Nuclear natter EoS and neutron stars in the Skyrme models

Andrzej Wereszczynski

Jagiellonian University, Krakow

based on collaboration with

C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez (Santiago de Compostela)

M. Speight (Leeds) M. Habrichter (Cambridge/Kent)

T. Klähn (Wroclaw)

イロト イポト イヨト イヨト

æ

contents

neutron stars in TOV approach

- MF EoS in the Skyrme model
 - comparison to the Walecka model
 - TOV skyrmionic neutron stars
- beyond mean-field = the BPS limit
 - perfect fluid
 - microscopic (FT) and macro (MF) thermodynamics
 - non-barotropic fluid beyond MF EoS
 - neutron stars beyond mean-field
 - MF vs. full FT+GR
 - non-uniques EoS → inverse TOV (?)

・ロン ・聞と ・ ほと ・ ほとう

3

neutron star structure from nuclear physics

http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar/

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- the canonical approach to neutron stars
 - Einstein eqs

$$G^{\mu\nu}=\frac{\kappa^2}{2}T^{\mu\nu}$$

- prescribed energy-momentum tensor - perfect fluid

$$T^{\rho\sigma} = (p+\rho)u^{\rho}u^{\sigma} - pg^{\rho\sigma}$$

spherically symmetric metric

$$ds^{2} = \mathbf{A}(r)dt^{2} - \mathbf{B}(r)dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

TOV equations

TOV1:
$$M' = 4\pi r^2 \rho$$
, $\mathbf{B}(r) \equiv \left(1 - \frac{\kappa^2}{8\pi} \frac{M(r)}{r}\right)^{-1}$
TOV2: $rp' = (\rho + p) \left(\frac{1}{2}(1 - \mathbf{B}) - \frac{\kappa^2}{4}r^2\mathbf{B}p\right)$
 $\left(\frac{\mathbf{A}'}{\mathbf{A}} = \frac{1}{r}(\mathbf{B} - 1) + \frac{\kappa^2}{2}r\mathbf{B}p\right)$

• to close the system: equation of state (EoS)

$$p = p(\rho, ...)$$

ヘロト 人間 とくほとくほとう

3

- EoS → input from nuclear physics EFTs for nuclear matter - no perfect fluid
 - \rightarrow **mean-field** approximation

examples

- Walecka model

- NJL model
- mean-field EoS
 - algebraic EoS $p = \rho(p)$
 - constant densities $\rho = const$.
 - realistic nuclei (nuclear matter) $\rho = \rho(r)$

How non-mean-field affects TOV?

Can we do gravitating nuclear matter in a full FT+GR?

- \rightarrow we need an effective model (action) of nuclear matter
- \rightarrow couple it to gravity
- \rightarrow find nuclear stars
- \rightarrow verify the universality of EoS

solvable nuclear matter action in a thermodynamical limit (perf. fluid)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

T. Klähn et al, Phys. Rev. C74 (2006) 035802

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ の久(で)

Questions

- neutron stars in the Skyrme model
 - \rightarrow TOV approach
 - EoS of skyrmionic matter \rightarrow nuclear matter MF EoS

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- thermodynamics of skyrmions
- role of each term
- beyond MF approach?

Mean-Field EoS in the Skyrme model

solitonic Skyrme model

the Skyrme framework Skyrme (61)

pionic EFT of

- baryons and nuclei → emergent objects: **solitons** extended, non-perturbative
- nuclear matter
- with applications to neutron stars
 → complementary to lattice
- support form $N_c \rightarrow \infty$ limit t'Hooft (83), Witten (84)
 - chiral effective meson/baryon theory
 - primary d.o.f. are mesons
 - baryons (nuclei) are realized as solitons
 - simplest case (two flavors): $U(x) = e^{i\pi\vec{\sigma}} \in SU(2)$
 - π
 - pions
 - topological charge = baryon number

$$U: \mathbb{R}^3 \cup \{\infty\} \cong \mathbb{S}^3 \ni \vec{x} \to U(\vec{x}) \in SU(2) \cong \mathbb{S}^3$$

