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Neutron stars in TOV approach




neutron stars in TOV approach

@ neutron star structure from nuclear physics
http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar,
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neutron stars in TOV approach

@ the canonical approach to neutron stars

- Einstein egs
2

GtV = —TW
- prescribed energy-momentum tenior - perfect fluid
777 = (p + p)u”u” — pg*®
@ spherically symmetric metric
ds? = A(r)dt? — B(r)dr? — r2(d6? + sin® 0d¢?)

TOV equations

1
2
TOVI: M = 4nrp, B(r)= <1 _ HM(f)>
8t r
/ 1 K2 5
TovV2: ' = (p+p) 5(1 *B)ffr Bp
A’ 1 2
2 - Ie-n+Sm
(A 2 )+ ST p)

@ to close the system: equation of state (EoS)

p=p(p;...)



neutron stars in TOV approach

@ EoS — input from nuclear physics
EFTs for nuclear matter - no perfect fluid
— mean-field approximation
examples
- Walecka model
- NJL model
@ mean-field EoS
@ algebraic EoS p = p(p)
@ constant densities p = const.

@ realistic nuclei (nuclear matter) p = p(r)

How non-mean-field affects TOV?
Can we do gravitating nuclear matter in a full FT+GR?
— we need an effective model (action) of nuclear matter
— couple it to gravity
— find nuclear stars
— verify the universality of EoS

solvable nuclear matter action in a thermodynamical limit (perf.
fluid)



neutron stars in TOV approach

T. Klahn et al, Phys. Rev. C74 (2006) 035802
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Questions

@ neutron stars in the Skyrme model
— TOV approach
EoS of skyrmionic matter — nuclear matter MF EoS

- thermodynamics of skyrmions
- role of each term

@ beyond MF approach?




Mean-Field EoS in the Skyrme model




solitonic Skyrme model

@ the Skyrme framework skyrme (61)

pionic EFT of
@ baryons and nuclei — emergent objects: solitons
extended, non-perturbative

@ nuclear matter
@ with applications to neutron stars
— complementary to lattice

@ support form Ne — oo limit tHooft (83), Witten (84)
@ chiral effective meson/baryon theory
@ primary d.o.f. are mesons
@ baryons (nuclei) are realized as solitons

@ simplest case (two flavors): U(x) = €77 € SU(2)

@ 7 -pions

@ topological charge = baryon number
U:R¥U{oo} = S§% 5% — UX) e SUR) =s°

m3(S%) = Z



solitonic Skyrme model

@ the standard (perturbative) Skyrme model

L=Ly+ Lo+ ALy
—_———

massless Lskyrme
N—

massive Lskyrme

Lo= =X Tr (LuLH), L4 =Xy Tr ([Ly, L]?), L= UT3,U

@ successes
baryon physics Adkins, Nappi, Witten (84)....Praszalowicz, Nowak, Rho.
deuteron, light nuclei — iso-rotational spectra — SCQ correct
Braaten, Carson, Manton, Rho....Halcrow (15)
12 and Hoyle states Manton, Liu (14)

@ difficulties
unphysical binding energies sutcife et. al. (97), (02), (05), (06), (10)
crystal state of matter Kiebanov (85), Battye, Sutcliffe et. al. (06)
very complicated FT - only MF possible

problematic for (heavy) nuclei and nuclear matter — neutron stars



solitonic Skyrme model

@ physical binding energies - the near BPS Skyrme model
@ Lorentzinv.

@ standard Hamiltonian
@ max. first time derivative squared

L= 50 + XoLo+ MLy + XeLls+ Lo

—_— —
massive Lskyrme Lpps
1 vpo
Lo= BB, B = LT (7L, L) J

@ leading BPS part A\gLg + Lo Adam, Naya, Sanchez-Guillen, Wereszczynski (13)
weak impact of £y on binding energies
@ suitable Lg Guillard, Harland, Speight (15), Gudnason (15), (16)

use this version to study nuclear matter / neutron stars
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MF EoS
generic Skyrme model — non perfect fluid form
mean-field — perfect fluid

@ average densities € and pg

E _ B

=y PB= v,

@ MF pressure P and baryon chemical potential i

(3E) (3E) _
:7P» an =K
av) e 2B,

note: P is the average pressure

P_%kﬁﬁx
o Jadx
where Tj is the stress tensor and Q2 is a set where a Skyrmion is
located
@ issues:

