance	of	even/odd, :ANS:	let's	rede�ine	even/odd	split

example:
binary

alphabet
x Î {4, 5, 6, 7}

states

Pr() > 1/2a
a		carries	
<	1	bit

zstd: nearly top compression ratio
with extremely fast decoding

Zstandard
zstd

zstd

„zip”

Facebook	Zstandard () compressor, e.g. in Linux, Android	kernel,	tANS
standarized for MIMO	(email) and HTML	as RFC 8478, now nearly everywhere:

dots: modes
affect ~only

encoding

tANS: tabled - no multiplication
"Huffman generalized to "fractional bits
also allows for simultaneus encryption

rANS: range	- direct replacement
of arithmetic/range coding: with

, smaller state less multiplications

mainly used for
smaller models,

�ixed
distributions

mainly used for
larger models,

 adaptive
distributions

Seen as weighted average: symbol	of	probability	p	carries	-lg	p	bits	of	information
Huffman	coding	 	(1952) - assigns bit sequence to each symbol, optimal only for p	= _

 (~1975) - nearly accurate probabilities, but costly/slowArithmetic/range	coding
 (Jarosław Duda, JU , : 2006, : 2007, : 2013)Asymmetric	Numeral	Sytems uABS tANS rANS

 - ending the compromise, nearly default since 2014, fast	and	accurate up	to	30x	speedup:
NVIDIA

rANS
GPU:
100+
GB/s

	Strona 1

