Hairy black holes in general Skyrme models

C. Adam University of Santiago de Compostela

SIG5, Krakow, June 2016

based on C. Adam, O. Kichakova, Ya. Shnir, A. Wereszczynski, "Hairy black holes in the general Skyrme model", arXiv:1605.07625

June 21, 2016

Contents

- Skyrme models and Skyrmions
- Skyrmions & Gravity
 - Einstein eqs. and dimensional reduction
 - Self-gravitating Skyrmions, Neutron Stars, hairy BHs
- Hairy Black Holes
 - BPS Skyrme model
 - Standard Skyrme model
 - Generalized Skyrme models
- Summary

Skyrme models

- Non-linear scalar field theories supporting top. solitons ("Skyrmions")
- Baryons and nuclei realized as top. solitons ("vortices" in "meson fluid")
- simplest case (two flavors): Skyrme field space = SU(2) (isospin) matrix U (three pions)
- top. degree of Skyrmion ("winding number " of map $\mathbb{R}^3_0 \simeq \mathbb{S}^3 \to \mathrm{SU}(2) \simeq \mathbb{S}^3$) = baryon number B
- Syms. of (two-flavor) QCD: (chiral) SU(2)_L×SU(2)_R broken to SU(2)_{iso}

Original Skyrme model

$$\begin{split} \mathcal{L} = \underbrace{\mathcal{L}_2 + \mathcal{L}_4}_{\textit{Skyrme}} + \mathcal{L}_0 \;, & \mathcal{L}_0 = -\mu^2 \mathcal{U}(\text{Tr}(1-\textit{U})), \quad \mathcal{U}(0) = 0 \\ & \text{e.g. } \mathcal{U}_\pi = \text{Tr}(1-\textit{U}), \quad \mu = m_\pi \quad \text{pot} \end{split}$$

$$\mathcal{L}_2 = a g^{\mu
u} \; ext{Tr} \; (L_\mu L_
u), \quad \mathcal{L}_4 = b \; ext{Tr} \; ([L_\mu, L_
u]^2), \quad L_\mu = U^\dagger \partial_\mu U$$

(-+++ metric convention)

- Description of nucleons: 30% level precision
- Description of nuclei:
 Some successes: (iso-) spin excitational spectra
- Main problems:
 - too large binding energies: \exists topological energy bound $E \ge cB$, but not saturated (non-BPS theory) But may be generalized to (near) BPS theory
 - Large B: crystals (not liquid)

Generalizations

 Poincare invariance & standard Hamiltonian (quadratic in time derivatives): quite restrictive

$$\mathcal{L} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_0 + \mathcal{L}_6$$

$$\mathcal{L}_6 = c \, |g|^{-1} g_{\mu
u} \mathcal{B}^\mu \mathcal{B}^
u, \quad \mathcal{B}^\mu = rac{1}{24 \pi^2} \mathsf{Tr} \left(\epsilon^{\mu \lambda
ho \sigma} \mathcal{L}_\lambda \mathcal{L}_
ho \mathcal{L}_\sigma
ight)$$

 $\mathcal{B}_{\mu}\dots$ baryon current with baryon number $B=\int d^3x\mathcal{B}^0$

- Submodel L₀ + L₆ has BPS property also: perfect fluid EM-tensor; SDiff symmetries
- \Rightarrow Possibility of generalized near-BPS Skyrme models

Skyrmions and Gravity

• Promote $g_{\mu\nu}$ to dyn. metric by adding EH action

$$S = \int d^4x |g|^{rac{1}{2}} \left(rac{1}{16\pi G}R + \mathcal{L}_{Sk}
ight)$$

- In principle: solve to describe self-gravitating Skyrmions, neutrons stars and hairy black holes
- In practise: needs simplification
- Static, radially symmetric metric (in Schwarzschild coord.)

$$ds^{2} = -\sigma^{2}(r)N(r)dt^{2} + \frac{dr^{2}}{N(r)} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$N(r) = 1 - 2m(r)/r.$$