V — oo at saturation (P = 0)
Q (shape)-dependent



MF EoS at high density
use the topological bound to get solution independent insight

Ey = /d3x T [Ly, L]? > 3(2n 2)4/3 Eg = /d3x (e TrLiLiLg)? >

v1/3’
proof: Manton’s strain tensor formulation
1
Djk = —§tr (Rij)

Dy = symmetric, positive 3 x 3 matrix with eigenvalues 52, 33, A3.

rescale \; = X;/¥/2x2

1 1
E4:3/ QM7<>\$/\§+A§)\§+)\$)\§ 23/ QM(,\q‘Ag,\g)3
M M3

(’/ QMBO) -
VoI3

@ FEg bound - saturated (BPS) at high P
@ E, bound - not saturated (only for isometries — M = S3)
@ no bound for E»

:3/ QuBol3 >
M

1
Vol3,



MF EoS at high density
@ energy (asymptotic regime)
B? B*/3

E=7*X—" +a

7 e oV Vo

where o > 3(272)4/3 ),
@ average pressure
P=n'Xph+ 2oy + o7y
@ average chemical potential
B = 2n*)2pp + 22 5 78+ o(g)
@ MF energy density
g=m*20% + gy’ + o(7y °)

- leading sextic term =P
- subleading Skyrme term £ =3P

- kinetic and potential: conjecture

win

o(pg*) = B pg+B+0(1). 7=~



Walecka model




the Walecka model
ﬁW - £N + ﬁcr,w + Eint

Ly=1 (iw“au —my+ ;wo) P

1 1 1 s 1
Low = 5(8‘“7)2 — Emgoz - Zwuyw“ + Emiwuw“

[:int = gcﬂzo'w + gwlZ’Y”wm/f + ...
— non perfect fluid form

@ mean-field — perfect fluid

- compute the partition function the thermodynamical limit
Z={ el Lw
- bosonic fields take their vacuum expectation values &, @g
- all derivative dependent terms disappear and the interactions are
simplified to a mesonic background field seen by nucleons

/) o 1,0 1 5.
Ly = ("0 — miy 4+ p*2°) v — Smea? + Sk

where
my = my —god, p*=p—guldo



the Walecka model

@ MF EoS (at higher densities)
Walecka

1g 3 (3n2 3 4/3 1mm2
- ) N

— = o(1
°= 2m2 B+4<2> +2 g2 +o(1)

o

Skyrme
_2/3

E=m*" N +apy® + B0+ B+ 0(1)

@ the same leading behaviour
Walecka: w meson (baryon current) dominating at high p, P
Skyrme: Lg dominates - based on the baryon current
@ the same subleading behaviour
Walecka: free fermion gas
Skyrme: L4

Lg unavoidable for high p/P — obligatory for NS



Beyond MF - the Skyrme model in the BPS limit




the Skyrme model in the BPS limit

@ the BPS Skyrme model

Lgps = AeLs + Lo J

@ BPS
- classically zero binding energies
- physical values if SCQ + Coulomb + (iso-spin) Adam, Naya, Sanchez-Guillen,
Wereszczynski (13)

@ perfect fluid field theory for any B
- not a gas of weakly interacting skyrmions Kalbermann (97), Jaikumar et al.(07)

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

@ solvablity

very simple solvable model which covers the main features of
nuclear matter — hard core of Skyrme-type EFT



the Skyrme model in the BPS limit

@ the near BPS Skyrme model
Skyrme theory in a new perspective

@ separation of d.o.f.