$$\pi_3(\mathbb{S}^3) = \mathbb{Z}$$

◆ロ ▶ ◆ 圖 ▶ ◆ 画 ▶ ◆ 画 ■ ● の Q @

solitonic Skyrme model

• the standard (perturbative) Skyrme model

 $\mathcal{L}_2 = -\lambda_2 \operatorname{Tr} (L_\mu L^\mu), \quad \mathcal{L}_4 = \lambda_4 \operatorname{Tr} ([L_\mu, L_\nu]^2), \quad L_\mu = U^{\dagger} \partial_\mu U$

successes

baryon physics Adkins, Nappi, Witten (84)....Praszalowicz, Nowak, Rho... deuteron, light nuclei \rightarrow iso-rotational spectra \rightarrow SCQ correct Braaten, Carson, Manton, Rho...Halcrow (15) ¹²*C* and Hoyle states Manton, Liu (14)

difficulties

unphysical binding energies Sutcliffe et. al. (97), (02), (05), (06), (10) crystal state of matter Klebanov (85), Battye, Sutcliffe et. al. (06) very complicated FT - only MF possible

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

problematic for (heavy) nuclei and nuclear matter \rightarrow neutron stars

solitonic Skyrme model

o physical binding energies - the near BPS Skyrme model

- Lorentz inv.
- standard Hamiltonian
- max. first time derivative squared

$$\mathcal{L} = \underbrace{\tilde{\mathcal{L}}_{0} + \lambda_{2}\mathcal{L}_{2} + \lambda_{4}\mathcal{L}_{4}}_{\text{massive }\mathcal{L}_{skyrme}} + \underbrace{\lambda_{6}\mathcal{L}_{6} + \mathcal{L}_{0}}_{\mathcal{L}_{BPS}}$$

$$\mathcal{L}_{6} = -\mathbb{B}_{\mu}\mathbb{B}^{\mu}, \quad \mathbb{B}^{\mu} = rac{1}{24\pi^{2}}\text{Tr}\left(\epsilon^{\mu
u
ho\sigma}L_{
u}L_{
ho}L_{\sigma}
ight)$$

• leading BPS part $\lambda_6 \mathcal{L}_6 + \mathcal{L}_0$ Adam, Naya, Sanchez-Guillen, Wereszczynski (13) weak impact of \mathcal{L}_0 on binding energies

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

• suitable \mathcal{L}_0 Guillard, Harland, Speight (15), Gudnason (15), (16)

use this version to study nuclear matter / neutron stars

MF EoS

MF EoS

generic Skyrme model \rightarrow non perfect fluid form mean-field \rightarrow perfect fluid

• average densities $\bar{\epsilon}$ and $\bar{\rho}_B$

$$ar{\epsilon} = rac{E}{V}, \qquad ar{
ho}_B = rac{B}{V}$$

• MF pressure P and baryon chemical potential $\bar{\mu}$

$$\left(\frac{\partial E}{\partial V}\right)_{B} = -P, \qquad \qquad \left(\frac{\partial E}{\partial B}\right)_{V} = \bar{\mu}$$

note: P is the average pressure

$$P = \frac{\frac{1}{3} \int_{\Omega} T_{ii} d^3 x}{\int_{\Omega} d^3 x}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

where T_{ij} is the stress tensor and Ω is a set where a Skyrmion is located

issues:

 $V \rightarrow \infty$ at saturation (P = 0) Ω (shape)-dependent

MF EoS at high density

use the topological bound to get solution independent insight

$$E_4 = rac{1}{16}\int d^3x \; {
m Tr}\; [L_i,L_j]^2 \geq 3(2\pi^2)^{4/3} rac{B^{4/3}}{V^{1/3}}, \ \ E_6 = \int d^3x \; (\epsilon^{ijk}\; {
m Tr} L_i L_j L_k)^2 \geq rac{B^2}{V}$$

proof: Manton's strain tensor formulation

$$D_{jk} = -rac{1}{2} \mathrm{tr} \left(R_j R_k
ight)$$

 D_{jk} = symmetric, positive 3 × 3 matrix with eigenvalues $\tilde{\lambda}_1^2, \tilde{\lambda}_2^2, \tilde{\lambda}_3^2$. rescale $\lambda_i = \tilde{\lambda_i}/\sqrt[3]{2\pi^2}$