- Symmetry reduction for matter:
 - Either macroscopic: fluid/solid $\epsilon(r)$, $\rho(r)$ with EoS $\rho = \rho(\epsilon)$
 - insert into Einstein eqs.
 - Or: sym. red. of field theory
 - Skyrme model: $U = \cos f + i \sin f \ \vec{n} \cdot \vec{\tau}$
 - Hedgehog (B = 1): f = f(r),

$$\vec{n} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

- Either calc. $T_{\mu\nu}$, insert into Einstein eqs. \Rightarrow 3 ODEs
- Or sym. red. of action $\mathcal{L}_{Sk} \to -\mathcal{E}_{Sk}(f, f', N)$

$$\Rightarrow S = -\int dt \, E, \quad E = \int d^3x \sqrt{|g|} \left(-\frac{1}{16\pi G} R + \mathcal{E}_{Sk} \right)$$

$$d^3x\sqrt{|g|}=d\Omega drr^2\sigma$$
 simpler derivation of field eqs.

$$E[f, m, \sigma] = \int dr \sigma \left(-\frac{m'}{G} + \mathcal{E}_r \right) + \text{b.t.}, \quad \mathcal{E}_r \equiv 4\pi r^2 \mathcal{E}_{\text{Sk}}$$

• varying σ (Lag. mult. . . . constraint)

$$m' = G \mathcal{E}_r$$

varying m

$$\frac{\sigma'}{\sigma} = \frac{2G}{r} \frac{\partial \mathcal{E}_r}{\partial N}$$

varying f

$$\left(\frac{\partial}{\partial f} - \partial_r \frac{\partial}{\partial f'}\right) \sigma \, \mathcal{E}_r = 0$$

• Explicitly ($\alpha^2 = 4\pi G$; pion mass potential)

$$\begin{split} m' &= \frac{\alpha^2}{2} \left[a \left(\frac{1}{2} r^2 N \, f'^2 + \sin^2 f \right) + b \sin^2 f \left(N f'^2 + \frac{\sin^2 f}{2 r^2} \right) + \frac{cN}{2 r^2} f'^2 \sin^4 f + m_\pi^2 \, r^2 \sin^2 \frac{f}{2} \right] \\ &\qquad \qquad \frac{\sigma'}{\sigma} = \frac{1}{2} \alpha^2 f'^2 \left(a r + \frac{2b \sin^2 f}{r} + \frac{c \sin^4 f}{r^3} \right) \\ f'' &= \frac{1}{a + \frac{2b \sin^2 f}{r^2} + \frac{c \sin^4 f}{r^4}} \left\{ -a \left[\left(\frac{2}{r} + \frac{N'}{N} + \frac{\sigma'}{\sigma} \right) f_r - \frac{\sin(2f)}{r^2 N} \right] \right. \\ &\qquad \qquad - b \left(-\frac{2 \cos f \sin^3 f}{r^4 N} + \frac{2f_r \sin^2 f}{r^2} \frac{N'}{N} + \frac{f_r^2 \sin(2f)}{r^2} + \frac{2f_r \sin^2 f}{r^2} \frac{\sigma'}{r^2} \right) \\ &\qquad \qquad + m_\pi^2 \frac{\sin f}{2N} - c \left(-\frac{2f_r \sin^4 f}{r^5} + \frac{f_r \sin^4 f}{r^4} \frac{N'}{N} + \frac{2f_r^2 \cos f \sin^3 f}{r^4} + \frac{f_r \sin^4 f}{r^4} \frac{\sigma'}{\sigma} \right) \right\} \end{split}$$

- Generically, 4 integration constants
- $\sigma' \geq 0$ (see later)

- Regular solutions
 - B = 1: Self-gravitating Skyrmions
 - Boundary conditions

$$f(0)=\pi; \quad f(\infty)=0; \quad m(0)=0; \quad \sigma(\infty)=1$$

- \Rightarrow discrete # of solutions (0,1,2)
- B >> 1, spher.sym., e.g., neutron stars.
 - BPS submodel: longitude $\phi \to B\phi$
 - general Skyrme: NO minimizers ($f(0) = B\pi \dots$ unstable)
 - macroscop. (fluid/crystal) description: $\epsilon(r) \& p_i(r)$ into E-eqs.

- Hairy black holes
 - B = 1: Boundary conditions (r_h ... horizon radius)

$$N(r_h)=0: \ m(r_h)=rac{r_h}{2}; \quad f(\infty)=0; \quad \sigma(\infty)=1$$

- Only 3 integration constants at $r = r_h$: $(Nf'')(r = r_h) = N(r_h)f''(r_h) = 0 \Rightarrow f'(r_h) = F(f_h, r_h)$ \Rightarrow discrete # of solutions (0,1,2) (for fixed r_h)
- Here: free constants $f(r_h) \equiv f_h$, $\sigma(r_h) \equiv \sigma_h$ determined by b.c. at $r = \infty$
- B >> 1: hairy BHs of nuclear matter?
 - BPS submodel: $\phi \to B\phi$ (but no hairy BHs)
 - general Skyrme: NO minimizers ($f(0) = B\pi$... unstable)
 - macroscop. (fluid/crystal) description: $\epsilon(r) \& p_i(r)$??

