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Neutron stars in TOV approach



neutron stars in TOV approach

neutron star structure from nuclear physics

http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar/



neutron stars in TOV approach
the canonical approach to neutron stars

- Einstein eqs

Gµν =
κ2

2
Tµν

- prescribed energy-momentum tensor - perfect fluid

Tρσ = (p + ρ)uρuσ − pgρσ

spherically symmetric metric

ds2 = A(r)dt2 − B(r)dr2 − r2(dθ2 + sin2 θdφ2)

TOV equations

TOV1 : M′ = 4πr2ρ, B(r) ≡
(

1− κ2

8π
M(r)

r

)−1

TOV2 : rp′ = (ρ+ p)

(
1
2

(1− B)− κ2

4
r2Bp

)
(

A′

A
=

1
r

(B− 1) +
κ2

2
rBp

)

to close the system: equation of state (EoS)

p = p(ρ, ...)



neutron stars in TOV approach

EoS → input from nuclear physics
EFTs for nuclear matter - no perfect fluid

→ mean-field approximation
examples

- Walecka model
- NJL model

mean-field EoS
algebraic EoS p = ρ(p)
constant densities ρ = const .

realistic nuclei (nuclear matter) ρ = ρ(r)

How non-mean-field affects TOV?
Can we do gravitating nuclear matter in a full FT+GR?

→ we need an effective model (action) of nuclear matter
→ couple it to gravity
→ find nuclear stars
→ verify the universality of EoS

solvable nuclear matter action in a thermodynamical limit (perf.
fluid)



neutron stars in TOV approach

T. Klähn et al, Phys. Rev. C74 (2006) 035802
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radius to

M < 2.2 M⊙(1000 Hz/νmax)(1 + 0.75j)

R < 19.5 km(1000 Hz/νmax)(1 + 0.2j) .
(17)

Here j ≡ cJ/GM2 (where J is the stellar angular mo-
mentum) is the dimensionless spin parameter, which is
typically 0.1-0.2 for these systems. There is also a limit
on the radius for any given mass.
These limits imply that for any given source, the ob-

served νmax means that the mass and radius must fall
inside an allowed “wedge”. Therefore, any allowed EoS
must have some portion of its corresponding mass-radius
curve fall inside this wedge. The wedge becomes smaller
for higher νmax, therefore the highest frequency ever ob-
served (1330 Hz, for 4U 0614+091; see [68]) places the
strongest of such constraints on the EoS. Note, though,
that another NS could in principle have a greater mass
and thus be outside this wedge, but an EoS ruled out
by one star is ruled out for all, since all NS have the
same EoS. As can be seen from Fig. 5, the current con-
straints from this argument do not rule out any of the
EoS we consider. However, because higher frequencies
imply smaller wedges, future observation of a QPO with
a frequency ∼ 1500− 1600 Hz would rule out the stiffest
of our EoS. This would therefore be a complementary re-
striction to those posed by RX J1856.5-3754 (discussed
below) and the implied high masses for some specific NSs,
which both argue against the softest EoS.
If one has evidence for a particular source that a given

frequency is actually close to the orbital frequency at
the ISCO, then the mass is known (modulo slight uncer-
tainty about the spin parameter). This was first claimed
for 4U 1820–30 [69], but complexities in the source phe-
nomenology have made this controversial. More recently,
careful analysis of Rossi X-ray Timing Explorer data for
4U 1636–536 and other sources [11] has suggested that
sharp and reproducible changes in QPO properties are
related to the ISCO. If so, this implies that several NSs
in low-mass X-ray binaries have gravitational masses be-
tween 1.9M⊙ and possibly 2.1M⊙ [11]. In Fig. 5 we
display the estimated mass 2.0 ± 0.1M⊙ for 4U 1636–
536, which would eliminate NLρ and NLρδ as the softest
proposed EoS even in the weak interpretation, and allow
only DBHF, DD and D3C in the strong one, see Tab. IV.