$$\begin{split} \mathsf{E}_4 &= 3 \int_{\mathcal{M}} \Omega_{\mathcal{M}} \frac{1}{3} \left(\lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_1^2 \lambda_3^2 \right) \geq 3 \int_{\mathcal{M}} \Omega_{\mathcal{M}} \left(\lambda_1^4 \lambda_2^4 \lambda_3^4 \right)^{\frac{1}{3}} \\ &= 3 \int_{\mathcal{M}} \Omega_{\mathcal{M}} |\mathcal{B}_0|^{\frac{4}{3}} \geq \frac{3}{\mathsf{Vol}_{\mathcal{M}}^{\frac{1}{3}}} \left(\left| \int_{\mathcal{M}} \Omega_{\mathcal{M}} \mathcal{B}_0 \right| \right)^{\frac{4}{3}} = \frac{3}{\mathsf{Vol}_{\mathcal{M}}^{\frac{1}{3}}} |\mathcal{B}|^{\frac{4}{3}} \; . \end{split}$$

E₆ bound - saturated (BPS) at high P

- E_4 bound not saturated (only for isometries $\rightarrow \mathcal{M} = S^3$)
- no bound for E₂

MF EoS at high density

energy (asymptotic regime)

$$E = \pi^4 \lambda^2 \frac{B^2}{V} + \alpha \frac{B^{4/3}}{V^{1/3}} + o(V^{-1/3}), \quad V \to 0$$

where $\alpha \geq 3(2\pi^2)^{4/3}\lambda_4$

average pressure

$$P = \pi^4 \lambda^2 \bar{\rho}_B^2 + \frac{\alpha}{3} \bar{\rho}_B^{4/3} + o(\bar{\rho}_B^{4/3})$$

average chemical potential

$$ar{\mu} = 2\pi^4 \lambda^2 ar{
ho}_B + rac{4lpha}{3} ar{
ho}_B^{4/3} + o(ar{
ho}_B^{4/3})$$

MF energy density

$$\bar{\varepsilon} = \pi^4 \lambda^2 \bar{\rho}_B^2 + \alpha \bar{\rho}_B^{4/3} + o(\bar{\rho}_B^{4/3})$$

- **leading** sextic term $\bar{\varepsilon} = P$
- **subleading** Skyrme term $\bar{\varepsilon} = 3P$
- kinetic and potential: conjecture

$$o(\bar{\rho}_B^{4/3}) = \tilde{\beta} \ \bar{\rho}_B^{\gamma} + \beta + o(1), \quad \gamma \approx \frac{2}{3}$$

Walecka model

the Walecka model

 $\mathcal{L}_W = \mathcal{L}_N + \mathcal{L}_{\sigma,\omega} + \mathcal{L}_{int}$

$$\begin{split} \mathcal{L}_{N} &= \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m_{N} + \mu \gamma^{0} \right) \psi \\ \mathcal{L}_{\sigma,\omega} &= \frac{1}{2} (\partial_{\mu} \sigma)^{2} - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} \\ \mathcal{L}_{int} &= g_{\sigma} \bar{\psi} \sigma \psi + g_{\omega} \bar{\psi} \gamma^{\mu} \omega_{\mu} \psi + \dots \end{split}$$

 \rightarrow non perfect fluid form

- compute the partition function the thermodynamical limit $Z = \int e^{\int \mathcal{L} w}$
- bosonic fields take their vacuum expectation values $\bar{\sigma}, \bar{\omega}_0$

- all derivative dependent terms disappear and the interactions are simplified to a mesonic background field seen by nucleons

$$\mathcal{L}_{W} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m_{N}^{*} + \mu^{*} \gamma^{0} \right) \psi - \frac{1}{2} m_{\sigma}^{2} \bar{\sigma}^{2} + \frac{1}{2} m_{\omega}^{2} \bar{\omega}_{0}^{2}$$

where

$$m_N^* = m_N - g_\sigma \bar{\sigma}, \quad \mu^* = \mu - g_\omega \bar{\omega}_0$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 の名(で)

the Walecka model

 MF EoS (at higher densities) Walecka

$$\bar{\varepsilon} = \frac{1}{2} \frac{g_{\omega}^2}{m_{\omega}^2} \bar{\rho}_B^2 + \frac{3}{4} \left(\frac{3\pi^2}{2}\right)^{1/3} \bar{\rho}_B^{4/3} + \frac{1}{2} \frac{m_N^2 m_{\sigma}^2}{g_{\sigma}^2} + o(1)$$

