1. Let ~ be the equivalence relation on \mathbb{R} defined as follows

$$x \sim y \iff x = 2^k y, k \in \mathbb{Z}.$$
 (1)

Describe $Y = \mathbb{R}/\sim$. Is it Hausdorff?

2. Let ~ be the equivalence relation on \mathbb{R}^2 defined as follows

$$(x, y) \sim (x', y') \iff (x - x', y - y') \in \mathbb{Z}^2.$$
 (2)

Show that \mathbb{R}^2/\sim is homeomorphic to $S^1 \times S^1$.

- 3. Describe $S^1 \times S^1/(x, y) \sim (y, x)$
- 4. Show that
 - if X is Hausdorff then any compact subset of X is closed,
 - if X is compact and A is a closed subset of X then A is compact,
- 5. Check if the following pairs of spaces are homeomorphic, if not name topological invariants which are different, if yes provide an example of homeomorphism:
 - (a) [0,1] and \mathbb{R} ,
 - (b) (0,1) and \mathbb{R} ,
 - (c) S^1 and \mathbb{R} ,
 - (d) a parabola $y x^2 = 0$ and hyperbola $y^2 x^2 = 1$,
 - (e) open disc $D^2 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ and \mathbb{R}^2 ,
 - (f) a circle $S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ and a square $I^2 = \{(x, y) \in \mathbb{R}^2 | (|x| = 1 | y| \le 1), (|y| = 1 | x| \le 1)\}$
- 6. Introduce an atlas $\mathcal{A} = \{(U_1, \phi_1), (U_2, \phi_2)\}$ on a Möbius strip $[0, 1) \times (-1, 1)$.