1. Find the homotopy groups using triangulation method
(a) $\pi_{1}\left(T^{2}\right)$,
(b) $\pi_{1}\left(S^{1} \times \mathbb{R}\right)$,
(c) $\pi_{1}\left(S^{2}\right)$,
(d) $\pi_{1}\left(D^{2}\right)$,
(e) $\pi_{1}\left(\mathbb{R} P^{2}\right)$,
(f) the torus with two holes
2. Using Seifert-van Kampen theorem find homoptopy groups of
(a) the two-sphere S^{2},
(b) the bouquet of n circles is the topological space obtained by gluing together n circles at a single common shared point $\left(S^{1} \wedge S^{1}\right)$,
(c) the torus with two holes,
(d) the torus with a line segment that touches the torus only at its endpoints
(e) Klein bottle.
3. Prove that \mathbb{R} is a universal covering group of S^{1}.
