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Topological Degree in Locating Homoclinic
Structures for Discrete Dynamical Systems

A. V. Pokrovskii, S. J. Szybka, J. G. McInerney

Abstract

A method of applying topological degree theory to anal-
ysis of chaotic behaviour of dynamical systems is described.
The scheme combines one suggested by P. Zgliczyński with the
method of topological shadowing. As an illustration a Henon
mapping with a homoclinic tangency is considered.
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1 Introduction

If f : IRd 7→ IRd is a continuous mapping, U ⊂ IRd is a bounded open
set, y ∈ IRd does not belong to the image f(∂U) of the boundary ∂U
of U , then the symbol deg(f, U, y) denotes the topological degree [3] of
f at y with respect to U . If 0 6∈ f(∂U), then the number γ(f, U) =
deg(f, U, 0) is well defined and it is called the rotation of the vector
field f at ∂U. The properties of γ(f, U) are described in detail in [11].
For an isolated root y of the equation f(x) = 0 the Kronecker index
ind(a, f) is defined as the common value of the numbers γ(f,Ba(ε)).
Here ε > 0 is sufficiently small, where Ba(ε) denotes the open ball of
radius ε, centred at a. The Kronecker index counts the generalized
multiplicity of a root of the equation f(x) = 0; in this context, due to
the Kronecker formula [11], γ(f, U) can be interpreted as the algebraic
number of roots of the equation f(x) = 0 located inside U .

The topological degree plays an important role in bifurcation anal-
ysis, see, e. g. [10] and the bibliography therein. Applications to
analysis of complicated, chaotic-like behaviour are also well known,
see references to Chapter 8 in [9], and especially the paper [19]. Re-
cently an important new method for using the Kronecker index to
locate topological Smale horseshoes in dynamical systems has been
suggested by Zgliczyński [20] (earlier Conley Index theory was used in
similar settings, see [2] and the bibliography therein). The Zgliczyński
method was originally designed to prove that the shift on two elements
is a factor of the dynamical system under consideration. It guarantees,
when applicable, the existence of infinitely many periodic solutions,
but does not, however, guarantee their instability.

In this paper we describe an alternative way of applying topologi-
cal degree theory in analysis of systems with quasi-chaotic behaviour.
This method is designed for locating homoclinic points and similar
structures in multi-dimensional systems, and for analysis of higher di-
mensional perturbation of low dimensional systems. It combines the
one suggested by P. Zgliczyński with the method of topological shad-
owing as described in [14]. Our method is similar to the Zgliczyński
method in the two-dimensional case. Like the Zgliczyński method it
is purely topological, and guarantees not only chaotic behaviour of
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the system itself, but also chaotic behaviour of all sufficiently small
continuous perturbations. As a purely illustrative example, we discuss
the robustness of quasi-chaotic and homoclinic structure in a Henon
mapping with a homoclinic tangency.

2 Main result

2.1 Mappings compatible with topological Markov
chains

For any positive integer m, let us denote by Ω(m) the totality of all
bi–infinite sequences ω = {ωi}∞i=−∞ with ωi ∈ {1, . . . , m} for i = 0,
±1, ±2, . . . , and denote by σ = σm the (left) shift on Ω(m) given by
σm(ω) = ω′ = (. . . , ω′−1, ω

′
0, ω

′
1, . . .) where ω′i = ωi+1. Let A = (ai,j),

i, j = 1, . . . , m, be a square m-matrix whose entries are either zeros
or ones, and denote by ΩA the set

{
b ∈ Ω(m) : aωi+1,ωi

= 1, i = 0,±1,
±2, . . . . The set ΩA is shift invariant and the restriction σA of σm to
ΩA is the topological Markov chain with the matrix A.

Let f be a continuous mapping IRd 7→ IRd. A trajectory of f (or, to
be more precise, of the dynamical system generated by f) is a sequence
x = {xi}∞i=−i− satisfying xi+1 = f(xi), for i = −i−, . . . , 0, 1, 2, . . . ,
where 0 ≤ i− < ∞ (note that i− = i−(x) depends on a particular
trajectory x). σf is the left shift mapping naturally defined on the set
Tr(f) of bi-infinite trajectories of f .

Let X = (X1, . . . , Xm) be a finite family of compact connected
subsets of IRd. A continuous mapping f is (X , σA)–compatible if there
exists a mapping ϕ : Ω(A) 7→ Tr(f) which satisfies the following re-
quirements:

(r1) the trajectory x = ϕ(ω) satisfies xi ∈ Xωi
for each ω ∈ ΩA and

all integers i;

(r2) ϕσA = σfϕ: a shift of ω ∈ ΩA induces a shift of the trajectory
ϕ(ω);

(r3) if ω ∈ ΩA is p-periodic, then the trajectory x = ϕ(ω) is also
p-periodic.

We assume neither the uniqueness of the mapping ϕ nor its con-
tinuity, so ϕ need not be a semi–conjugacy [9], p. 68. On the other
hand, the subshift σA is a factor [9] of a restriction of the system f
to some set S ⊂ ⋃

Xi, providing that f is (X , σA)-compatible. The
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(X , σA)-compatible mappings have some features of chaotic behaviour
if A has many ones, and if sufficiently many subfamilies of X have the
empty intersections. For instance, from the definitions we have the
following

Proposition 2.1. (i) Let the sets Xi be disjoint and maximal eigen-
value λ of A be strictly greater than 1. Then the topological entropy
E top [9], p. 109, of f satisfies the inequality E top(f) ≥ E top(σA) =
ln(λ). (ii) Let

⋂m
i=1 Xi = ∅, and the matrix A be transitive, in the

sense that its power Ak has all positive entries. Then E top(f) is posi-
tive.