L=~Lo+ N Lo+MLs +  Lgps )

N N —

perturbative non-perturbative
explicit pions coherent d.o.f.
kinetic + two body int. topological term

hidden (emergent) w and o

surface bulk
shape SDiff symmetry
perfect fluid
far attractive int. BPS: exact w — o balance

@ some (not all!) properties/observable of the near BPS action are
dominated by the BPS part

!

let’s do the BPS model to learn about nuclear matter and neutron
stars
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perfect fluid

@ SDiff symmetries
@ energy-momentum tensor of a perfect fluid

TO = \272B3 + 12U = ¢
Ti = o (X2x®B — v2u) = 51P
@ Jocal thermodynamical quantities
@ BPS eq. = zero pressure condition
@ e-m. conservation: 9, TH” =0
static: 9;T =0 = ;P =0 = P = const.
@ constant pressure equation is a first integral of static EL eq.
NrtB2 12U =P >0

AeBy = tJU+ P, P=(P/1?)

static non-BPS solutions with P > 0



perfect fluid - exact thermodynamics

@ energy density EoS
e— P=22U

@ non-barotropic chiral fluid £ # (P)

the step-function potential e=P+2,°
no potential e=P

high pressure limit - potential independent
e=P

@ on-shell EoS
e =¢(P,X)

beyond mean-field thermodynamics:
P = const. but ¢ # const.




perfect fluid - exact thermodynamics

@ particle (baryon) density EoS
ps = Bo

@ generically non-constant (beyond MF)

v P
= Z JJu+ =
re A2 + V2

@ on-shell
PB = PB(P: )_(‘)

no universal ¢ = ¢(P), pg = pa(P)
universal relation - off-shell and non-MF
e+ P =2)\27%p3
@ baryon chemical potential

definition: e + P = pu = ug = 2X°71pp
@ off-shell
@ universal, potential independent
@ non-MF (local)



perfect fluid - exact thermodynamics

@ generically exact (non-mean field) thermodynamics
@ ¢, pg non-constant generically non-constant
@ non-barotropic fluid
@ no universal EoS

@ mean-field limit
@ MF averages ¢, pg
__ Eps __ B
‘Tv PTYy
@ universal (geometrical) EoS
@ Eps, V. E P8
- known as functions of P FT pressure
- no need for solutions!
- only U matters

Eos(P) = Br?Au <\2/L;++7’;//’;> . V(P) = BwZ% <\/Z%P/H>

@ FT pressure is the pressure

P=_ 9o
av
micro (FT) thermodynamics = macro thermodynamics

comparison full vs. mean-field



example: the step-function potential U=0((Tr(1-U))

@ MF = non-MF
@ baryon chemical potential
p=2r*\ppg
@ pressure
1 2 2
- 47r4)\2H v
@ energy density
1 2 2
442 Wty
@ EoS
e=202+P

00 05 10 15 20 00 05 10 15 20

gas-liquid phase transition




perfect fluid
@ the BPS action is equivalent to the action of a field theoretical description of
perfect fluid in an Eulerian formulation

- particle trajectories )?n(t) — fluid element trajectories (cont. limit) )?(t, ¥)
y comoving fluid coordinates
- the Eulerian formulation: dynamical variables

o(t.3) = po [ oy 5O (X(t.7) - )

Wt =p N T=p [ dyX o9 (X(t.5) - %)
formulated on phys. space but constrained (N = const. etc.)

@ FT realisation Brown (93), Dubovski et. al. (03), (13), Jackiw (04) de Boer et. al. (15)
- y@ promoted to the dynamical fields
X' = XI(t,y®) — y& = ¢4(t, x)
- density p(t, ¥) = poD, D = Q(¢?)det (gﬁf’)
particle number

NP = QetVPT ¢ 1,08, ¢20,¢P Do ¢°
- four velocity

;
= = —fGDQeﬂup%abcamaapwaaqsc

NE=pu* = p=+6D

ut



perfect fluid
@ a perfect fluid action = chose a Lagrange density F = F(¢?, 8,,¢%)

® F=F(p,g(¢%)
s= / FxF(pg) = T =(p+utu” — pp

where s
€
6:_F(p7g)7 p:pai_e
o
@ simplest F = F(p) = barotropic fluid € = ¢(p)
@ general non-barotropic
- interpretation: g = s(¢?) entropy and S* = s\ is entropy current

@ BPS Skyrme model

@ BH = N*i.e., the baryon current
@ fluid Lagrangian
F— —)\27r4p2 _ l/2u(¢a)
genuine non-barotropic fluid
— thermodynamical interpretation of 2/?

