Geometry of dissolving vortices

Martin Speight

SIG V 20/6/16

What are vortices?

$$\mathcal{L} = rac{1}{2} \overline{D_{\mu} arphi} D^{\mu} arphi - rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{\lambda}{8} (1 - |arphi|^2)^2$$

- $D_{\mu}\varphi = (\partial_{\mu} iA_{\mu})\varphi$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- $B = F_{12}$, $e_i = F_{0i}$
- Finite energy: $\varphi \sim e^{i\chi}$ at large r, winding number $n \in \mathbb{Z}$.
- Finite energy: $D_i \varphi \sim 0$ at large r: $A = A_i dx^i \sim d\chi$

$$\int_{\mathbb{R}^2} B = \int_{\mathbb{R}^2} dA = \oint_{S^1_{\infty}} A = 2\pi n$$

Flux quantization

What are vortices?

• Vortex: energy minimizer with n = 1

$$\varphi = f(r)e^{i\theta}, \qquad A = a(r)d\theta$$

• Multivortices: $n \ge 2$

$$\varphi = f_n(r)e^{in\theta}, \qquad A = a_n(r)d\theta$$

Stable if $\lambda < 1$, unstable if $\lambda > 1$. Unique in both cases

• Critical coupling: $\lambda=1$, space of static solutions **much** more interesting

Bogomol'nyi argument

$$E = \frac{1}{2} \int_{\mathbb{R}^2} \left\{ |D_1 \varphi|^2 + |D_2 \varphi|^2 + B^2 + \frac{1}{4} (1 - |\varphi|^2) \right\}$$

$$0 \le \frac{1}{2} \int_{\mathbb{R}^2} \left\{ |D_1 \varphi + i D_2 \varphi|^2 + [B - \frac{1}{2} (1 - |\varphi|^2)]^2 \right\}$$

$$= E - \frac{1}{2} \int_{\mathbb{R}^2} B$$

$$= E - \pi n$$

• Hence $E \geq \pi n$ with equality iff

$$(D_i + iD_2)\varphi = 0 (BOG1)$$

$$B = \frac{1}{2}(1 - |\varphi|^2) (BOG2)$$

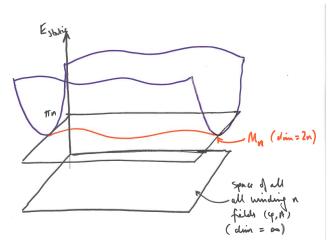
Moduli space

- Taubes: gauge equivalence classes of solns of $(BOG1), (BOG2) \leftrightarrow \text{unordered collections of } n \text{ points in } \mathbb{R}^2 = \mathbb{C} \text{ (not nec. distinct)}$
- \longrightarrow
 unique monic polynomial whose roots are the marked points

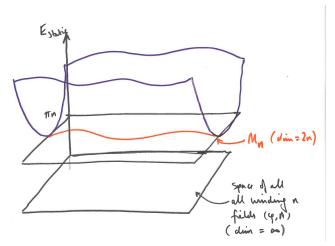
$$P(z) = (z - z_1)(z - z_2) \cdots (z - z_2) = z^n + a_1 z^{n-1} + \cdots + a_n$$

- ullet \leftrightarrow $(a_1, a_2, \ldots, a_n) \in \mathbb{C}^n$
- Hence the **moduli space** of *n*-vortex solutions $M_n \cong \mathbb{C}^n$

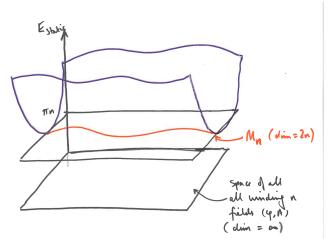
$$L = \frac{1}{2} \int_{\mathbb{R}^2} (|\dot{arphi}|^2 + |\dot{A}|^2) - E_{static}(arphi, A)$$



$$L|_{M_n} = \frac{1}{2} \int_{\mathbb{R}^2} (|\sum \frac{\partial \varphi}{\partial z_r} \dot{z}_r|^2 + |\sum \frac{\partial A}{\partial z_r} \dot{z}_r|^2) - \pi n$$



$$L|_{\mathcal{M}_n} = \frac{1}{2} \sum_{r,s} \gamma_{rs} \dot{z}_r \dot{\overline{z}}_s - \pi n$$