2.2 Principal theorem

Below we fix two positive integers du, ds with du + ds = d. Let V and
W be bounded, open and convex product-sets

V = V (u) × V (s) ⊂ IRdu × IRds , W = W (u) ×W (s) ⊂ IRdu × IRds ,

satisfying the inclusions 0 ∈ V, W and let g : V 7→ IRdu × IRds be a
continuous mapping. It is convenient to treat g as the pair (g(u), g(s))
where g(u) : V 7→ IRdu and g(s) : V 7→ IRds . The mapping g is (V,W )-
hyperbolic, if the equations

g(u)
(
∂V (u) × V

(s)
) ⋂

W
(u)

= ∅,
(2.1)

g(V )
⋂ (

W
(u) × (IRds \W (s))

)
= ∅,

hold, and
deg(g(u)(·, 0), V (u), 0) 6= 0. (2.2)

Here S denotes the closure of a set S. The first relationship (2.1)

means geometrically that the image of the ‘u-boundary’ ∂V (u)×V
(s)

of

V does not intersect the infinite cylinder C = W
(u)×IRds ; analogously,

the second part of (2.1) means that the image of the whole set g(V )

can intersect the cylinder C only by its central fragment W
(u)×W (s).

Thus the first equation (2.1) means that the mapping expands in a
rather weak sense along the first coordinate in the Cartesian product
IRdu× IRds , whereas the second one confers a type of contraction along
the second coordinate (the indices ‘(u)’ and ‘(s)’ refer to the adjectives
‘stable’ and ‘unstable’). Figure 1 at the end of this section illustrates
the geometrical meaning of relationships (2.1) in the two-dimensional
case.
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Theorem 1. Let A be a square m−matrix whose entries are either
zeros or ones, hi : IRdu × IRds 7→ IRd be homeomorphisms, and Vi be
bounded, open and convex product sets. Suppose that gi,j = h−1

j fhi is
(Vi, Vj)−hyperbolic whenever ai,j = 1. Then there exist compact sets
Xi ⊂ hi(Vi) such that f is (X , σA)-compatible.

Proof is relegated to Section 4.
Recall, that a trajectory x = {xi}∞i=−∞ of a continuous bounded

mapping f : IRd 7→ IRd is called homoclinic if its elements are not
all identical and there exists a point x∗ ∈ X such that limi→−∞ xi =
limi→∞ xi = x∗. The point x∗ is a homoclinic fixed point.

Corollary 2.1. Let hi, i = 1, . . . , m, be homeomorphisms, Vi be bounded
open product sets and

m⋂
i=1

hi(Vi) = ∅. (2.3)

Let the mappings gi,j = h−1
j fhi be (Vi, Vj)−hyperbolic for the pairs

(1,1), (m,1) and (i, i + 1), 1 ≤ i < m}. Suppose, finally, that there
exists at most one bi-infinite trajectory in V1. Then there exists a
unique homoclinic point x∗ ∈ h1(V1).

P r o o f. Consider the matrix

A =




1 0 . . . 0 1
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0




. (2.4)

The conditions of the theorem are met with respect to this matrix,
and thus the mapping f is (X , σA)−compatible for some compact sets
Xi ⊂ hi(Vi).

Let us consider the symbolic sequence ω∗ defined by ω∗i ≡ 1. The
theorem and the requirement (r2) guarantee that there exists a fixed
point x∗ which belongs to h1(V1).

Now, consider the symbolic sequence ω defined by ωi = i, for
i = 1, . . . , m, and ωi = 1 otherwise. By the theorem there ex-
ists a trajectory x satisfying xi ∈ Xωi

for all i. This trajectory is
not equal to x∗ for all i, because of (2.3). It remains to establish
the equalities limi→−∞ xi = limi→∞ xi = x∗. Suppose that they are
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wrong: let, for instance, limi→∞ xi 6= x∗. Then there exists a se-
quence j(i) → ∞ satisfying |xj(i) − x∗| ≥ ε for some strictly posi-
tive ε. Taking a coordinate-wise limit of the sequence of trajectories
x(k) = (. . . , x

(k)
−1, x

(k)
0 , x

(k)
1 , . . .), k = 1, 2, . . . , where x

(k)
i = xi−j(k), we

obtain a trajectory y which satisfies |y0 − x∗| ≥ ε > 0, is contained
in h1(V1), and is not identically equal to x∗. It contradicts the last
assumption of the corollary.

g(V)

W

0

Figure 1: Horizontal axes represents IRdu and the vertical one rep-
resents IRds for nu = ns = 1. The lightly shaded rectangle rep-
resents W = W (u) × W (s). The darker shadowed is a part of the
infinite cyllinder C = V × IR(ds . This cyllinder can not be inter-

sected by the image g(V ); the images of ∂V (u) × V
(s)

also can not
intersect W . The deformed quadri-lateral represents an admissible
location of g(V ) (the black part of its border are images of the sets
∂V (u) × V (s), whereas images of V (u) × ∂V (s) are gray.)
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To conclude this section we note that applying the theorem and the
corollary are simplified significantly if du = 1. In this case the mapping
g

(u)
i,j (0, x(u)) is one dimensional, V

(u)
i is an interval (αi, βi) with αiβi <

0, and verifying the inequality (2.2) is trivial: The inequality (2.2)

holds if and only if g
(u)
i (0, αi)g

(u)
i (0, βi) < 0; moreover, in this case

deg(g
(u)
i (·, 0), V

(u)
i , 0) = sign (g

(u)
i,j (0, βi)). (2.5)

3 Discussion

3.1 Chaotic behaviour

Important attributes of chaotic behaviour include sensitive depen-
dence on initial conditions, an abundance of periodic trajectories and
an irregular mixing effect describable informally by the existence of
a finite number of separated subsets U1, . . ., Um of IRd which can be
visited by trajectories of some fixed iterate fk of f in any prescribed
order. Let U = {U1, . . . , Um} , m > 1, be a family of disjoint subsets of
IRd and let us denote the set of one-sided sequences ω = ω0, ω1, . . . , by
ΩR

m. Sequences in ΩR
m will be used to prescribe the order in which sets

Ui are to be visited. For x ∈ ⋃m
i=1 Ui we denote by I(x) the number i

satisfying x ∈ Ui.
A mapping f is called (U , k)-chaotic (k is a positive integer) if

there exists a compact f -invariant set S ⊂ ⋃
i Ui with the following

properties:

