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Skyrme models

Non-linear scalar field theories supporting top. solitons
("Skyrmions")

Candidate low-energy EFT for QCD; (scalar) Skyrme field
~ mesons

Baryons and nuclei realized as top. solitons ("vortices" in
"meson fluid")

simplest case (two flavors): Skyrme field space = SU(2)
(isospin) matrix U (three pions)

top. degree of Skyrmion ("winding number " of map

R3 ~ % — SU(2) ~ S®) = baryon number B

Syms. of (two-flavor) QCD: (chiral) SU(2), xSU(2) s broken
to SU(2)iso




Original Skyrme model

L=1Lo+Lo+Lo,  Lo=—p2UT(1 - U)), U0O)=0
N —
Cskyrme eg. U = Tr(1 — U), W= My

Lo = ag” T (LuL), La=bTr([Ly,L]D), L.=U'd,U J

@ Description of nucleons: 30% level precision
@ Description of nuclei:
Some successes: (iso-) spin excitational spectra

@ Main problems:
- too large binding energies: 3 topological energy bound
E > cB, but not saturated (non-BPS theory)
But may be generalized to (near) BPS theory
- Large B: crystals (not liquid)



Generalizations

e Poincare invariance & standard Hamiltonian (quadratic in
time derivatives): quite restrictive

L= e, J

1
Le=rclg| 'g.B'B’, B'= W-ﬁ (euApaL/\LpLa)J

B,, ... baryon current with baryon number B = [ a®x3°
e Submodel £y + L has BPS property

also: perfect fluid EM-tensor; SDiff symmetries
e = Possibility of generalized near-BPS Skyrme models




Skyrmions and Gravity

e Promote g, to dyn. metric by adding EH action

S= /d4X|g|2 <GR+£Sk> J

In principle: solve to describe self-gravitating Skyrmions,
neutrons stars and hairy black holes

In practise: needs simplification

Static, radially symmetric metric (in Schwarzschild coord.)

2
ds? = —o2(r)N(r)dt® + Acli(rr) + r?(d6? + sin® 0d¢?) ’

N(ry=1-2m(r)/r.



e Symmetry reduction for matter:

@ Either macroscopic: fluid/solid ¢(r), p(r) with EoS p = p(¢)
@ insert into Einstein egs.
@ Or: sym. red. of field theory
@ Skyrme model: U =cosf+isinfi-7
@ Hedgehog (B =1): f = f(r),
n = (sin 6 cos ¢, sin 6 sin ¢, cos /) J
@ Either calc. T,., insert into Einstein egs. = 3 ODEs
@ Or sym. red. of action Lsx — —Esk(f, ', N)

/th E— /d3x |g< R+5Sk> J

d*x\/|g| = dQdrr’c
simpler derivation of field egs.




G

/
E[f,m, o] = /dra (_m + Sr> +bt., & =4nriEy J

@ varying o (Lag. mult. ... constraint)
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@ varying m

@ varying f




e Explicitly (a® = 47 G; pion mass potential)
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o Generically, 4 integration constants
e ¢’ >0 (see later)




@ Regular solutions
e B = 1: Self-gravitating Skyrmions
e Boundary conditions

f0)=m; f(oo)=0; m(0)=0; o(co)="1 J

= discrete # of solutions (0,1,2)
e B >> 1, spher.sym., e.g., neutron stars.
@ BPS submodel: longitude ¢ — B¢

@ general Skyrme: NO minimizers (f(0) = Br ... unstable)
@ macroscop. (fluid/crystal) description: €(r) & pi(r) into E-egs.




@ Hairy black holes
e B =1: Boundary conditions (r} ... horizon radius)

N(r) = 0: m(ry) = %; f(00) = 0; o(co0) = 1

@ Only 3 integration constants at r = r:
(Nf"Y(r=rn) = N(r)f"(rn) =0 = f'(rn) = F(fn, 1)
= discrete # of solutions (0,1,2) (for fixed rp)
e Here: free constants f(ry) = fy, o(rn) = o, determined by
bc.atr=o0
e B >> 1: hairy BHs of nuclear matter?
@ BPS submodel: ¢ — B¢ (but no hairy BHs)
@ general Skyrme: NO minimizers (f(0) = Br ... unstable)
@ macroscop. (fluid/crystal) description: ¢(r) & pi(r) ??