Skyrme

$$\bar{\varepsilon} = \pi^4 \lambda^2 \bar{\rho}_B^2 + \alpha \bar{\rho}_B^{4/3} + \tilde{\beta} \; \bar{\rho}_B^{2/3} + \beta + o(1)$$

• the same leading behaviour Walecka: ω meson (baryon current) dominating at high ρ , *P* Skyrme: \mathcal{L}_6 dominates - based on the baryon current

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 the same subleading behaviour Walecka: free fermion gas Skyrme: L₄

\mathcal{L}_6 unavoidable for high $\rho/P \rightarrow$ obligatory for NS

Beyond MF - the Skyrme model in the BPS limit

the Skyrme model in the BPS limit

the BPS Skyrme model

$$\mathcal{L}_{BPS} = \lambda_6 \mathcal{L}_6 + \mathcal{L}_0$$

BPS

- classically zero binding energies
- physical values if SCQ + Coulomb + (iso-spin) Adam, Naya, Sanchez-Guillen, Wereszczynski (13)

perfect fluid field theory for any B

- not a gas of weakly interacting skyrmions Kalbermann (97), Jaikumar et al.(07)

Physically well motivated idealization of the nuclear matter weakly modified by the (small) non-BPS part

solvablity

very simple solvable model which covers the main features of nuclear matter \rightarrow hard core of Skyrme-type EFT

the Skyrme model in the BPS limit

the near BPS Skyrme model

Skyrme theory in a new perspective

separation of d.o.f.

 $\mathcal{L} = ilde{\mathcal{L}}_0 + \lambda_2 \mathcal{L}_2 + \lambda_4 \mathcal{L}_4 \qquad + \qquad \mathcal{L}_{BPS}$

perturbative

explicit pions kinetic + two body int.

non-perturbative

coherent d.o.f. topological term hidden (emergent) ω and σ

surface	bulk
shape	SDiff symmetry
-	perfect fluid
far attractive int.	BPS: exact $\omega - \sigma$ balance

 some (not all!) properties/observable of the near BPS action are dominated by the BPS part

let's do the BPS model to learn about nuclear matter and neutron stars

Perfect fluid

perfect fluid

- SDiff symmetries
- energy-momentum tensor of a perfect fluid

$$egin{aligned} T^{00} &= \lambda^2 \pi^2 \mathbb{B}_0^2 +
u^2 \mathcal{U} \equiv arepsilon \ T^{ij} &= \delta^{ij} \left(\lambda^2 \pi^2 \mathbb{B}_0^2 -
u^2 \mathcal{U}
ight) \equiv \delta^{ij} P \end{aligned}$$

- local thermodynamical quantities
- BPS eq. = zero pressure condition
 e-m. conservation: ∂_μ T^{μν} = 0 static: ∂_i T^{ij} = 0 ⇒ ∂_jP = 0 ⇒ P = const.
- constant pressure equation is a first integral of static EL eq.

$$\lambda^2 \pi^4 \mathcal{B}_0^2 - \nu^2 \mathcal{U} = \mathbf{P} > 0$$

$$\lambda \pi^2 \mathcal{B}_0 = \pm \nu \sqrt{\mathcal{U} + \tilde{P}}, \quad \tilde{P} \equiv (P/\nu^2)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

static non-BPS solutions with P > 0

perfect fluid - exact thermodynamics

energy density EoS

$$\varepsilon - P = 2\nu^2 \mathcal{U}$$

• non-barotropic chiral fluid $\varepsilon \neq \varepsilon(P)$ the step-function potential $\varepsilon = P + 2\nu^2$ no potential $\varepsilon = P$

high pressure limit - potential independent

 $\varepsilon = P$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

on-shell EoS

$$\varepsilon = \varepsilon(P, \vec{x})$$

beyond mean-field thermodynamics: P = const. but $\varepsilon \neq const.$

perfect fluid - exact thermodynamics

particle (baryon) density EoS

$$\rho_B = \mathcal{B}_0$$

generically non-constant (beyond MF)

$$\rho_{\mathcal{B}} = \frac{\nu}{\lambda \pi^2} \sqrt{\mathcal{U} + \frac{\mathcal{P}}{\nu^2}}$$

on-shell

$$\rho_{B} = \rho_{B}(P, \vec{x})$$

no universal $\varepsilon = \varepsilon(P)$, $\rho_B = \rho_B(P)$ universal relation - off-shell and non-MF

$$\varepsilon + P = 2\lambda^2 \pi^4 \rho_B^2$$

baryon chemical potential

definition: $\varepsilon + P = \rho \mu \implies \mu_B = 2\lambda^2 \pi^4 \rho_B$

