- 1. Introduce parametrization and describe manifolds corresponding to
 - Möbius strip,
 - *S*²,
 - $O(n) \subset GL(n, \mathbb{R}) : \{A \in Mat(n, n) : AA^T = id.\}$ for n = 1, 2, 3,
 - $O(1,3) = \{M \in GL(4,\mathbb{R}) : M\eta M^T = \eta\}$, where $\eta = diag(1,-1,-1,-1)$.

Which of them are connected? Which are orientable?

- 2. Given smooth $f : \mathbb{R}^n \to \mathbb{R}^m$, show that the graph of f is a regular submanifold of $\mathbb{R}^m \times \mathbb{R}^n$.
- 3. For real number a, define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = x^3 3ax y^2$. Find all values of b so that $f^{-1}(b)$ is a manifold. Graph $f^{-1}(b)$ for a variety of a and b including the critical points of b.
- 4. Show that every injective immersion of a compact manifold is an embedding.
- 5. For given real field theory on a line $\phi : \mathbb{R} \to T \subset \mathbb{R}$ with energy defined as

$$E = \int_{\mathbb{R}} dx \ \frac{1}{2}\phi_x^2 + U(\phi),$$

where $U(\phi) \ge 0$ and $V = U^{-1}(0)$ is a disjoint vacuum manifold, show that

$$E \ge \left| \int_{\phi_i}^{\phi_j} d\phi \, \sqrt{2U(\phi)} \, \right|,$$

where $\phi_i, \phi_j \in V$. Consider two cases $U = \frac{1}{2}(\phi^2 - 1)^2$ and $U(\phi) = \sin^2(\phi/2)$.

6^{*} Can we repeat the same for $(\phi, A_i) : \mathbb{R} \to \mathbb{C} \times \mathbb{R}^2$ for energy density given by

$$E = \int_{\mathbb{R}^2} \frac{1}{2} F_{12}^2 + \frac{1}{2} (D_i \phi)^* (D_i \phi) + \frac{\kappa^2}{8} (\phi^* \phi - 1)^2$$

where $D_{\alpha} = \partial_{\mu} - iA_{\mu}$.