(p1) for any ω ∈ ΩR
m there exists x ∈ S with f ik(x) = (fp)i ∈ Uωi

for
i ≥ 1;

(p2) for any p-periodic sequence ω ∈ ΩR
m, there exists a pk-periodic

point x ∈ S with f ik(x) ∈ Uωi
;

(p3) for each η > 0 there exists an uncountable subset S(η) of S,
such that the simultaneous relationships

lim supi→∞
∣∣I(f ik(x))− I(f ik(y))

∣∣ ≥ 1,

lim infi→∞
∣∣f ik(x)− f ik(y)

∣∣ < η

hold for all x, y ∈ S(η), x 6= y.
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The above defining properties of chaotic behaviour are similar to
those in the Smale transverse homoclinic trajectory theorem with an
important difference being that we do not require the existence of an
invariant Cantor set. Instead, the definition includes property (p2),
which is usually a corollary of uniqueness, and (p3) which is a form of
sensitivity and irregular mixing as in the Li–Yorke definition of chaos,
with the subset S(η) corresponding to the Li–Yorke scrambled subset
S0. A similar definition was used previously in [4]. Note also that the
one-sided left shift σ+

m is a factor of the restriction fk|S ([9], p. 68).
Theorem 1 implies

Proposition 3.1. Let X = (X1, . . . , Xm) be a family of compact sets
and let the matrix A be k-transitive (that is Ak have strictly posi-
tive entries). Suppose that the mapping f is (X , σA) compatible and
suppose that the family U of connected components of the union set
U =

⋃m
i=1 Xi has more than one element. Then the mapping f is

(U , k)-chaotic.

P r o o f. Let the mapping ϕ : ΩA 7→ Tr(f) satisfy the requirements
(r1)–(r3) from the definition of (X , σA) compatibility. Let us define S
as closure of the set S0 = {(ϕ(ω))i : ω ∈ ΩA, i = 0,±1,±2, . . .} . The
properties (p1) and (p2) hold by construction, and we should only
take care of the property (p3).

Let Ω+ be the set of restrictions of sequences from ΩA to non-
negative indices. Consider the equivalence relation E on Ω+ defined
by: E(ω, ω′) is true if and only if Xωik

and Xω′ik belong to the same
connected component of U for all sufficiently large i. Denote the set
of equivalence classes by T and note that the set T has the power of
continuum (because A is transitive). Choose a single element ω+(T )
from each equivalence class in T , and denote by ω(T ) a sequence
from ΩA which coincides with ω+(T ) for non-negative indices. The
set S∗ = {ϕ(ω) : ω(T ), T ∈ T } is a subset of S and the first inequality
in (p3) holds for any two different elements of S∗. It remains to use
the following general statement.

Lemma 3.1. Let (M, ρ) be a compact metric space, g be a mapping
M 7→ M , and let S be a subset of M having the power of continuum.
Then for each η > 0 there exists a subset S(η) of S with the power of
the continuum such that lim infi→∞ ρ (gi(x), gi(y)) < η for any x, y ∈
S(η).

P r o o f. By compactness of (M, ρ) there exists a finite partition
P of M such that diam(P ) < η for each P ∈ P . Two elements x, y ∈
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S are said to be connected, if there exist arbitrarily large j for which
gj(x) and gj(y) belong to the same subset from the partition. Since
there are connected elements in every set which contains more than
#(P) elements, there are connected elements in every denumerable
set. The assertion of the Lemma will hold if a subset S(η) ⊆ S of
pairwise connected elements which has the power of the continuum
can be constructed. That this can be done follows by an application
of a transfinite analogue of the Ramsey Complete Graph Theorem
(cf. [5], page 608, Theorem 5.23: If Γ is a graph of power m, where
m is a transfinite cardinal, and if every denumerable subset of G two
connected elements, then Γ contains a complete graph of power m).
This completes the proof of the lemma, and, hence, the proof of the
proposition as well.

Theorem 1 and the proposition above imply

Corollary 3.1. Let a matrix A be k-transitive and let f : IRd → IRd be
a continuous mapping. Let there exist homeomorphisms hi and product
sets Vi such that h−1

j fhi is (Vi, Vj)-hyperbolic if a(i, j) = 1, and let the
family U of connected components of the union set U =

⋃
hi(Vi) have

more than one element. Then any mapping f̃ , which is sufficiently
close to f in the uniform metric, is (U , k)-chaotic.

Let us formulate another corollary of Proposition 3.1 and Theorem
1. A continuous mapping f is (ε, k)–chaotic in a neighborhood of X ⊂
IRd if for each finite subset X∗ = {x1, . . . , xm} of X with mini6=j |xi−xj|
≥ 2ε the mapping f is (B)-chaotic where B is the family of (disjoint)
balls Bxi

(ε) The minimal ε0 ≥ 0 with the property that for each ε > ε0

the system f is (ε, k)−chaotic for an appropriate k is called the chaos
threshold of the system f with respect to X . The chaos threshold
characterizes accuracy of measurements for which the behaviour of
the system in the vicinity of the subset X appears chaotic if the time
lapse between subsequent measurements is sufficiently large.

Corollary 3.2 Suppose that there exists a transitive matrix A, home-
omorphisms hi and product sets Vi such that h−1

j fhi is (Vi, Vj)−hy-
perbolic if a(i, j) = 1. Suppose that for some positive ∆ and r the
inclusions X ⊂ ⋃

Bhi(0)(∆) and h(Vi) ⊂ Bhi(0)(r) are valid. Then the
chaos threshold of f with respect to X is not greater than ∆ + r.

3.2 Smooth systems

One more important attribute of chaotic behaviour is the abundance
of unstable periodic trajectories. The method introduced above could
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also be useful in the investigation of this property, especially for dy-
namical systems generated by a smooth function f .