- off-shell
- universal, potential independent
- non-MF (local)

perfect fluid - exact thermodynamics

generically exact (non-mean field) thermodynamics

- ϵ , ρ_B non-constant generically non-constant
- non-barotropic fluid
- no universal EoS

mean-field limit

$$\bar{\epsilon} = rac{E_{06}}{V}, \qquad \bar{
ho} = rac{B}{V}$$

- universal (geometrical) EoS
 - E₀₆, V, ε̄, ρ̄_B
 known as functions of P FT pressure
 - no need for solutions!
 - only ${\mathcal U}$ matters

$$\mathsf{E}_{06}(P) = B\pi^2 \lambda \mu \left\langle \frac{2\mathcal{U} + P/\mu}{\sqrt{\mathcal{U} + P/\mu}} \right\rangle, \quad V(P) = B\pi^2 \frac{\lambda}{\mu} \left\langle \frac{1}{\sqrt{\mathcal{U} + P/\mu}} \right\rangle$$

FT pressure is the pressure

$$P = -\frac{dE_{06}}{dV}$$

micro (FT) thermodynamics = macro thermodynamics comparison full vs. mean-field example: the step-function potential

 $\mathcal{U} = \Theta (\text{Tr} (1 - U))$

- MF = non-MF
 - baryon chemical potential

$$\mu = 2\pi^4 \lambda^2 \bar{\rho}_B$$

pressure

$$P=\frac{1}{4\pi^4\lambda^2}\mu^2-\nu^2$$

energy density

$$\varepsilon = \frac{1}{4\pi^4 \lambda^2} \mu^2 + \nu^2$$

EoS

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

gas-liquid phase transition

perfect fluid

 the BPS action is equivalent to the action of a field theoretical description of perfect fluid in an Eulerian formulation

> - particle trajectories $\vec{X}_n(t) \rightarrow$ fluid element trajectories (cont. limit) $\vec{X}(t, \vec{y})$ \vec{y} comoving fluid coordinates

- the Eulerian formulation: dynamical variables

$$\rho(t, \vec{x}) = \rho_0 \int d^3 y \, \delta^{(3)} \left(\vec{X}(t, \vec{y}) - \vec{x} \right)$$
$$\vec{v}(t, \vec{x}) = \rho^{-1} \vec{j}, \quad \vec{j} = \rho_0 \int d^3 y \, \dot{\vec{X}} \, \delta^{(3)} \left(\vec{X}(t, \vec{y}) - \vec{x} \right)$$

formulated on phys. space but constrained (N = const. etc.)

• FT realisation Brown (93), Dubovski et. al. (03), (13), Jackiw (04) de Boer et. al. (15) - y^a promoted to the dynamical fields $x^i = X^i(t, y^a) \rightarrow y^a = \phi^a(t, x^i)$ - density $\rho(t, \vec{x}) = \rho_0 D$, $D = \Omega(\phi^a) \det\left(\frac{\partial \phi^a}{\partial x^i}\right)$ particle number

$$\mathcal{N}^{\mu} = \Omega \epsilon^{\mu\nu\rho\sigma} \epsilon_{abc} \partial_{\nu} \phi^{a} \partial_{\rho} \phi^{b} \partial \sigma \phi^{c}$$

- four velocity

$$u^{\mu} = \frac{\mathcal{N}^{\mu}}{\sqrt{\mathcal{N}^{\nu}\mathcal{N}_{\nu}}} = \frac{1}{\sqrt{6D}} \Omega \epsilon^{\mu\nu\rho\sigma} \epsilon_{abc} \partial_{\nu} \phi^{a} \partial_{\rho} \phi^{b} \partial_{\sigma} \phi^{c}$$
$$\mathcal{N}^{\mu} = \rho u^{\mu} \quad \Rightarrow \quad \rho = \sqrt{6D}$$

perfect fluid

• a perfect fluid action = chose a Lagrange density $F = F(\phi^a, \partial_\mu \phi^a)$