5. Mass-Radius relation constraint from RX J1856

After the discovery of the nearby isolated NS RX
J1856.5-3754 (hereafter short: RX J1856) the analysis
of its thermal radiation using the apparent blackbody
spectrum with a temperature T∞ = 57 eV [70] yielded
a lower limit for the photospheric radius R∞ of this ob-
ject. The distance of RX J1856 was initially estimated
to be 60 pc. Since R∞ crucially depends on this quan-
tity a very small value of R∞ ≈ 8 km was derived which
could not have been explained even with RX J1856 be-
ing a self-bound strange quark star [70]. The true stellar

radius R is given by R∞ = R(1 − R/RS)
−1/2, with the

Schwarzschild radius RS = 2GM/R. New measurements
predict a distance of at least 117 pc, which results in
R∞ = 16.8 km and turns RX J1856 from the formerly
smallest known NS into the largest one [13]. The result-
ing lower bound in the mass radius plane is shown in
Fig. 5. There are three ways to interpret this result:

A) RX J1856 belongs to compact stars with typical
masses M ∼ 1.4M⊙ and would thus have to have
a radius exceeding 14 km (see Fig. 2). None of the
examined EsoS can meet this requirement.

B) RX J1856 has a typical radius of R ∼ 12 − 13
km, implying that the EoS has to be rather stiff
at high density in order to allow for configurations
with masses above ∼ 2 M⊙. In the present work
this condition would be fulfilled for DBHF, DD and
D3C. This M > 1.6 M⊙ explanation implies that
the object is very massive and it is not a typical
NS since most of NSs have M < 1.5 M⊙, as follows
from population synthesis models.

C) RX J1856 is an exotic object with a small mass
∼ 0.2 M⊙, which would be possible for all EsoS
considered here. No such object has been observed
yet, but some mechanisms for their formation and
properties have been discussed in the literature [71].
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FIG. 5: Mass-Radius constraints from thermal radiation of
the isolated NS RX J1856.5-3754 (grey hatched region) and
from QPOs in the LMXBs 4U 0614+09 (green hatched area)
and 4U 1636-536 (orange hatched region) which shall be re-
garded as separate conditions to the EsoS. For the mass of
4U 1636-536 a mass of 2.0 ± 0.1 M⊙ is obtained, so that the
weak QPO constraint would exclude the NLρ and NLρδ EsoS
whereas the strong one would leave only DBHF, DD and D3C.

It cannot be excluded, however, that the distance mea-
surement could be revised by a future analysis. If the



Questions

neutron stars in the Skyrme model

→ TOV approach

EoS of skyrmionic matter→ nuclear matter MF EoS
- thermodynamics of skyrmions
- role of each term

beyond MF approach?



Mean-Field EoS in the Skyrme model



solitonic Skyrme model

the Skyrme framework Skyrme (61)

pionic EFT of

baryons and nuclei→ emergent objects: solitons
extended, non-perturbative

nuclear matter
with applications to neutron stars
→ complementary to lattice

support form Nc →∞ limit t’Hooft (83), Witten (84)

chiral effective meson/baryon theory
primary d.o.f. are mesons
baryons (nuclei) are realized as solitons

simplest case (two flavors): U(x) = ei~π~σ ∈ SU(2)
~π - pions
topological charge = baryon number

U : R3 ∪ {∞} ∼= S3 3 ~x → U(~x) ∈ SU(2) ∼= S3

π3(S3) = Z



solitonic Skyrme model

the standard (perturbative) Skyrme model

L = L0 + λ2L2 + λ4L4︸ ︷︷ ︸
massless Lskyrme︸ ︷︷ ︸

massive Lskyrme

L2 = −λ2 Tr (LµLµ), L4 = λ4 Tr ([Lµ, Lν ]2), Lµ = U†∂µU

successes
baryon physics Adkins, Nappi, Witten (84)....Praszalowicz, Nowak, Rho...