Black Holes with Skyrmion hair

- Known results
 - Standard Skyrme model $\mathcal{L}_2 + \mathcal{L}_4$ has both regular self-grav. solitons and hairy BHs H. Luckock and I. Moss, Phys. Lett. B **176** (1986) 341 S. Droz, M. Heusler and N. Straumann, PLB **268** (1991) 371 P. Bizon, T. Chmaj, Phys. Lett. B **297** (1992) 55
 - Recent result: BPS model $\mathcal{L}_6 + \mathcal{L}_0$ for *specific* potential $\mathcal{U} = 2f \sin 2f$: NO hairy BH (despite regular solitons with/without gravity) S.B. Gudnason, M. Nitta, N. Sawado, JHEP 1512 (2015) 013
 - ?What happens in general? One motivation
 - see also: S.B. Gudnason, M. Nitta, N. Sawado, arXiv:1605.07954

BPS model

- adapt GNS1 for general one-vacuum potentials $\mathcal{U}(f=0)=0; \mathcal{U}_f \geq 0, f \in [0,\pi]$
- Static, spher. sym. $\mathcal{L}_6 + \mathcal{L}_0 = c|g|^{-1}g_{00}\mathcal{B}^0\mathcal{B}^0 \mu^2\mathcal{U}$ $\mathcal{B}^0 = -(1/2\pi^2)\sin\theta\sin^2ff'$

$$\Rightarrow \mathcal{E}_r = \frac{c}{\pi^3} \frac{N}{r^2} \sin^4 f \, f'^2 + 4\pi \mu^2 r^2 \mathcal{U}$$

$$0 = \left(\frac{\partial}{\partial f} - \partial_r \frac{\partial}{\partial f'}\right) \sigma \mathcal{E}_r$$

$$= -\sin^2 f \,\partial_r \left(\frac{2c}{\pi^3} \frac{N\sigma}{r^2} \sin^2 f \,f'\right) + 4\pi \mu^2 r^2 \mathcal{U}_f$$

$$\Rightarrow \partial_r \left(\frac{N\sigma}{r^2} \sin^2 f \,f'\right) = 2\pi^4 \frac{\mu^2}{c} r^2 \frac{\sigma \mathcal{U}_f}{\sin^2 f}$$

• If $|f'(\infty)| < \infty$ (compacton: $|f'(R)| < \infty$), integrate

$$0 = \frac{N\sigma}{r^2} \sin^2 f \ f' \bigg|_{r_h}^R = 2\pi^4 \frac{\mu^2}{c} \int_{r_h}^R dr \ r^2 \frac{\sigma \mathcal{U}_f}{\sin^2 f} > 0 \qquad \mathbf{I}$$

- Compacton: if $|f'(R)| = \infty$ but $|\mathcal{B}^0(R)| \sim |f'(R)\sin^2 f(R)| < \infty$... proof slightly more complicated
- ⇒ The BPS Skyrme model, for one-vacuum potentials, does NOT support hairy BHs (but supports stable top. solitons with/without gravity) . . . First known case

Skyrme model $\mathcal{L}_2 + \mathcal{L}_4$

- Regular solutions: from Bizon, Chmaj (1992)
 - free parameter f'(0). Shooting s.t. $f(\infty) = 0$
 - two branches (lower, stable and higher, unstable)
 - bifurcate at α_{max}

Fig. 1. Two fundamental branches of soliton solutions. The shooting parameter b = -F'(0) as a function of α for B = 1 (solid line), B = 2 (dashed line), and B = 3 (dotted line).

- Hairy BH solutions: from Bizon, Chmaj (1992)
 - free parameter $f(r_h)$. Shooting s.t. $f(\infty) = 0$
 - two branches ("lower", stable and "higher", unstable)
 - bifurcate at r_h^{max}
 - approach corresponding reg. sol. for $r_h \rightarrow 0$

Fig. 2. Two fundamental branches of black hole solutions. The shooting parameter $F_{\rm H}=F(x_{\rm H})$ as a function of $x_{\rm H}$ for α =0.0005 (solid line), α =0.01 (dashed line), and α =0.03 (dotted line).