•
$$F = F(\rho, g(\phi^a))$$

 $S = \int d^4 x F(\rho, g) \Rightarrow T^{\mu\nu} = (\rho + \epsilon) u^{\mu} u^{\nu} - \rho \eta^{\mu\nu}$

where

$$\epsilon = -F(\rho, g), \quad p = \rho \frac{\partial \epsilon}{\partial \rho} - \epsilon$$

- simplest $F = F(\rho) \Rightarrow$ barotropic fluid $\epsilon = \epsilon(\rho)$
- general non-barotropic

- interpretation: $g = s(\phi^a)$ entropy and $\mathcal{S}^\mu = s\mathcal{N}$ is entropy current

BPS Skyrme model

- $\mathcal{B}^{\mu} = \mathcal{N}^{\mu}$ i.e., the baryon current
- fluid Lagrangian

$$F = -\lambda^2 \pi^4 \rho^2 - \nu^2 \mathcal{U}(\phi^a)$$

genuine non-barotropic fluid

 \rightarrow thermodynamical interpretation of \mathcal{U} ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Complete thermodynamics (at T = 0) in a solvable solitonic model

Neutron stars

the BPS Skyrme model with gravity Adam, Naya, Sanchez, Vazquez, Wereszczynski (15)

$$S_{06} = \int d^4 x |g|^{rac{1}{2}} \left(-\lambda^2 \pi^4 |g|^{-1} g_{
ho\sigma} \mathbb{B}^{
ho} \mathbb{B}^{\sigma} - \mu^2 \mathcal{U}
ight)$$

• energy-momentum tensor $T^{\rho\sigma} = -2|g|^{-\frac{1}{2}} \frac{\delta}{\delta g_{\rho\sigma}} S_{06}$ $= 2\lambda^2 \pi^4 |g|^{-1} \mathcal{B}^{\rho} \mathcal{B}^{\sigma} - \left(\lambda^2 \pi^4 |g|^{-1} g_{\pi\omega} \mathcal{B}^{\pi} \mathcal{B}^{\omega} - \mu^2 \mathcal{U}\right) g^{\rho\sigma}$

the energy-momentum tensor of a perfect fluid

$$T^{\rho\sigma} = (p+\rho)u^{\rho}u^{\sigma} - pg^{\rho\sigma}$$

where the four-velocity $u^
ho={\cal B}^
ho/\sqrt{g_{\sigma\pi}{\cal B}^\sigma{\cal B}^\pi}$ and

$$\begin{split} \rho &= \lambda^2 \pi^4 |g|^{-1} g_{\rho\sigma} \mathcal{B}^{\rho} \mathcal{B}^{\sigma} + \mu^2 \mathcal{U} \\ \rho &= \lambda^2 \pi^4 |g|^{-1} g_{\rho\sigma} \mathcal{B}^{\rho} \mathcal{B}^{\sigma} - \mu^2 \mathcal{U} \end{split}$$

• for a static case with diagonal metric $u^{\rho} = (\sqrt{g^{00}}, 0, 0, 0)$

$$T^{00} =
ho g^{00}$$
, $T^{ij} = -
ho g^{ij}$.

flat space case \Rightarrow pressure must be constant (zero for BPS solutions, nonzero for non-BPS static solutions

$$D_{\rho}T^{\rho\sigma}
ightarrow \partial_{i}T^{ij} = \delta^{ij}\partial_{i}p = 0$$

• In general, ρ and p arbitrary functions of the space-time coordinates, \Rightarrow no universal equation of state $p = p(\rho)$ valid for all solutions