Black Holes with Skyrmion hair

@ Known results

e Standard Skyrme model £, + £4 has
both regular self-grav. solitons and hairy BHs
H. Luckock and I. Moss, Phys. Lett. B 176 (1986) 341
S. Droz, M. Heusler and N. Straumann, PLB 268 (1991) 371
P. Bizon, T. Chmaj, Phys. Lett. B 297 (1992) 55

e Recent result: BPS model Lg + Lg for specific potential
U = 2f —sin2f:
NO hairy BH (despite regular solitons with/without gravity)
S.B. Gudnason, M. Nitta, N. Sawado, JHEP 1512 (2015) 013

e ?What happens in general? One motivation

@ see also: S.B. Gudnason, M. Nitta, N. Sawado, arXiv:1605.07954




BPS model

e adapt GNS1 for general one-vacuum potentials
U(f=0)=0;Us>0,fel0,n]

e Static, spher. sym. Lg + Lo = c|g|~"g0oB°B° — p2U
B° = —(1/2x2)singsin® f f'

=y

0 0
0 = <af —8rafl) O'gr

N
=& = S D sint 112 4 amprPu J

. 2c No
= —sin’fo, <:g sin® ff’) + Am P reu;
™ r

N ) 2
= 0O (g sin? f f’) = 27r4ﬂ—r2i‘71/;f
r C sin“f




@ If |f'(0c0)| < co (compacton: |f'(R)| < oo), integrate

R 2 R
0= %sinsz’ :27#%/ drr? ‘,’L:f >0 ! J
h c Jn sin® f
@ Compacton: if |f'(R)| = oo but
IB°(R)| ~ |f'(R)sin® f(R)| < oo ... proof slightly more
complicated
@ = The BPS Skyrme model, for one-vacuum potentials, does

NOT support hairy BHs (but supports stable top. solitons
with/without gravity) .. . First known case




Skyrme model Lo + L4
@ Regular solutions: from Bizon, Chmaj (1992)
o free parameter f'(0). Shooting s.t. f(o0) =0

e two branches (lower, stable and higher, unstable)
o bifurcate at ayp,y
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Fig. 1. Two fundamental branches of soliton solutions. The
shooting parameter b= — F’(0) as a function of « for B=1 (solid
line), B=2 (dashed line), and B=3 (dotted line).



@ Hairy BH solutions: from Bizon, Chmaj (1992)
o free parameter f(ry). Shooting s.t. f(co) =0
e two branches ("lower", stable and "higher", unstable)
e bifurcate at "
e approach corresponding reg. sol. for r, — 0

Xn
Fig. 2. Two fundamental branches of black hole solutions. The
shooting parameter Fyy=F(xy) as a function of xy for a=0.0005
(solid line), a=0.01 (dashed line), and a=0.03 (dotted line).




General Skyrme model L + L4 + Lo — MPU,

@ Regular solutions:

a=b=m, =1.0(0) vs. a for some values of ¢
higher an,y for higher ¢ (repulsion)

two branches ("lower", stable and "higher", unstable)
lower approaches corresponding G = 0 sol.

higher branch does NOT go backto « =0 forc #0
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@ Regular solutions:
e a=b=m,; =1. Rescaled ADM mass m(cc) = G Mxpm VS.
« for some values of ¢
e lower mass (stable) and higher mass (unstable) branch
e bifurcation at aax(C).




Hairy Black Holes

e Hairy BH solutions expected, at least for small ry

e Discrete # of solutions for fixed r, (two free constants f,, op,
and two conditions f(co) = 0 and o(o0) = 1)

e Useful BH quantities: BH entropy S = A,/4 = 7r?

e Black Hole surface gravity x where

1
Ii2 _ _ thtgrr(argtt)2

r=rp

e Black Hole (Hawking) temperature T

— K _ 1 !/
=5 EU(rh)N (rh)

@ o(rn)=0 = T=0 ... extremal BH



@ Results:

@ fpvs. .« =0.05,a=b=m, =1 forsome c
e Upper (unstable) branch, ¢ > 0:
o f, further decreases, does not approach f, = 7.
@ NO solution below certain r5*(c)




@ Resulis:

opVS. . = 0.05,a=b=m, =1 for some c

Upper (unstable) branch, ¢ > 0: o, = 0 for some r;*(c)
NO solution for r, < rg*(c)

rh ™\ rg* ... extremal limit: extremal (T = 0) BH
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@ Extremal limit, small ¢ (< GNS2): Regular solution
ea=b=m, =1
e Fixed a:: Two solutions for sufficiently small ¢
e = unstable hairy BH might join unstable regular (r, = 0)
solution