General Skyrme model $\mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 - m_\pi^2 \mathcal{U}_\pi$

- Regular solutions:
 - $a = b = m_{\pi} = 1$. $\sigma(0)$ vs. α for some values of c
 - higher α_{\max} for higher c (repulsion)
 - two branches ("lower", stable and "higher", unstable)
 - lower approaches corresponding G = 0 sol.
 - higher branch does NOT go back to $\alpha = 0$ for $c \neq 0$

Regular solutions:

- $a=b=m_{\pi}=$ 1. Rescaled ADM mass $m(\infty)=GM_{\rm ADM}$ vs. α for some values of c
- lower mass (stable) and higher mass (unstable) branch
- bifurcation at $\alpha_{\text{max}}(c)$.

Hairy Black Holes

- Hairy BH solutions expected, at least for small r_h
- Discrete # of solutions for fixed r_h (two free constants f_h , σ_h , and two conditions $f(\infty) = 0$ and $\sigma(\infty) = 1$)
- Useful BH quantities: BH entropy $S = A_h/4 = \pi r_h^2$
- Black Hole surface gravity κ where

$$\kappa^2 = -\left. \frac{1}{4} g^{tt} g^{rr} (\partial_r g_{tt})^2 \right|_{r=r_h}$$

Black Hole (Hawking) temperature T

$$T = \frac{\kappa}{2\pi} = \frac{1}{4\pi} \sigma(r_h) N'(r_h)$$

• $\sigma(r_h) = 0 \Rightarrow T = 0 \dots$ extremal BH

Results:

- f_h vs. r_h . $\alpha = 0.05$, $a = b = m_\pi = 1$ for some c
- Upper (unstable) branch, c > 0:
 - f_h further decreases, does not approach $f_h = \pi$.
 - NO solution below certain $r_h^{\rm ex}(c)$

Results:

- σ_h vs. r_h . $\alpha=0.05$, $a=b=m_\pi=1$ for some c
- Upper (unstable) branch, c > 0: $\sigma_h = 0$ for some $r_h^{\text{ex}}(c)$
- NO solution for $r_h < r_h^{\rm ex}(c)$
- $r_h \searrow r_h^{\text{ex}}$... extremal limit: extremal (T = 0) BH

- Extremal limit, small $c \Leftrightarrow GNS2$: Regular solution
 - $a = b = m_{\pi} = 1$
 - Fixed α : Two solutions for sufficiently small c
 - \Rightarrow unstable hairy BH might join unstable regular ($r_h = 0$) solution

- Extremal limit, small c: hairy BH solution
 - σ_h vs. r_h for $a = b = m_{\pi} = 1$, $\alpha = 0.05$
 - Upper branch solution exists for $r_h \to 0$ for small c, joins unstable regular solution \Leftrightarrow GNS2
 - ullet "phase transition" for some ${m c}={m c}_{
 m cr}(lpha)$
 - Here $c_{\rm cr}(0.05) \sim 0.006$

- Hairy Black Holes, Temperature
 - $a = b = m_{\pi} = 1$, $\alpha = 0.05$
 - Upper branch solution approaches $T=\infty$ again for $r_h \to 0$, for c=0 and for $c < c_{\rm cr}$
 - ullet approaches T=0 at $r_h=r_h^{
 m ex}$ for $c>c_{
 m cr}$
 - Here $c_{\rm cr}(0.05) \sim 0.006$

- Qualitative understanding of r_h^{ex}
 - Expansion about r_h $N \approx 0 + N_1(r r_h) + ...$

$$m \approx \frac{r_h}{2} + m_1(r - r_h) + \dots$$

$$\sigma \approx \frac{\sigma_h}{8} + \frac{\alpha^2 \sigma_h \sin^2 f_h J^2}{8r_h H(r_h N_1)^2} (r - r_h) + \dots$$

$$f \approx f_h + \frac{r_h \sin f_h J}{2H(r_h N_1)} (r - r_h) + \dots$$

$$\begin{split} r_h N_1 = & 1 - 2m_1 \equiv \ 1 - \frac{\alpha^2}{2} \left(m_\pi^2 r_h^2 (1 - \cos f_h) + 2a \sin^2 f_h + b \, r_h^{-2} \sin^4 f_h \right) \\ J \equiv & m_\pi^2 r_h^4 + \left(b + 4a r_h^2 \right) \cos f_h - b \cos(3f_h) \\ H \equiv & a r_h^4 + 2b r_h^2 \sin^2 f_h + c \sin^4 f_h \end{split}$$