Einstein equations

static, spherically symmetric metric (Schwarzschild coordinates)

$$ds^{2} = \mathbf{A}(r)dt^{2} - \mathbf{B}(r)dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

axially symmetric ansatz for the Skyrme field with baryon number B

$$U = e^{i\xi\vec{n}\cdot\vec{\tau}}$$

 $\xi = \xi(r), \quad \vec{n} = (\sin\theta\cos B\phi, \sin\theta\sin B\phi, \cos\theta)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

are compatible with the Einstein equations

$$G_{
ho\sigma} = rac{\kappa^2}{2} T_{
ho\sigma}$$

FT + GR with *full backreaction* \leftrightarrow TOV: fix EoS

Einstein equations

$$\frac{1}{r}\frac{\mathbf{B}'}{\mathbf{B}} = -\frac{1}{r^2}(\mathbf{B}-1) + \frac{\kappa^2}{2}\mathbf{B}\rho$$

$$r(\mathbf{B}\rho)' = \frac{1}{2}(1-\mathbf{B})\mathbf{B}(\rho+3\rho) + \frac{\kappa^2}{2}\mu^2r^2\mathbf{B}^2\mathcal{U}(h)\rho$$

$$\frac{\mathbf{A}'}{\mathbf{A}} = \frac{1}{r}(\mathbf{B}-1) + \frac{\kappa^2}{2}r\mathbf{B}\rho$$

• **A**, **B** and ξ are functions of $r \Rightarrow p$ and ρ are functions of r

$$\rho = \frac{4B^2\lambda^2}{\mathbf{B}r^4}h(1-h)h_r^2 + \mu^2\mathcal{U}(h), \quad p = \rho - 2\mu^2\mathcal{U}(h)$$

イロト イポト イヨト イヨト

э.

eliminate $r \Rightarrow$ on-shell EoS $p = p(\rho)$ except the step-function potential \Rightarrow off-shell EoS $\rho = p + 2\mu^2$

 axially symmetric ansatz is the correct one because gravity straightens out all deviations from spherical symmetry

parameters fitting

two parameters in the model λ and μ

chose a potential

$$egin{array}{lll} \mathcal{U}_{\pi}^2, & \mathcal{U}_{\pi}=1-\cos{\xi} \ & \ \mathcal{U}_{step}=\left\{ egin{array}{lll} \sin^4{\xi} & \xi\in [0,rac{\pi}{2}] \ 1 & \xi\in [rac{\pi}{2},\pi] \end{array}
ight. \end{array}$$

• $\mathbf{m} \equiv \lambda \mu$ has the dimensions of mass (energy) fit to the binding energy of nucleon of infinite nuclear matter

$$E_b = 16.3 \text{ MeV}$$

• $I \equiv (\lambda/\mu)^{1/3}$ has the dimensions of length fit to the nuclear saturation density

$$n_0 = 0.153 \text{fm}^{-3}$$

particular potentials

$$\mathcal{U}_{\pi}^2$$
: $\lambda^2 = 15.49 \text{ MeV fm}^3$, $\mu^2 = 141.22 \text{ MeV fm}^{-3}$
 \mathcal{U}_{step} : $\lambda^2 = 23.60 \text{ MeV fm}^3$, $\mu^2 = 121.08 \text{ MeV fm}^{-3}$

・ロト・西ト・西ト・西・ うらの

• results: mass-radius relation

maximal mass

\mathcal{U}_{step}	\rightarrow	$M_{max} = 3.29$
\mathcal{U}_{π}^{2}	\rightarrow	$M_{max} = 2.15$

 \rightarrow compatible with exp. data

 \rightarrow compatible with M = 2.5 v.difficult for other EFT

• M - R curve qualitatively different

- \rightarrow EoS approaches the max. stiff EoS
- \rightarrow light NS: surface (low-density nuclear EoS) but academic

イロン イボン イヨン イヨン

æ

full FT vs. mean-field

- \rightarrow quantitatively differ
- \rightarrow true *M_{max}* is lower than predicted by MF

results: mass-radius relation

results: local baryon density

 results: local Equation of State

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

• no unique EoS

 \rightarrow on-shell EoS: polytropic

 $p\sim a\epsilon^b$

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

• inverse TOV questionable

 \rightarrow inhomogeneities important

results: gravitational mass loss

summary = fundamental result

there is a limit of Skyrme type actions in which the model has two properties

BPS

classically zero binding energies physical (small) binding energies: semiclassical quantization Coulomb interaction isospin breaking

perfect fluid field theory

 $T_{\mu\nu}$ in a perfect fluid form SDiff symmetry Fuler fluid formulation FT (micro) d.o.f. = thermodynamical (macro) functions

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Physically well motivated idealization of the nuclear matter

weakly modified by the (small) non-BPS part

solvablity

exact solutions exact, analytical EoS and thermodynamics a way beyond MF limit in nuclear matter