deuteron, light nuclei→ iso-rotational spectra→ SCQ correct
Braaten, Carson, Manton, Rho....Halcrow (15)
12C and Hoyle states Manton, Liu (14)

difficulties
unphysical binding energies Sutcliffe et. al. (97), (02), (05), (06), (10)

crystal state of matter Klebanov (85), Battye, Sutcliffe et. al. (06)

very complicated FT - only MF possible

problematic for (heavy) nuclei and nuclear matter→ neutron stars



solitonic Skyrme model

physical binding energies - the near BPS Skyrme model

Lorentz inv.
standard Hamiltonian
max. first time derivative squared

L = L̃0 + λ2L2 + λ4L4 + λ6L6 + L0︸ ︷︷ ︸ ︸ ︷︷ ︸
massive Lskyrme LBPS

L6 = −BµBµ, Bµ =
1

24π2
Tr (εµνρσLνLρLσ)

leading BPS part λ6L6 + L0 Adam, Naya, Sanchez-Guillen, Wereszczynski (13)

weak impact of L0 on binding energies
suitable L0 Guillard, Harland, Speight (15), Gudnason (15), (16)

use this version to study nuclear matter / neutron stars



MF EoS



MF EoS
generic Skyrme model→ non perfect fluid form
mean-field→ perfect fluid

average densities ε̄ and ρ̄B

ε̄ =
E
V
, ρ̄B =

B
V

MF pressure P and baryon chemical potential µ̄(
∂E
∂V

)
B

= −P,
(
∂E
∂B

)
V

= µ̄

note: P is the average pressure

P =
1
3

∫
Ω Tii d3x∫
Ω d3x

where Tij is the stress tensor and Ω is a set where a Skyrmion is
located
issues:

V →∞ at saturation (P = 0)
Ω (shape)-dependent



MF EoS at high density
use the topological bound to get solution independent insight

E4 =
1

16

∫
d3x Tr [Li , Lj ]

2 ≥ 3(2π2)4/3 B4/3

V 1/3
, E6 =

∫
d3x (εijk TrLi Lj Lk )2 ≥ B2

V

proof: Manton’s strain tensor formulation

Djk = −1
2

tr
(
Rj Rk

)
Djk = symmetric, positive 3× 3 matrix with eigenvalues λ̃2

1, λ̃
2
2, λ̃

2
3.

rescale λi = λ̃i/
3√2π2

E4 = 3
∫
M

ΩM
1
3

(
λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3

)
≥ 3

∫
M

ΩM
(
λ4

1λ
4
2λ

4
3

) 1
3

= 3
∫
M

ΩM|B0|
4
3 ≥ 3

Vol
1
3
M

(∣∣∣∣∫M ΩMB0

∣∣∣∣) 4
3

=
3

Vol
1
3
M

|B| 43 .

E6 bound - saturated (BPS) at high P
E4 bound - not saturated (only for isometries→M = S3)
no bound for E2



MF EoS at high density
energy (asymptotic regime)

E = π4λ2 B2

V
+ α

B4/3

V 1/3
+ o(V−1/3), V → 0

where α ≥ 3(2π2)4/3λ4

average pressure

P = π4λ2ρ̄2
B +

α

3
ρ̄

4/3
B + o(ρ̄

4/3
B )

average chemical potential

µ̄ = 2π4λ2ρ̄B +
4α
3
ρ̄

4/3
B + o(ρ̄

4/3
B )

MF energy density

ε̄ = π4λ2ρ̄2
B + αρ̄

4/3
B + o(ρ̄

4/3
B )

- leading sextic term ε̄ = P
- subleading Skyrme term ε̄ = 3P

- kinetic and potential: conjecture

o(ρ̄
4/3
B ) = β̃ ρ̄γB + β + o(1), γ ≈ 2

3



Walecka model



the Walecka model
LW = LN + Lσ,ω + Lint

LN = ψ̄
(

iγµ∂µ −mN + µγ0
)
ψ

Lσ,ω =
1
2

(∂µσ)2 − 1
2

m2
σσ

2 − 1
4
ωµνω

µν +
1
2

m2
ωωµω

µ

Lint = gσψ̄σψ + gωψ̄γµωµψ + ...