- Possible sing. $r_h N_1 \rightarrow 0$ for small r_h
- For α too large: disaster
- For α small: may be avoided if $f_h \to \pi$ sufficiently fast for $r_h \to 0$: Happens for $c < c_{\rm cr}$
- $c > c_{cr}$: $(r_h N_1)^{-1}$ is large close to sing.
- with $\sigma \approx \sigma_h + \sigma_1(r r_h) + \dots$, where

$$\sigma_1 = \frac{\alpha^2 \sigma_h \sin^2 f_h J^2}{8 r_h H (r_h N_1)^2}$$

and $\sigma(r) < \sigma(\infty)$, large $r_h N_1$ compatible with b.c. $\sigma(\infty) = 1$ ONLY IF σ_h is small.

• \Rightarrow b.c. $\sigma(\infty) = 1$ imposes small σ_h on numerical int., and $\sigma_h \to 0$ at $r_h = r_h^{\rm ex}$ before $r_h N_1 \to 0$

- Role of Skyrme term L₄
 - f_h vs. r_h , for $a = c = m_\pi = 1$, $\alpha = 0.05$
 - r_h^{\max} smaller for smaller b, $\lim_{b\to 0} r_h^{\max} = 0$
 - \Rightarrow NO hairy black holes without the Skyrme term (b = 0)
 - although regular Skyrmion solutions exist

- Role of Skyrme term L₄
 - Rescaled ADM mass $m(\infty)$ vs. r_h , for $a=c=m_\pi=1$, $\alpha=0.05$
 - Again, $\lim_{b\to 0} r_h^{\max} = 0$
 - As always, $M^{\text{unst}}(r_h) > M^{\text{st}}(r_h)$

- Role of n.l. Sigma-model term L₂
 - f_h vs. r_h , for for $b=c=m_\pi=1$, $\alpha=0.05$
 - $r_h^{\text{max}}(a)$ increases with decreasing a
 - Hairy BHs exist for a = 0

- Role of n.l. Sigma-model term L₂
 - f(r) vs. r, for for $b = c = m_{\pi} = 1$, $\alpha = 0.05$, and $r_h = 0.01$
 - For potential $\mathcal{U} = \mathcal{U}_{\pi}$, a = 0 solution is *compacton*
 - Compactons for less than quartic approach to vacuum

Summary of Results

- ∃ Skyrme-type models which
 - do possess flat space & self-gravitating top. solitons
 - but don't possess hairy Black Holes
 - Examples: BPS submodel (exact result) Model $\mathcal{L}_0 + \mathcal{L}_2 + \mathcal{L}_6$ (numerical)
- General condition for existence of hairy BHs
 - Presence of quartic (Skyrme) term L₄
 - existence of top. soliton solutions (conjecture)
 - If applicable (for large B) to gravitating nuclear/hadronic matter, interesting repercussions: \mathcal{L}_4 might control formation of "hadron–black-hole" bound states ("neutron stars" with black hole cores)

- Influence of sextic term \mathcal{L}_6 on hairy BH solutions
 - For $c > c_{\rm cr}(\alpha)$, unstable branch solutions \sharp for $r_h \to 0$
 - Instead, at $r_h \searrow r_h^{\rm ex}$, BH temperature $T \searrow 0$
 - Extremal (T = 0) hairy BH
 - At same $c_{cr}(\alpha)$, regular unstable sol. ceases to exist
- Future work:
 - Other potentials: results potential-independent? See e.g. GNS2
 - hairy BHs ⇔ L₄ ... deeper reason?
 - Higher-dim Skyrme models: which term required for hairy BHs?
 - Spinning stationary (Kerr-type) solutions: may induce hair even for b = 0?
 - Nonzero cosmological constant?
 - ...

Backup

Detailed calculation of curvature scalar:

$$R = -2\left(-2\frac{m'}{r^2} - \frac{m''}{r} + \frac{\sigma'}{\sigma}\left(-3\frac{m'}{r} - \frac{m}{r^2} + \frac{2}{r}\right) + \frac{\sigma''}{\sigma}\left(1 - 2\frac{m}{r}\right)\right)$$

$$\Rightarrow -d^3x\sqrt{|g|}R = -d\Omega dr r^2 \sigma R = \dots$$

$$= 2d\Omega dr \left[-(rm\sigma)'' + (r\sigma')' - (rm\sigma')' + 2(m\sigma)' - 2m'\sigma\right].$$