- **Geodesic** motion in M_n w.r.t. metric γ induced by K.E.
- In maths literature, γ is called the " L^2 metric"
- Hermitian

$$J: T_p M_n \to T_p M_n, \qquad \gamma(JX, JY) \equiv \gamma(X, Y)$$

- Kähler form $\omega(X, Y) = \gamma(JX, Y)$
- M_n is **kähler**: $d\omega = 0$
- **Quantum** geodesic motion: $i\partial_t \Psi = \frac{1}{2}\Delta\Psi$

Vortices on compact surfaces

- Spacetime $\Sigma \times \mathbb{R}$, $\eta = dt^2 g_{\Sigma}$
- Why?
 - $\Sigma = T^2 = \mathbb{C}/\Lambda$: vortex lattices
 - More generally: vortex "gas"
 - Maths: equivariant Gromov-Witten theory
- Need a bit more mathematical sophistication: hermitian line bundle L over Σ , φ a section, A a connexion

$$E(\varphi, A) = \frac{1}{2} \|d_A \varphi\|^2 + \frac{1}{2} \|F_A\|^2 + \frac{1}{8} \|1 - |\varphi|^2 \|^2$$

• Still have flux quantization:

$$\int_{\Sigma} F_A = 2\pi n$$

$$n = \deg(L)$$

Vortices on compact surfaces

• Still have Bogomol'nyi argument: $E \ge \pi n$ with equality iff

$$\overline{\partial}_A \varphi = 0$$
 (BOG1)
 $F_A = \frac{1}{2} (1 - |\varphi|^2) * 1$ (BOG2)

• Bradlow bound: integrate (BOG2) over Σ

$$2\pi n = \frac{1}{2} Area(\Sigma) - \frac{1}{2} \|\varphi\|^2 \leq \frac{1}{2} Area(\Sigma)$$

- No vortex solutions if $Area(\Sigma) < 4\pi n$.
- If $Area(\Sigma) = 4\pi n$ all solutions have $\varphi \equiv 0$, $*F_A$ constant
- If $Area(\Sigma) > 4\pi n$, vortex solutions \leftrightarrow effective divisors on Σ of degree n $M_n = \Sigma^n / S_n$

Dissolved vortices

• Note: $\varphi = 0$, $*F_A = 2\pi n/Area(\Sigma)$ is **always** a solution of the Euler-Lagrange equations

$$E = rac{2\pi^2 n^2}{Area(\Sigma)} + rac{1}{8}Area(\Sigma)$$

Solution not unique (up to gauge) if $H^1(\Sigma) \neq 0$: $M_n^{dis} = T^{2g}$ $(g = genus(\Sigma))$

- Area(Σ) \ $4\pi n$: "dissolving" limit
- $|\varphi|$ becomes small, F_A becomes uniform
- $g \gg n$ studied by Manton and Romao
- g = 0 studied by Baptista and Manton

Vortices on a sphere

$$M_n \cong \mathbb{C}P^n$$

- Use stereographic coord z on S^2
- $\bullet \ [(z_1, z_2, \dots, z_n)] \leftrightarrow P(z) = a_0 + a_1 z + \dots + a_n z^n$
- $a_n = a_{n-1} = \cdots = 0 \Rightarrow \text{root(s)}$ at $z = \infty$
- $(a_0, a_1, \ldots, a_n) \sim (\lambda a_0, \lambda a_1, \ldots, \lambda a_n)$
- Metric γ_{I^2} not known exactly, but...
- Manton exactly computed the **volume** of $(M_n, \gamma_{L^2})!$

$$Vol(M_n(S^2)) = \frac{\pi^n(Area(S^2) - 4\pi n)^n}{n!}$$

- valid on any sphere
- shrinks to 0 as $Area(S^2) \searrow 4\pi n$

The conjecture

- Define R s.t. $Area(S^2) = 4\pi R^2$
- Rescale γ_{L^2} to normalize volume: $\gamma'_{L^2} = \gamma_{L^2}/(R^2 n)$
- Conjecture (Baptista, Manton): As $R^2 \searrow n$, γ'_{L^2} converges uniformly to "the" Fubini-Study metric on $\mathbb{C}P^n$
- Originally made for round metric on S^2 but argument obviously generalizes to any metric
- Huge symmetry gain (at most $SO(3) \rightarrow U(n)$)
- So what? E.g. quantum energy spectrum should have unexpected large quasi-degeneracies

What is the FS metric?