Suppose that the condition of Theorem 1 are met. Then to each
periodic symbolic sequence ω ∈ ΩA, we can associate the number

γ(ω) = (−1)du

p∏
i=1

deg(g(u)
ωi,ωi−1

(·, 0), W (u)
ωi−1

, 0).

Denote by P− the set of all periodic sequences which satisfy γ(ω) < 0.

Lemma 3.2 The mapping ϕ can be chosen such that ϕ(ω) is not
asymptotically stable whenever γ(ω) < 0.

The proof will be given simultaneously with that of the theorem.

Proposition 3.2 Let f be smooth. Then for a small generic pertur-
bation f̃ the mapping ϕ̃ could be chosen such that ϕ(ω) is exponentially
unstable if γ(ω) < 0.

P r o o f. It is sufficient to combine the previous proposition
with Theorem β, [18], p. 177. This theorem guarantees that hy-
perbolic endomorphisms are generic; in particular, they are generic
endomorphisms which have only finite number of periodic orbits in
any bounded subset, and all these orbits are exponentially stable or
exponentially unstable.

To conclude this section, we mention how our methods could be
used in line with the classical Sullivan-Shub result [19].

Proposition 3.3. Let V = V (u)×V (s) be a product set. Let a smooth
mapping f be (V, V )-hyperbolic, and suppose that the inequality

|deg(f (u)(·, 0), V (u), 0)| > 1 (3.1)

holds. Then f has infinitely many periodic orbits in V .

P r o o f. Let us consider the set S = S(V, V ). By Lemma 4.1
(which will be proved in the next section) there exists a mapping g
which coincides with f on S, has no periodic points outside of S, and
satisfies

deg (id − gn, V, 0) = (−1)du
(
deg(f (u)(·, 0), V (u), 0)

)n
(3.2)

for all positive integer n. It remains to refer to [19] (see also [9],
p. 323).
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3.3 Small perturbations

It is important to note that the set of functions f such that the condi-
tions of the above theorem hold (for given families of homeomorphisms
hi and sets Vi and a given matrix A) is open with respect to the uniform
metric. Thus if the theorem is applicable to some function f , then it
is also applicable to any sufficiently small uniform perturbation f̃ .

In this subsection we suppose that f is a continuous function; A is
a square m-matrix whose entries are either zeros or ones; hi : IRdu ×
IRds 7→ IRd are homeomorphisms, and Vi are bounded, open and convex
product sets. We suppose that gi,j = h−1

j fhi is (Vi, Vj)-hyperbolic
whenever ai,j = 1. We define the numbers

χ
(u)
i,j = inf

{
|fhi(x)− hj(y)| : x ∈ ∂V

(u)
i × Vi

(s)
, y ∈ V

(u)
j × IRds

}
,

χs
i,j = inf

{
|fhi(x)− hj(y)| : x ∈ Vi, y ∈ Vj

(u) × (IRds \ V
(s)
j )

}
.

whenever ai,j = 1. Define also

χ = max
ai,j=1

{χu
i,j, χ

u
i,j}. (3.3)

Let now d̂ be a positive integer and d̂s = ds + d̂. Consider a con-
tinuous function

F : IRd × IR
bd 7→ IRd × IR

bd.
We will treat it as the pair (F1, F2) where F1 : IRd × IR

bd 7→ IRd and

F2 : IRd × IR
bd 7→ IR

bd. Suppose that the following estimates are valid:

|F1(x, y)− f(x)| ≤ ε1 + c1|y|, |F2(x, y)| ≤ ε2 + c2|y|.

Here ε1, ε1, c1, c2 > 0, c2 < 1 and ε1 +c2ε2/(1− c2) < χ. Introduce the

homeomorphism ĥi = (hi, id), which will be treated below as mappings

from IR(du) × IR(bds) 7→ IR
bd, and the product sets V̂i = V

(u)
i × V̂

(s)
i with

V̂
(s)
i = V

(s)
i ×B(bd)

δ . Here B(bd) is the open ε2/(1− c2)-ball in IR
bd centred

at zero and δ = ε2/(1− c2).

Proposition 3.4 The mapping Gi,j = ĥ−1
j Fĥi is (V̂i, V̂j)-hyperbolic if

ai,j = 1.

P r o o f. Straightforward calculation.
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4 Proof of Theorem 1 and Lemma 3.2

4.1 Auxiliary lemma

Let
Wi = W

(u)
i ×W

(s)
i ⊂ IRdu × IRds , i = 0, . . . , n,

be convex open and bounded product sets, and suppose that the map-
pings

gi : W
(u)

i−1 ×W
(s)

i−1 7→ IRdu × IRds , i = 1, . . . , n,

are (Wi−1,Wi)−hyperbolic. In particular,

g
(u)
i (∂W

(u)
i−1 ×W

(s)

i−1)
⋂

W
(u)

i = ∅

(4.1)

gi(W i−1)
⋂ (

W
(u)

i × (IRds \W
(s)
i )

)
= ∅,

and
deg(g

(u)
i (·, 0), V

(u)
i−1, 0) 6= 0 (4.2)

for i = 1, . . . , n.
Let us now define the auxiliary mappings qi, i = 1, . . . , n, by

qi : (IRdu × IRds) 7→ (IRdu × IRds), i = 1, . . . , n.

By the second equation (4.1) we can choose compact convex sets T
(s)
i ⊂

IRds , i = 1, . . . , n, satisfying

gi(Wi−1)
⋂ (

W
(u)
i × IRds

)
⊂ W

(u)
i × T

(s)
i .

Let IRdu × IRds = IRd be endowed with the standard Euclidean metric.
We define the stable component q

(s)
i (y) as the projection (the nearest

point) of g
(s)
i (y) on T

(s)
i , and define the unstable component q

(u)
i (y)

by q
(u)
i (y) = g

(u)
i (y) where y is the projection of y on W i−1. Let

us define the iterated mappings Qi by Q0 = id and Qi = qi(Qi−1) for
i = 1, . . . , n (by ‘id ’ we denote the identity mapping). Let us introduce
the sets

Si =
{

y ∈ Wi : g
(u)
i+1(y) ∈ W

(u)
i+1

}
. (4.3)

These sets are nonempty open sets by (4.1) and (4.2) . It is important
that qi coincides with gi on Si−1:

qi(y) = gi(y), y ∈ Si−1, i = 1, . . . , n, (4.4)
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and we can rewrite (4.3) as

Si =
{

y ∈ Wi : q
(u)
i+1(y) ∈ W

(u)
i+1

}
.

