- 1. Find the homotopy groups using triangulation method
 - (a) $\pi_1(T^2)$,
 - (b) $\pi_1(S^1 \times \mathbb{R})$,
 - (c) $\pi_1(S^2)$,
 - (d) $\pi_1(D^2)$,
 - (e) $\pi_1(\mathbb{R}P^2)$,
 - (f) the torus with two holes
- 2. Using Seifert-van Kampen theorem find homoptopy groups of
 - (a) the two-sphere S^2 ,
 - (b) the bouquet of *n* circles is the topological space obtained by gluing together n circles at a single common shared point $(S^1 \wedge S^1)$,
 - (c) the torus with two holes,
 - (d) the torus with a line segment that touches the torus only at its endpoints
 - (e) Klein bottle.
- 3. Prove that \mathbb{R} is a universal covering group of S^1 .