@ Extremal limit, small c: hairy BH solution
@ opvs. pfora=b=m,=1,a=0.05
e Upper branch solution exists for r, — 0 for small c, joins
unstable regular solution < GNS2
e "phase transition" for some ¢ = ¢ («)
e Here c.(0.05) ~ 0.006

o(0) o8}




@ Hairy Black Holes, Temperature
ea=b=m;=1,aa=0.05
e Upper branch solution approaches T = oo again for r, — 0,
forc=0and for c < ¢,
@ approaches T =0at r, = ri* for ¢ > ¢
e Here c.(0.05) ~ 0.006




@ Qualitative understanding of rg*
e Expansion aboutr, N0+ Ni(r—ry)+...

;
mm§h+m1(r—rh)+...

2o sin? f,J2

0O X Ohp W(rfrh)‘i“
Iy sin fpJ
fwfh—Fm(r fh)+...

2
mNy =1 —2my = 1 — % (mfrrﬁ(1 — cos fy) + 2asin® fy + br, 2 sin* fh)
J=miry + (b+ 4arf) cos f, — bcos(3fy)
H = ar} + 2brf sin® f, + csin* f,




Possible sing. ryN; — 0 for small ry

For « too large: disaster

For o small: may be avoided if f, — 7 sufficiently fast for
rn — 0: Happens for ¢ < ¢

C > Cq. (r,,N1)—1 is large close to sing.

with o ~ o+ o1(r—r,) + ..., where

a2op sin? fpJ2
8th(th1 )2

g1 =

and o(r) < o(c0), large ryNy compatible with b.c. o(c0) = 1
ONLY IF oy is small.

= b.c. o(c0) = 1 imposes small o5, on numerical int., and
on — 0 at ry = r* before r,N; — 0




@ Role of Skyrme term L4

fovs. m,fora=c=m,=1,a=0.05

ri* smaller for smaller b, limy_,o ' =0

= NO hairy black holes without the Skyrme term (b = 0)
although regular Skyrmion solutions exist




@ Role of Skyrme term L4

o Rescaled ADM mass m(co) vs. rp,
fora=c=m,=1,a=0.05

e Again, limp_,o ™ =0

o As always, M"™(ry) > M*(ry)
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@ Role of n.l. Sigma-model term £,
o fuvs. mp,forforb=c=m,=1,a=0.05
e r™(a) increases with decreasing a
e Hairy BHs existfora=10




@ Role of n.l. Sigma-model term £,
e f(ryvs. r,forforb=c=m;=1,a=0.05,and r, = 0.01
e For potential i/ = U,;, a = 0 solution is compacton
e Compactons for less than quartic approach to vacuum




Summary of Results

e 1 Skyrme-type models which

@ do possess flat space & self-gravitating top. solitons

@ but don’t possess hairy Black Holes

@ Examples: BPS submodel (exact result)

Model Lo + L2 + L6 (numerical)
e General condition for existence of hairy BHs

@ Presence of quartic (Skyrme) term L4

@ existence of top. soliton solutions (conjecture)

o If applicable (for large B) to gravitating nuclear/hadronic
matter, interesting repercussions: £4 might control formation
of "hadron—black-hole" bound states ("neutron stars" with
black hole cores)




e Influence of sextic term Lg on hairy BH solutions
@ For ¢ > c«(«), unstable branch solutions 3 for r, — 0
@ Instead, at r, N\, ri*, BH temperature T X\, 0
@ Extremal (T = 0) hairy BH
@ At same c.(«), regular unstable sol. ceases to exist
o Future work:

@ Other potentials: results potential-independent? See e.g.
GNS2

@ hairy BHs < L4 ... deeper reason?

@ Higher-dim Skyrme models: which term required for hairy
BHs?

@ Spinning stationary (Kerr-type) solutions: may induce hair
even for b =07

@ Nonzero cosmological constant?




Backup




Detailed calculation of curvature scalar:

/ /! / / 2 "
R:—2<—2";—m+"<—3m—";+>+"(1—2m)>
r r o r r r o r

= —d°x\/|g|R=—dQdrr?cR = ...
= 2dQdr [—(rmo)" + (ra’) — (rmo’) + 2(mo) — 2m'o] .