Lemma 4.1.

(a) The simultaneous inclusions Q
(u)
n (y) ∈ W

(u)
n , y

(s)
0 ∈ W

(s)
0 imply

Qi(y) ∈ Si for i = 0, 1, . . . , n− 1.

(b) deg
(
Q

(u)
n (·, 0),W

(u)
0 , 0

)
= (−1)ds

∏n
i=1 deg(q

(u)
i (·, 0),W

(u)
i−1, 0).

(c) If Wn = W0, then deg (id −Qn, W0, 0) = (−1)du
∏n

i=1 deg(q
(u)
i (·, 0),

W
(u)
i−1, 0).

P r o o f. (a) By construction the functions qi satisfy the relation-
ships:

q
(u)
i

((
IRdu \W

(u)
i−1

)
× IRds

)
⊂ IRdu \W

(u)

i , q
(s)
i (IRd) ⊂ T

(s)
i (4.5)

for i = 1, . . . , n. The first inclusion in (a) and the first inclusion (4.5)
imply

Q
(u)
i (y) ∈ W

(u)
i , i = 0, . . . , n, (4.6)

by induction. On the other hand, the second inclusion (a) and the

second inclusion (4.5) imply Q
(s)
i (y) ∈ W

(s)
i , i = 0, . . . , n. Thus, taken

into account (4.6),

Qi(y) ∈ Wi, i = 0, . . . , n. (4.7)

Assertion (a) follows from (4.6), (4.7) and (4.3).
It remains to establish (b) and (c). The proofs of these two asser-

tions are similar, with the later being a bit more interesting. So we
will prove in detail only (c).

Let us define the mappings qi,ϑ : IRd × IR1 7→ IRd for 0 ≤ ϑ ≤ 1,
i = 1, . . . , n, by

qi,ϑ(y) =
(
q
(u)
i (y(u), (1− ϑ)y(s)), q

(s)
i ((1− ϑ)y(u), y(s))

)
.

The mappings qi,ϑ, 1 ≤ ϑ ≤ 1 satisfy the inclusions

q
(u)
i,ϑ

((
IRdu \W

(u)
i−1

)
× IRds

)
⊂ IRdu \W

(u)

i , q
(s)
iϑ (IRd) ⊂ T

(s)
i (4.8)
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together with qi, see (4.5). Therefore, any fixed point y ∈ W 0 of Qn,ϑ

belongs to W0. Thus, the deformation Qn,ϑ − id is nonsingular on
∂W0, that is

Qn,ϑ(y) 6= y for y ∈ ∂W0.

This deformation is also continuous and compact. Therefore, Qn,0−id
and Qn,1 − id are homotopic ([11], p. 93) on ∂D0 and

deg(Qn,0 − id ,W0, 0) = deg(Qn,1 − id ,W0, 0) (4.9)

by Theorem 20.1 [11], p. 100. On the other hand, the mapping Qn,1−
id is the direct sum, [11], p.117 of the mapping Q

(u)
n,1(0, y

(u)) − id on

W
(u)
0 ⊂ IRdu and the mapping Q

(s)
n,1(y

(s), 0)− id on W
(s)
0 ⊂ IRds in IRds :

Qn,1(·)− id = (Q
(u)
n,1(·, 0)− id)⊕ (Q

(s)
n,1(0, ·)− id).

Thus, Theorem 22.4 [11], p. 117 implies that

deg (Qn,1 − id ,W0, 0) =

= deg
(
Q

(u)
n,1(·, 0)− id , W

(u)
0 , 0

)
deg

(
Q

(s)
n,1(0, ·)− id ,W

(s)
0 , 0

)
.

The last equality can be rewritten as

deg (Qn,0 − id ,W0, 0) =

= deg
(
Q

(u)
n,1(·, 0)− id ,W

(u)
0 , 0

)
deg

(
Q

(s)
n,1(0, ·)− id ,W

(s)
0 , 0

)

by (4.9) . Since

deg
(
Q

(s)
n,1(0, ·)− id ,W

(s)
0 , 0

)
=

= (−1)dsdeg
(
id −Q

(s)
n,1(0, ·),W (s)

0 , 0
)

= (−1)ds

by the first inclusion (4.1) and Theorem 21.5, [11], p.108, it can be
rewritten further as

deg (Qn,0 − id ,W0, 0) = (−1)dsdeg
(
Q

(u)
n,1(·, 0)− id ,W

(u)
0 , 0

)
. (4.10)

On the other hand, Q
(u)
n,1(w) 6∈ W

(u)
n = W

(u)
0 for w ∈ ∂W

(u)
0 , and so

the vectors Q
(u)
n,1(w, 0) − w and Q

(u)
n,1(w, 0) do not point in opposite

directions for w ∈ ∂W
(u)
0 , that is Q

(u)
n,1(w, 0) − id = µQ

(u)
n,1(w, 0) does

not hold for any µ ≥ 0. (Indeed, otherwise Q
(u)
n,1(w, 0) = w/(1 + µ);
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that contradicts the first inclusion (4.8) because 0 ∈ W
(u)
0 ). Therefore

Q
(u)
n,1(w, 0)−w and Q

(u)
n,1(w, 0) are homotopic on ∂D

(u)
0 by Theorem 2.1

[11], p. 4, and, further, the equation

deg
(
Q

(u)
n,1(·, 0)− id ,W

(u)
0 , 0

)
= deg

(
Q

(u)
n,1(·, 0),W

(u)
0 , 0

)
.

holds by Property 1 [11], p.5. Now (4.10) implies

deg (Qn,0 − id ,W0, 0) = (−1)dsdeg
(
Q

(u)
n,1(·, 0),W

(u)
0 , 0

)
.