→ non perfect fluid form

mean-field→ perfect fluid
- compute the partition function the thermodynamical limit

Z =
∫

e
∫
LW

- bosonic fields take their vacuum expectation values σ̄, ω̄0
- all derivative dependent terms disappear and the interactions are
simplified to a mesonic background field seen by nucleons

LW = ψ̄
(

iγµ∂µ −m∗N + µ∗γ0
)
ψ − 1

2
m2
σσ̄

2 +
1
2

m2
ωω̄

2
0

where
m∗N = mN − gσσ̄, µ∗ = µ− gωω̄0



the Walecka model

MF EoS (at higher densities)
Walecka

ε̄ =
1
2

g2
ω

m2
ω

ρ̄2
B +

3
4

(
3π2

2

)1/3

ρ̄
4/3
B +

1
2

m2
Nm2

σ

g2
σ

+ o(1)

Skyrme
ε̄ = π4λ2ρ̄2

B + αρ̄
4/3
B + β̃ ρ̄

2/3
B + β + o(1)

the same leading behaviour
Walecka: ω meson (baryon current) dominating at high ρ,P
Skyrme: L6 dominates - based on the baryon current

the same subleading behaviour
Walecka: free fermion gas
Skyrme: L4

L6 unavoidable for high ρ/P → obligatory for NS



Beyond MF - the Skyrme model in the BPS limit



the Skyrme model in the BPS limit

the BPS Skyrme model

LBPS = λ6L6 + L0

BPS
- classically zero binding energies
- physical values if SCQ + Coulomb + (iso-spin) Adam, Naya, Sanchez-Guillen,

Wereszczynski (13)

perfect fluid field theory for any B
- not a gas of weakly interacting skyrmions Kalbermann (97), Jaikumar et al.(07)

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

solvablity
very simple solvable model which covers the main features of
nuclear matter→ hard core of Skyrme-type EFT



the Skyrme model in the BPS limit

the near BPS Skyrme model
Skyrme theory in a new perspective

separation of d.o.f.

L = L̃0 + λ2L2 + λ4L4 + LBPS︸ ︷︷ ︸ ︸ ︷︷ ︸
perturbative non-perturbative

explicit pions coherent d.o.f.
kinetic + two body int. topological term

hidden (emergent) ω and σ

surface bulk
shape SDiff symmetry

perfect fluid
far attractive int. BPS: exact ω − σ balance

some (not all!) properties/observable of the near BPS action are
dominated by the BPS part

⇓
let’s do the BPS model to learn about nuclear matter and neutron
stars



Perfect fluid



perfect fluid

SDiff symmetries
energy-momentum tensor of a perfect fluid

T 00 = λ2π2B2
0 + ν2U ≡ ε

T ij = δij
(
λ2π2B2

0 − ν2U
)
≡ δij P

local thermodynamical quantities

BPS eq. = zero pressure condition
e-m. conservation: ∂µTµν = 0
static: ∂i T ij = 0⇒ ∂j P = 0 ⇒ P = const .

constant pressure equation is a first integral of static EL eq.

λ2π4B2
0 − ν2U = P > 0

λπ2B0 = ±ν
√
U + P̃, P̃ ≡ (P/ν2)

static non-BPS solutions with P > 0



perfect fluid - exact thermodynamics

energy density EoS
ε− P = 2ν2U

non-barotropic chiral fluid ε 6= ε(P)

the step-function potential ε = P + 2ν2

no potential ε = P

high pressure limit - potential independent

ε = P

on-shell EoS
ε = ε(P, ~x)

beyond mean-field thermodynamics:
P = const . but ε 6= const .



perfect fluid - exact thermodynamics

particle (baryon) density EoS
ρB = B0

generically non-constant (beyond MF)

