1. Let us define (after the lecture) two topological spaces for $X=[0,1)$:

$$
\begin{gather*}
\tau_{1}:\{(a, b) \subset X\} \cup\{[0, a): 0<a<1\}, \quad X_{1}=\left(X, \tau_{1}\right) \tag{1}\\
\tau_{2}:\{(a, b) \subset X\} \cup\{[0, a) \cup(b, 1): 0<a<b<1\}, \quad X_{2}=\left(X, \tau_{2}\right) . \tag{2}
\end{gather*}
$$

Show that a limit of the sequence $x_{n}=1-\frac{1}{n}$ exits in X_{2} but does not in X_{1}.
2. Check if the following spaces (X, d) are metric spaces and describe the open balls in those metrics:
(a) $X=\mathbb{R}, d(x, y)=|x-y|$,
(b) X - any set, $d(x, y)=0$ if $x=y \wedge d(x, y)=1$ if $x \neq y$ ($0-1$ metric),
(c) $X=\mathbb{R}^{2}, d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$ (taxicab),
(d) $X=\mathbb{R}^{2}$ (river metric)

$$
d(x, y)= \begin{cases}\left|x_{2}-y_{2}\right| & \text { when } x_{1}=y_{1} \\ \left|x_{2}\right|+\left|x_{1}-y_{1}\right|+\left|y_{2}\right| & \text { otherwise }\end{cases}
$$

(e) $X=\mathbb{R}^{2}, d(x, y)=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$ (chess knight metric),
(f) $X=\mathbb{R}^{2}$ (railway metric)

$$
d(x, y)= \begin{cases}\|x-y\| & \text { when } x, y \text { and } 0 \text { are inline } \\ \|x\|+\|y\| & \text { otherwise }\end{cases}
$$

3. Let $f: X \rightarrow Y$ be a continuous function and $x_{n} \rightarrow x$. Show that $f\left(x_{n}\right) \rightarrow f(x)$.
4. Write explicit maps from $f_{1}: X_{1} \rightarrow S^{1}$ and $f_{2}: X_{2} \rightarrow S^{1}$. Which of these maps and their inversions are continuous and why?
5. Find homeomorphisms:
(a) $(0,1) \rightarrow \mathbb{R}$,
(b) $(0,1) \rightarrow(0, \infty)$,
(c) $\mathbb{R} \times S^{1} \rightarrow \mathbb{R}^{2} \backslash\{0\}$.
6. Find an explicit form of a stereographic projection $S^{2} \backslash\{0\} \rightarrow \mathbb{C}$.
7. Provide a few examples of sets simultaneously closed and open.
8. Show that if X is arcwise connected it is connected.