On the other hand,

deg (Qn,0 − id , W0, 0) = (−1)ddeg (id −Qn,0,W0, 0)

(for instance, again by the product formula (7.6), [11]). The last two
equations imply

deg (id −Qn,0,W0, 0) = (−1)dudeg
(
Q

(u)
n,1(·, 0),W

(u)
0 , 0

)
.

It remains to establish that

deg
(
Q

(u)
n,1(·, 0),W

(u)
0 , 0

)
=

n∏
i=1

deg
(
q
(u)
i (·, 0),W

(u)
i−1, 0

)
.

Since q
(u)
i (0, y(u)) = q

(u)
i,1 (0, y(u)) for y(u) ∈ ∂W

(u)
i , we have to establish

the equality

deg
(
Q

(u)
n,1, W

(u)
0 , 0

)
=

n∏
i=0

deg
(
q
(u)
i,1 (·, 0),W

(u)
i−1, 0

)
. (4.11)

Let W
(u)

i be contained in an open ball Bi, i = 1, . . . , n. The

values of the mappings q
(u)
i,1 (w) belong to the closed and bounded set

Zi = Bi \ W
(u)
i for w ∈ ∂W

(u)
i−1. Indeed, this assertion is true for

i = 1 by the second equality (4.1), and can be proved by induction for
other i. The set IRdu \ Zi consists only of two connected components

with 0 being contained in the bounded component. The mapping q
(u)
i,1

is nonsingular and continuous on Zi. Thus, the product formula for
rotations (see Theorem 7.2 and the formula (7.6), [11], p. 18) implies

deg(Q
(u)
i+1,1,W

(u)
0 , 0) = deg(Q

(u)
i,1 ,W

(u)
0 , 0) · deg(q

(u)
i+1,1,W

(u)
i , 0),

i = 1, . . . , n− 1.
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Since Q
(u)
1,1 = q

(u)
1,1 , the ‘base equation’ deg(Q

(u)
1,1 ,W

(u)
0 , 0) =

deg(q
(u)
1,1 ,W

(u)
0 , 0) also holds, and (4.11) follows inductively. The lemma

is proved.

Denote Yi = Si

⋂
gi(Si−1), i = 1, . . . , n−1. The sets Yi are compact

subsets of Wi by (4.1). In the case W0 = Wn it is convenient to define
also Y0 = S0

⋂
gi(Sn−1).

Corollary 4.1. There exists a sequence satisfying yi = gi(yi−1), i =
1, . . . , n, and yi ∈ Yi, i = 1, . . . , n− 1. If additionally Wn = W0, then
there exists a sequence yi ∈ Wi satisfying additionally the equality
y(n) = y0 and the inclusion y0 ∈ Y0.

P r o o f. Firstly we prove the equalities

deg(g
(u)
i (·, 0),W

(u)
i−1, 0) = deg(q

(u)
i (·, 0),W

(u)
i−1, 0). (4.12)

Denote

Si,0 =
{

w ∈ W (u) : gi(0, w) ∈ W
(u)
i

}
= Si

⋂
(0× IRdu).

By the definition, neither g
(u)
i (0, w), nor q

(u)
i (0, w) have zeros outside

Si,0. Thus

deg(g
(u)
i (·, 0),W

(u)
i−1, 0) = deg(g

(u)
i (·, 0), Si−1,0, 0)

and
deg(q

(u)
i (·, 0),W

(u)
i−1, 0) = deg(q

(u)
i (·, 0), Si−1,0, 0).

On the other hand, g
(u)
i (·, 0) coincides with q

(u)
i (·, 0) in Si,0 by (4.4),

and (4.12) is proved.
By the assertions (b) and (c) of the lemma, the simultaneous rela-

tionships (4.2), (4.12) imply deg
(
Qn(·, 0),W

(u)
0 , 0

)
6= 0, and

deg (id −Qn,W0, 0) 6= 0 if Wn = W0. This implies existence of

y = (0, w) ∈ W0 satisfying Q
(u)
n (y) = 0 and also existence of y ∈ W0

satisfying Qn(y) = y if Wn = W0. It remains to use Assertion (a) to
establish the inclusions yi ∈ Yi for the appropriate i.

4.2 Finalizing the proof

Denote Si,j =
{

y ∈ V i : g
(u)
i,j (y) ∈ V

(u)

j

}
, and Zi =

(⋃
ai,j=1 Si,j

) ⋂
(⋃

aj,i=1 gj,i(Si,j)
)

. By definition Zi are compact, and they satisfy

Zi ⊂ Vi by (2.1).
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Lemma 4.2.

(α) Let ω ∈ ΩA be a given p-periodic symbolic sequence. Then there
exists a p-periodic trajectory x ∈ Tr(f) satisfying xi ∈ hi (Zωi

) .
If γ(ω) < 0 then the trajectory x can be chosen not asymptoti-
cally stable.

(β) Let ω ∈ ΩA be a given symbolic sequence. Then there exists a
trajectory x ∈ Tr(f) satisfying xi ∈ hi (Zωi

) .