ρB =
ν

λπ2

√
U +

P
ν2

on-shell
ρB = ρB(P, ~x)

no universal ε = ε(P), ρB = ρB(P)

universal relation - off-shell and non-MF

ε+ P = 2λ2π4ρ2
B

baryon chemical potential

definition: ε+ P = ρµ ⇒ µB = 2λ2π4ρB

off-shell
universal, potential independent
non-MF (local)



perfect fluid - exact thermodynamics

generically exact (non-mean field) thermodynamics
ε, ρB non-constant generically non-constant
non-barotropic fluid
no universal EoS

mean-field limit
MF averages ε̄, ρ̄B

ε̄ =
E06

V
, ρ̄ =

B
V

universal (geometrical) EoS
E06, V , ε̄, ρ̄B
- known as functions of P FT pressure
- no need for solutions!
- only U matters

E06(P) = Bπ2λµ

〈
2U + P/µ√
U + P/µ

〉
, V (P) = Bπ2 λ

µ

〈
1√

U + P/µ

〉
FT pressure is the pressure

P = −dE06

dV
micro (FT) thermodynamics = macro thermodynamics
comparison full vs. mean-field



example: the step-function potential U = Θ (Tr (1− U))

MF = non-MF
baryon chemical potential

µ = 2π4λ2ρ̄B

pressure

P =
1

4π4λ2
µ2 − ν2

energy density

ε =
1

4π4λ2
µ2 + ν2

EoS
ε = 2ν2 + P

0.0 0.5 1.0 1.5 2.0
Μ

1

2

3

4
Ε � P

0.0 0.5 1.0 1.5 2.0
P
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4
Ε

gas-liquid phase transition



perfect fluid
the BPS action is equivalent to the action of a field theoretical description of
perfect fluid in an Eulerian formulation

- particle trajectories ~Xn(t)→ fluid element trajectories (cont. limit) ~X(t , ~y)
~y comoving fluid coordinates
- the Eulerian formulation: dynamical variables

ρ(t , ~x) = ρ0

∫
d3y δ(3)

(
~X(t , ~y)− ~x

)
~v(t , ~x) = ρ−1~j, ~j = ρ0

∫
d3y ~̇X δ(3)

(
~X(t , ~y)− ~x

)
formulated on phys. space but constrained (N = const . etc.)

FT realisation Brown (93), Dubovski et. al. (03), (13), Jackiw (04) de Boer et. al. (15)

- ya promoted to the dynamical fields
x i = X i (t , ya)→ ya = φa(t , x i )

- density ρ(t , ~x) = ρ0D, D = Ω(φa)det
(
∂φa

∂x i

)
particle number

Nµ = Ωεµνρσεabc∂νφ
a∂ρφ

b∂σφc

- four velocity

uµ =
Nµ√
N νNν

=
1√
6D

Ωεµνρσεabc∂νφ
a∂ρφ

b∂σφc

Nµ = ρuµ ⇒ ρ =
√

6D



perfect fluid

a perfect fluid action = chose a Lagrange density F = F (φa, ∂µφa)

F = F (ρ, g(φa))

S =

∫
d4xF (ρ, g) ⇒ Tµν = (p + ε)uµuν − pηµν

where
ε = −F (ρ, g), p = ρ

∂ε

∂ρ
− ε

simplest F = F (ρ)⇒ barotropic fluid ε = ε(p)
general non-barotropic
- interpretation: g = s(φa) entropy and Sµ = sN is entropy current

BPS Skyrme model
Bµ = Nµ i.e., the baryon current
fluid Lagrangian

F = −λ2π4ρ2 − ν2U(φa)

genuine non-barotropic fluid
→ thermodynamical interpretation of U?