Complete thermodynamics (at 7 = 0) in a solvable solitonic model



Neutron stars




@ the BPS Skyrme model with gravity Adam, Naya, Sanchez, Vazquez, Wereszczynski (15)

Soe = [ o*xlgl? (~\°nlgl " g0 BB — U J
@ energy-momentum tensor
TPo = —2g|"2 Soe

0900
= 2X2r%lg| 7 B B7 — (N2r*lg| ™ gru BTBY — pPU ) g7

@ the energy-momentum tensor of a perfect fluid
777 = (p+ p)u”u” — pg™®

where the four-velocity u? = B /+/go~B° B~ and

p = Nr*19| ™" 9po BP BT + 1PU

p = Xer*|g| 7" g0 BP BT — piPU

@ for a static case with diagonal metric u? = (1/g%°, 0,0, 0)

7% =pg®, TV=-pg'.

flat space case = pressure must be constant (zero for BPS
solutions, nonzero for non-BPS static solutions

D, TP — §;TI =slgp=0

@ In general, p and p arbitrary functions of the space-time coordinates,
= no universal equation of state p = p(p) valid for all solutions



@ Einstein equations

@ static, spherically symmetric metric (Schwarzschild coordinates)
ds® = A(r)dt? — B(r)dr? — r?(d6? + sin® 6d¢?)
@ axially symmetric ansatz for the Skyrme field with baryon number B
U= P 7

& =¢(r), = (sinfcos Bg,sinfsinBp,cosb)

are compatible with the Einstein equations

2
K
Gpo = > Too

FT + GR with full backreaction <+ TOV: fix EoS




Einstein equations

1B’ 1 K2

2 = —_B-1)+%B

rB r2( )+ 2

1 K2
r@p) = (- B)B(p+3p)+ - u2rBU(h)p

A’ 1 K2
A _ Iip_ B
A r(B 1)+ 5 rBp

@ A, B and ¢ are functions of r = p and p are functions of r

_4B2)?
P~ "B

h(1 = h)h? + 2U(h),  p = p— 2p2U(h)

eliminate r = on-shell EoS p = p(p)
except the step-function potential = off-shell EoS p = p + 242

@ axially symmetric ansatz is the correct one because gravity
straightens out all deviations from spherical symmetry



@ parameters fitting
two parameters in the model X and p

@ chose a potential
U2, Uy =1-—cos¢

_ [ sin*¢ ¢€]0,%]
{51 S

@ m = My has the dimensions of mass (energy)
fit to the binding energy of nucleon of infinite nuclear matter

Ep = 16.3 MeV

@ 1= ()\/p)'/? has the dimensions of length
fit to the nuclear saturation density

np = 0.153fm—2

particular potentials

U2 . N2 =15.49 MeVfm®, 2 = 141.22 MeVfm 3

Ustep : N2 =23.60 MeVfm®, 1% = 121.08 MeVfm 3



@ results: mass-radius relation

7

=

L MeanEoS U

BPS U = 4h? e
BPS U Steg snnnnan
MeanEoS U = 4h
Step
Schwarzschild
BCPM




@ maximal mass

Z/{step - Mmax =3.29
Uz — Mmax = 2.15

— compatible with exp. data
— compatible with M = 2.5 v.difficult for other EFT

@ M — R curve qualitatively different

— EoS approaches the max. stiff EoS
— light NS: surface (low-density nuclear EoS) but academic

@ full FT vs. mean-field

— quantitatively differ
— true Mmax is lower than predicted by MF
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@ results: local baryon density

1
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@ results: local Equation of State
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@ no unique EoS
— on-shell EoS: polytropic

p ~ ae

@ inverse TOV questionable
— inhomogeneities important




@ results: gravitational mass loss

‘ U = 4h? e

1 T

0.95

M/n

U = Step
Mean-EoS U = 4h
Mean-EoS U = Step

0.7

MM,




summary = fundamental result
there is a limit of Skyrme type actions in which the model has two properties

@ BPS
classically zero binding energies
physical (small) binding energies: semiclassical quantization
Coulomb interaction
isospin breaking

@ perfect fluid field theory

Ty in a perfect fluid form
SDiff symmetry
Euler fluid formulation
FT (micro) d.o.f. = thermodynamical (macro) functions

Physically well motivated idealization of the nuclear matter
weakly modified by the (small) non-BPS part

@ solvablity

exact solutions
exact, analytical EoS and thermodynamics
a way beyond MF limit in nuclear matter