P r o o f. (α) Let us consider the sequence of product-sets Wi =
Vωi

, i = 0, 1, . . . , p and the sequence of mappings gi = h−1
ωi

fhωi−1
,

i = 1, . . . , p. By the second assertion of Corollary 4.1 there exists a ‘g-
trajectory’ y satisfying yi ∈ Yi, i = 0, . . . , p−1, and yp = y0. Then the
p-periodic sequence x which is defined by xi = hωi

(yi) an f -trajectory
satisfying xi ∈ hωi

(Yi) ⊆ hωi
(Zωi

) .
It remains to consider the case when γ(ω) < 0. In this case

deg (id −Qp,W0, 0) = (−1)du

n∏
i=1

deg(g
(u)
i (·, 0),W

(u)
i−1, 0) = γ(ω) < 0,

by the assertion (c), Lemma 4.1. By assertion (a), Lemma 4.1, yi =
Qi(y0) ∈ Si. for any fixed point y0 of Qp, and y0 must be a p-periodic
for f by (4.4). Thus, if not all fixed points of Qp are isolated, then
we have nothing to prove. Otherwise, by the Kronecker formula,
there exists a fixed point y0 ∈ S0 with a negative Kronecker index:
ind(y0, id − Qp) < 0. Again, by assertion (a), Lemma 4.1, yi =
Qi(y0) ∈ Si, and by (4.4) ind(y0, id−Qp) = ind(y0, id−Gp) < 0. Since
hi are homeomorphisms, ind(hω0y0, id − f p) = ind(y0, id − Gp) < 0.
Therefore, x0 = hω0(y0) is a periodic point of f with the minimal pe-
riod p and with a negative Kronecker index. This point can not be
asymptotically stable, for instance, by Theorem 31.1, [11].

(β) Analogously, making use of the first assertion in Corollary 4.1,
we can establish that for any ω ∈ ΩA and any positive integer n there
exists a trajectory x−n, x1−n, . . . , xn satisfying xi ∈ hωi

(Zωi
) . Taken

coordinate-wise limit we conclude that for any given sequence ω ∈ ΩA

there exists a trajectory satisfying xi ∈ hωi
(Zi) for all integer i.

Introduce a multi-valued operator Ψ which corresponds to each
ω ∈ ΩA the set of trajectories x satisfying xi ∈ Xi, with the ad-
ditions that x must be p-periodic for a p-periodic ω, and x is not
asymptotically stable if γ(ω) < 0. The set Ψ(ω) is nonempty by the
lemma above. To complete the proof of the theorem, it remains to
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apply the Zorn’s Lemma to construct a single-valued selector of Ψ
which is shift invariant. Indeed, let us denote by Φ the totality of
single-valued functions ψ which are defined on subsets of D(ψ) ⊂ ΩA

and satisfy the properties (p1)–(p3), and consider this set as being
partially ordered by inclusion of the corresponding graphs Gr(ψ) =

{(ω, ψ(ω)) : ω ∈ D(ψ)} . By the construction every chain Φ̂ (that is,
linearly ordered subset) of Φ has an upper bound, the graph of which
is defined as the union

⋃
ψ∈bΦ Gr(ψ).

By Zorn’s lemma there exists a maximal element ϕ in the set Φ.
Suppose that the strict inclusion D(ϕ) ⊂ ΩA holds. Then there exists
an element ω∗ ∈ ΩA \D(ϕ). If for some positive integer i the sequence
ω∗ is the ith-shift of a sequence ω0 ∈ D(ϕ) then the mapping

ϕ0(ω) =





ϕ(ω) if ω ∈ D(ϕ),

σ−i
f ϕ(ω0) if ω = ω∗

satisfies the properties (p1)–(p3) and strictly dominates ϕ, which con-
tradicts the definition of ϕ. On the other hand, if the sequence ω∗

cannot be represented as a shift of a sequence ω ∈ D(ϕ) then define
ϕ0(ω

∗) as an arbitrary element from the nonempty set Ψ(ω∗). The
mapping ϕ0 again satisfies (p1)–(p3) and strictly dominates ϕ, and
we arrive again at a contradiction.

The theorem and the lemma are proved.

5 Examples

5.1 Example 1

Consider a Henon mapping Ha,b(x
(1), x(2)) = (1 + x(2) − ax(1)2, bx)

with a = a∗ = 1.3924, b = b∗ = 0.3. We are interested in the
Henon mapping with these particular values of parameters by the
following considerations. For some values of parameters a, b, satisfying
|a− a∗|, |b− b∗| < 0.00005, a fixed point

xa,b =
(
(b− 1)/2a−

√
((b− 1)/2a)2 + 4

)
(1, b)

of this mapping generates stable and unstable manifolds which are
tangent at some point (i. e. there is a homoclinic tangency). By
the classical results of Mora and Viana [13] this implies abundance
of strange attractors for generic diffeomorphisms sufficiently close to
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Ha∗,b∗ . Note also, that the Henon mapping with the classical param-
eters was investigated by Zgliczyński’s method in [21, 7].

We will use the eigenvectors v1 ≈ (−0.988, 0.155), v2 ≈ (−0.462,
−0.887) corresponding to the approximate eigenvalues −1.929, 0.156
of the linearization of Ha∗,b∗ at the fixed point

x∗ =
(
(b− 1)/2a +

√
((b− 1)/2a)2 + 4

)
(1, b) .

For a given x = (x(1), x(2)) ∈ IR2 we consider the homeomorphism
hx : IR1 × IR1 7→ IR2 as hx(y

(u), y(s)) = x + y(u)v1 + y(s)v2. Let us
construct an 11-element sequence xi and corresponded rectangles

Vi =
{

(y(u), y(s)) : |y(u)
i | < α

(u)
i , |y(s)

i | < α
(s)
i

}

such that the mappings gi,j = h−1
xj

Hhxi
be (Vi, Vj)-hyperbolic if ai,j =

1, and A is the (11× 11)-matrix (2.4).

Coordinates of the points xi = (x
(1)
i , x

(2)
i ), i = 1, . . . , 11, and the

sizes of the corresponded rectangles are presented in Table 1.

Table 1: Numerical values for x
(1)
i , x

(2)
i , α

(u)
i and α

(s)
i

i 1 2 3 4 5 6 7 8 9 10 11

x
(1)
i .632 .6045 .6854 .5273 .8184 .2256 1.1747 -.8537 .3376 .5852 .6245

x
(2)
i .1897 .1941 .1813 .2056 .1582 .2455 .0677 .3524 -.2561 .1013 .1755

α
(u)
i .03 .025 .037 .05 .05 .05 .02 .027 .02 .016 .022

α
(s)
i .01 .01 .005 .004 .004 .004 .008 .0045 .01 .01 .01

Actually, we chose as xi the elements of a ‘quasi-homoclinic quasi-
orbit’ O which passes close to xa∗,b∗ ; these elements were taken from
[15], Table 3. The sizes of the rectangles were adjusted to satisfy the
(2.1).