- Unique kähler-einstein metric on CPⁿ
- In inhomogeneous coords $[1, w_1, \ldots, w_n]$

$$\gamma_{FS} = \frac{\sum_i dw_i d\overline{w}_i}{1 + |w|^2} - \frac{\left(\sum_i \overline{w}_i dw_i\right)\left(\sum_j w_j d\overline{w}_j\right)}{(1 + |w|^2)^2}.$$

- Hopf fibration $\mathbb{C}^{n+1} \supset S^{2n+1} \to \mathbb{C}P^n$: $\pi: (a_0, a_1, \dots, a_n) \mapsto [a_0, a_1, \dots, a_n]$
- γ_{FS} is the unique riemannian metric on $\mathbb{C}P^n$ such that $\pi: S^{2n+1} \to \mathbb{C}P^n$ is a **riemannian submersion**:
 - $T_p S^{2n+1} = \ker d\pi_p \oplus \mathcal{H}_p$
 - $d\pi_p: \mathcal{H}_p \to T_{\pi(p)}\mathbb{C}P^n$ is an isometry

Intuition

- In dissolving limit $\varphi \to 0$ and $A \to {\rm constant}$ curvature connexion
- On $L \to S^2$, const curv connexion is unique (up to gauge). Choose and fix.

$$\overline{\partial}_{A} \varphi = 0$$

$$\varphi \in H^0(L,A) \equiv \mathbb{C}^{n+1}$$

• Remaining gauge freedom: $\varphi \mapsto e^{ic} \varphi$

Intuition

$$F_{A} = \frac{1}{2}(1 - |\varphi|^{2}) * 1$$

$$2\pi n = \frac{1}{2}Area(S^{2}) - \frac{1}{2}||\varphi||^{2}$$

$$||\varphi||^{2} = 4\pi(R^{2} - n) =: \rho^{2}$$

- $\bullet \ \varphi \in \mathcal{S}^{2n+1}_{\rho} \subset H^0(L,A) = \mathbb{C}^{n+1}$
- Curve of solutions: A constant, $\varphi(t)$ moving orthogonal to gauge orbit

$$T = \frac{1}{2} ||\dot{\varphi}||^2$$

Hence induces FS metric on $\mathbb{C}P^n = S^{2n+1}/\sim$

Testing the conjecture

- Underlying idea: $\varphi \to \text{holomorphic section of fixed } L^2 \text{ norm}$
- On round sphere, can write these down explicitly
- Solve Bogomol'nyi equations numerically on round sphere, investigate limit $R^2 \setminus n$

- $g_{\Sigma} = \Omega dz d\overline{z}$, $\Omega = \frac{4R^2}{(1+|z|^2)^2}$
- Define $h = \log |\varphi|^2$
- Can use (BOG1) to eliminate A from (BOG2)

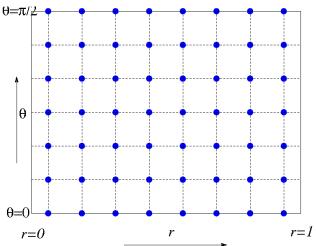
$$\nabla^2 h + \Omega(1 - e^h) = 4\pi \sum_r \delta(z - z_r)$$

- Consider case n=2, $z_1=\varepsilon$, $z_2=-\varepsilon$
- Regularize: $h(z) = f(z) + \log|z \varepsilon|^2 + \log|z + \varepsilon|^2$

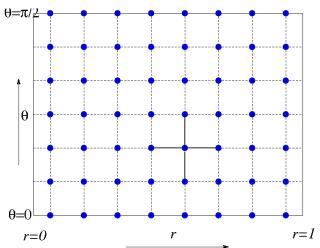
$$\nabla^2 f + \Omega(1 - |z^2 - \varepsilon^2|^2 e^f) = 0$$
 (*)

• Solve (*) on disk $|z| \le 1$, twice $(\varepsilon \leftrightarrow \varepsilon^{-1})$, impose matching condition on equator |z| = 1.