Complete thermodynamics (at T = 0) in a solvable solitonic model



Neutron stars



the BPS Skyrme model with gravity Adam, Naya, Sanchez, Vazquez, Wereszczynski (15)

S06 =

∫
d4x |g| 12

(
−λ2π4|g|−1gρσBρBσ − µ2U

)
energy-momentum tensor

Tρσ = −2|g|− 1
2

δ

δgρσ
S06

= 2λ2π4|g|−1BρBσ −
(
λ2π4|g|−1gπωBπBω − µ2U

)
gρσ

the energy-momentum tensor of a perfect fluid

Tρσ = (p + ρ)uρuσ − pgρσ

where the four-velocity uρ = Bρ/
√

gσπBσBπ and

ρ = λ2π4|g|−1gρσBρBσ + µ2U
p = λ2π4|g|−1gρσBρBσ − µ2U

for a static case with diagonal metric uρ = (
√

g00, 0, 0, 0)

T 00 = ρg00 , T ij = −pg ij .

flat space case⇒ pressure must be constant (zero for BPS
solutions, nonzero for non-BPS static solutions

DρTρσ → ∂i T ij = δij∂i p = 0

In general, ρ and p arbitrary functions of the space-time coordinates,
⇒ no universal equation of state p = p(ρ) valid for all solutions



Einstein equations

static, spherically symmetric metric (Schwarzschild coordinates)

ds2 = A(r)dt2 − B(r)dr2 − r2(dθ2 + sin2 θdφ2)

axially symmetric ansatz for the Skyrme field with baryon number B

U = eiξ~n·~τ

ξ = ξ(r), ~n = (sin θ cos Bφ, sin θ sin Bφ, cos θ)

are compatible with the Einstein equations

Gρσ =
κ2

2
Tρσ

FT + GR with full backreaction ↔ TOV: fix EoS



Einstein equations

1
r

B′

B
= − 1

r2
(B− 1) +

κ2

2
Bρ

r (Bp)′ =
1
2

(1− B)B(ρ+ 3p) +
κ2

2
µ2r2B2U(h)p

A′

A
=

1
r

(B− 1) +
κ2

2
rBp

A, B and ξ are functions of r ⇒ p and ρ are functions of r

ρ =
4B2λ2

Br4
h(1− h)h2

r + µ2U(h), p = ρ− 2µ2U(h)

eliminate r ⇒ on-shell EoS p = p(ρ)
except the step-function potential⇒ off-shell EoS ρ = p + 2µ2

axially symmetric ansatz is the correct one because gravity
straightens out all deviations from spherical symmetry



parameters fitting
two parameters in the model λ and µ

chose a potential
U2
π , Uπ = 1− cos ξ

Ustep =

{
sin4 ξ ξ ∈

[
0, π2

]
1 ξ ∈

[
π
2 , π

]
m ≡ λµ has the dimensions of mass (energy)
fit to the binding energy of nucleon of infinite nuclear matter

Eb = 16.3 MeV

l ≡ (λ/µ)1/3 has the dimensions of length
fit to the nuclear saturation density

n0 = 0.153fm−3

particular potentials

U2
π : λ2 = 15.49 MeVfm3, µ2 = 141.22 MeVfm−3

Ustep : λ2 = 23.60 MeVfm3, µ2 = 121.08 MeVfm−3



results: mass-radius relation
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maximal mass
Ustep → Mmax = 3.29
U2
π → Mmax = 2.15

→ compatible with exp. data
→ compatible with M = 2.5 v.difficult for other EFT

M − R curve qualitatively different
→ EoS approaches the max. stiff EoS
→ light NS: surface (low-density nuclear EoS) but academic

full FT vs. mean-field
→ quantitatively differ
→ true Mmax is lower than predicted by MF



results: mass-radius relation
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results: local baryon density
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results: local Equation of State
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no unique EoS
→ on-shell EoS: polytropic

p ∼ aεb

inverse TOV questionable
→ inhomogeneities important



results: gravitational mass loss
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summary = fundamental result
there is a limit of Skyrme type actions in which the model has two properties

BPS
classically zero binding energies
physical (small) binding energies: semiclassical quantization

Coulomb interaction
isospin breaking

perfect fluid field theory
Tµν in a perfect fluid form
SDiff symmetry
Euler fluid formulation

FT (micro) d.o.f. = thermodynamical (macro) functions

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

solvablity
exact solutions
exact, analytical EoS and thermodynamics

a way beyond MF limit in nuclear matter