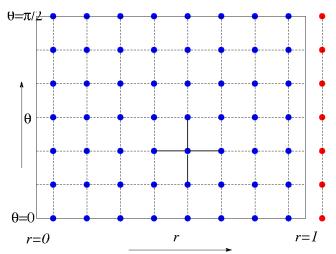
$$\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \Omega(r) (1 - |r^2 e^{2i\theta} - \varepsilon^{\pm 2}|^2 e^f) = 0$$



$$\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \Omega(r) (1 - |r^2 e^{2i\theta} - \varepsilon^{\pm 2}|^2 e^f) = 0$$



$$\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \Omega(r) (1 - |r^2 e^{2i\theta} - \varepsilon^{\pm 2}|^2 e^f) = 0$$

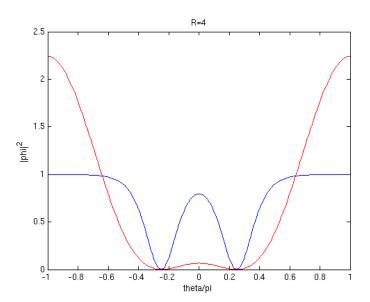


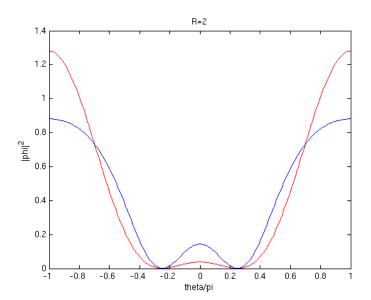
$$G: \mathbb{R}^{2n_r n_\theta} \to \mathbb{R}^{2n_r n_\theta}, \qquad G(f_+, f_-) = 0$$

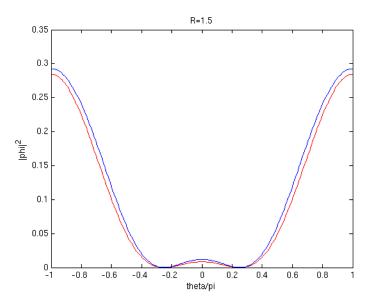
- Newton-Raphson method, $n_r = n_\theta = 50$
- Integral constraint on numerical solutions:

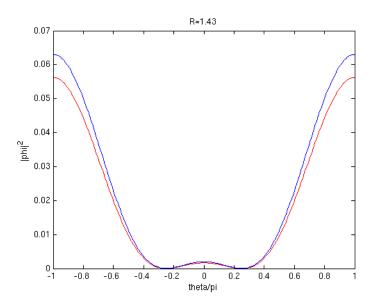
$$\frac{1}{2} \int_{S^2} (1 - e^h) = 2\pi n$$

Holds almost to machine precision (!) (error $\sim 10^{-15}$)









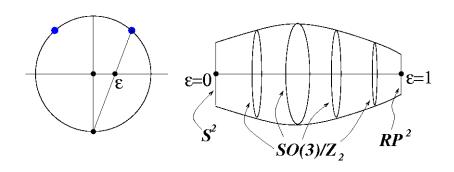
Convergence of γ_{L^2}

$$h = \log |\varphi|^2 = \log |z - z_r|^2 + a_r + \frac{1}{2}b_r(\overline{z} - \overline{z}_r) + \frac{1}{2}\overline{b}_r(z - z_r) + \cdots$$

- Defines (0,1) form $b = \sum_r b_r d\overline{z}_r$ on $M_n \setminus \Delta$, holomorphic
- Strachan-Samols localization formula:

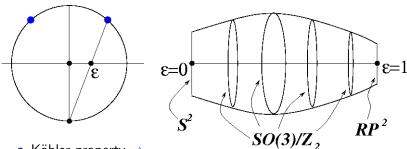
$$\omega_{L^2} = \pi \sum_r \Omega(z_r) \frac{i}{2} dz_r \wedge d\overline{z}_r + i\pi db$$

The two-vortex moduli space



$$\gamma = A_0(\varepsilon)d\varepsilon^2 + A_1(\varepsilon)\sigma_1^2 + A_2(\varepsilon)\sigma_2^2 + A_3(\varepsilon)\sigma_3^2$$

The two-vortex moduli space



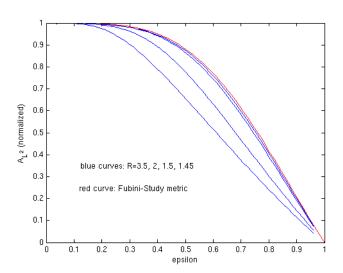
Kähler property ⇒

$$\gamma = -\frac{A'(\varepsilon)}{\varepsilon} (d\varepsilon^2 + \varepsilon^2 \sigma_3^2) + A(\varepsilon) \left(\frac{1 - \varepsilon^2}{1 + \varepsilon^2} \sigma_1^2 + \frac{1 + \varepsilon^2}{1 - \varepsilon^2} \sigma_2^2 \right)$$

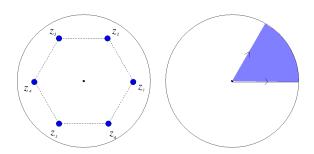
where $A:(0,1)\to(0,\infty)$ is smooth and decreasing

- Applies to any SO(3) invariant kähler metric on M_2 , hence both γ_{L^2} and γ_{FS}
- $\gamma_{I^2} \rightarrow \gamma_{FS}$ iff $A_{I^2} \rightarrow A_{FS}$

Convergence of γ_{L^2} on $\overline{M_2}$



Vortex polygons



- Vortex polygons on a surface of revolution $(\Omega = \Omega(|z|))$: $z_1 = \varepsilon e^{i\psi}, z_r = \lambda^{r-1}z_1$
- Totally geodesic submanifold $M_n^0 \cong S^2$ in M_n
- Induced metric

$$|\gamma_{L^2}| = F(\varepsilon)(d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

• Can compute *F* from localization formula

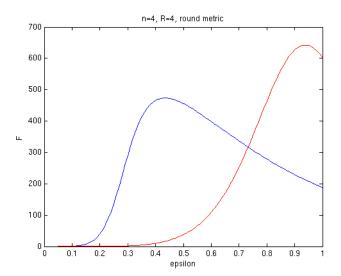
Vortex polygons

- Compare with metric induced by Fubini-Study
- $P(z) = z^n \varepsilon^n \leftrightarrow [1, 0, \dots, \varepsilon^n] \in \mathbb{C}P^n$

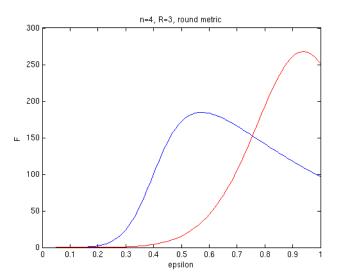
$$F_{FS}(\varepsilon) = \left| \frac{\partial}{\partial \varepsilon} \right|^2 = 4\pi (R^2 - n) \frac{n^2 \varepsilon^{2n-2}}{(1 + \varepsilon^{2n})^2}$$

- Convergence for n = 2 ($g_{\Sigma} = \text{round}$) follows from previous work
- Even n technically simpler: n = 4

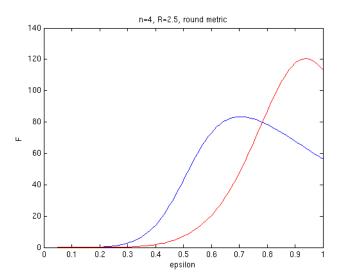
Convergence of γ_{L^2} on M_4^0



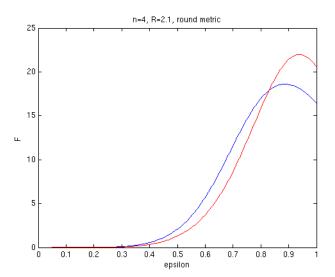
Convergence of γ_{L^2} on M_4^0



Convergence of γ_{L^2} on M_4^0



Convergence of γ_{L^2} on M_4^0



Non-round spheres

- Recall informal "derivation" of conjecture works on any topological sphere
- Test this numerically? Deform $g_{S^2} = \Omega(dr^2 + r^2d\theta^2)$
- Want to keep $z \mapsto 1/z$ isometry, SO(2) symmetry
- \bullet Ω a rational function of r

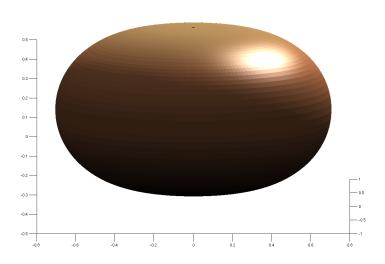
$$\Omega = \frac{p(r^2)}{q(r^2)}$$

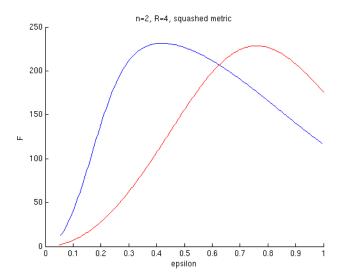
deg(q) = deg(p) + 2, p, q palindromic

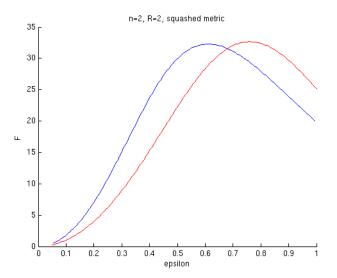
- Round metric: p = 1, $q = 1 + 2x + x^2$
- Squashed metric: p = 1, $q = 1 + x^2$

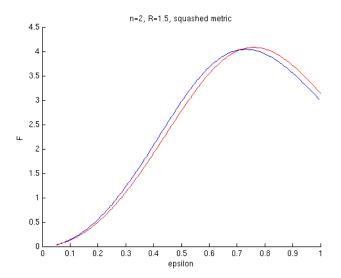
$$\Omega = \frac{(8/\pi)R^2}{1+r^4}$$

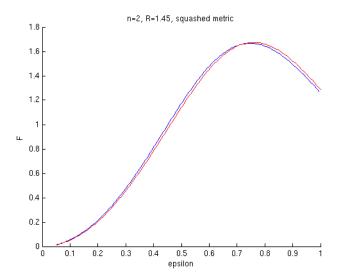
Non-round spheres

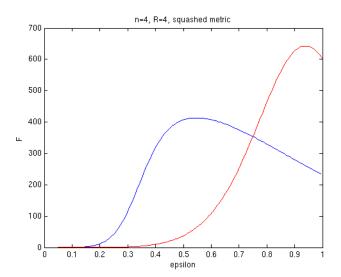


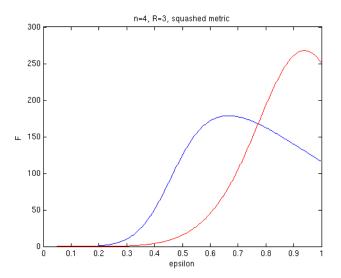


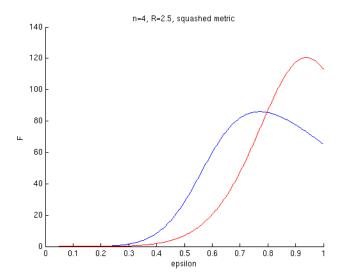


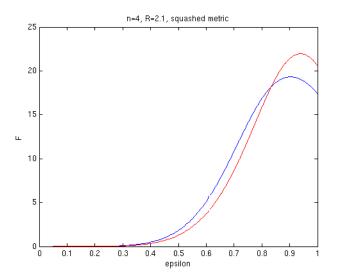












Summary

- Baptista-Manton conjecture: for $M_n(S^2) \equiv \mathbb{C}P^n$, $\gamma_{L^2} \to \gamma_{FS}$ as $Area(S^2) \searrow 4\pi n$
- Very strong numerical evidence for n = 2, S^2 round
 - γ_{L^2} cohomogeneity 1, specified by a single $A:(0,1)\to\mathbb{R}$
 - $\bullet \ A_{L^2} \to A_{FS}$
- Good numerical evidence for n = 2, S^2 squashed
 - Good convergence at least on totally geodesic sphere of "centred" vortex pairs
- OK numerical evidence for n = 4, S^2 round and squashed
- Interesting open question: what happens under Chern-Simons deformation?