Lemma 5.1. The family U of connected components of the set U =⋃11
i=1 hi(Vi) has eight components.

P r o o f. See Figure 2 at the end of this section, or make necessary
calculation with a pocket calculator.

Lemma 5.2. The mappings gi,j = h−1
xi

Ha∗,b∗hxj
are (Vi, Vj)-hyperbolic

if ai,j = 1 and the corresponding number (3.3) satisfies the estimate

χ = χ∗ > 0.0001. Moreover, deg(g
(u)
8,9 , V

(u)
i , 0) = 1, and deg(g

(u)
i,j , V

(u)
i , 0) =

−1 for other (i, j) satisfying ai,j = 1.
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P r o o f. Consider Figures 4,5 at the end of the section. These
pictures, combined with the last sentence in Section 2.2, prove the
lemma for the ‘unperturbed’ mapping f = Ha∗,b∗ . To estimate χ∗ it
remains to proceed with some additional trivial calculations.

To make this ‘picture proof’ easily verifiable, and to encourage
readers to prove other similar assertions, we included in the paper
the scripts of Mathematica-IV programs which produced Figures 2–4
(see Appendix). We would like to stress once more that a computer
is not necessary to prove this lemma: a pocket calculator would be
more than enough. On the other hand, packages like Mathematica or
Maple are recommended when locating the quasi-orbit xi and ’online’
adjusting sizes of rectangles.

Let now consider a mapping H = (H1, H2) : IR2 × IR
bd → IR2 × IR

bd
that satisfies the inequalities

|H1(x, y)−Ha∗,b∗(x)| ≤ ε1 + c1|y|, |H2(x, y)| ≤ ε2 + c2|y|.
Here ε1, ε1, c1, c2 > 0, c2 < 1 and ε1 + c2ε2/(1− c2) < 0.0001 < χ∗.

Corollary 5.1. Let A be the 11× 11 matrix (2.4).

(i) The mapping H is (X , σA)-compatible, where Xi are compact sub-
sets of hi(Vi).

(ii) H is (Û , 20) chaotic, where Û is the eight-element set, which pro-
jection to IR2 consists of connected components of the set graphed
in Figure 1.

(iii) For any p ≥ 11 the function f has a periodic point x ∈ X1 which
has the minimal period p, and which is not asymptotically stable

P r o o f. Assertion (i) follows from Theorem 1. Assertion (ii)
follows from Corollary 3.1. Assertion (iii) follows Lemma 3.2 and the
last part of Lemma 5.2.

5.2 Example 2

Due to Corollary 3.2 it is possible to estimate chaos threshold of the
Hénon mapping (with the same parameters as above) with respect to
an invariant set which is similar to the attractor. In this subsection
we describe some numerical results in this direction.

Firstly we specify an invariant set. We construct the set Z ⊂ IR2

by describing its boundary ∂Z. Let us define the points

p0
0 = (0.55, 0.01), p0

1 = (−1.12,−0.29), p0
2 = (−1.33, 0.38),
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p1
0 = (1.29,−0.008), p1

1 = (−1.1,−0.41), p1
2 = (−1.33, 0.4)

and four functions (parabolas) bi∈{0,1},j∈{1,2}:

x(2) ∈ IR 7→ x(1) ∈ IR

bi∈{0,1},j∈{1,2}(x
(2)) =

(pi
j
(1) − pi

0
(1)

)

(pi
j
(2) − pi

0
(2)

)2
(x(2) − pi

0

(2)
)
2
+ pi

0

(1)

satisfying bi∈{0,1},j∈{1,2}(pi
j
(2)

) = pi
j
(1)

and bi∈{0,1},j∈{1,2}(pi
0
(2)

) = pi
0
(1)

.

Now, we connect pi=0,1
0 to pi

j=1,2 with function bi,j(x
(2)) and p0

j=1,2 to p1
j

with straight lines. Z is the set bounded by this construction and it is
invariant with respect to Ha,b. By Z8 we denote Ha,b

8(Z) (see Figure
5 at the end of this paper). This set is by definition also invariant for
Ha,b, and it is the approximation from above for the attractor which
we will use.

As the second step, using special computer algorithms1, we will find
large family of product sets as in the previous subsection. Because of
numerical reasons (no problems with rounding in h−1

i ) it is convenient
to redefine the vectors v1, v2 used in the homeomorphism,

hx : IR1 × IR1 7→ IR2

hx(y
(u), y(s)) = x + y(u)v1 + y(s)v2,

so we set v1 = (−1, 0), v2 = (−0.5,−1). All trajectories x = {xi}
used in this example start from random points in the circle with the
radius 0.01 centred at the fixed point

x∗ =
(
(b− 1)/2a +

√
((b− 1)/2a)2 + 4

)
(1, b) .

and end in the same area — the last set Vi must contain the point
x∗. The computer algorithm starts with the first rectangle (size as
in 5) and tries to construct next one satisfying (2.1) and so on, until
trajectory will be back and x∗ ∈ Vi will be valid (see Figure 6). If
fails with one starting point, goes with another one. It was found
237669 such x and each has not less than 20 points. We choose 161
trajectories in which at least one element is further then 1.799 from x∗
to make set {x = {xi}}more dense in Z8 and presentation more cleary.
One trajectory, together with the sizes of corresponding rectangles, is
printed in Appendix; the others can be found in the electronic version

1 it will be described elsewhere
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of this preprint in the home page of Institute for Nonlinear Sciences:
www.ins.ucc.

Due to Corollary 3.2 we found for this example r = 0.0341 and
∆ = 0.31 (see Figure 7). The chaos threshold with respect to Z8

estimated in this section is to be not greater than 0.345.

-0.5 0 0.5 1

-0.2

-0.1

0

0.1

0.2

0.3

0.5 0.55 0.6 0.65 0.7

0.18

0.19

0.2

0.21

Figure 2: Above: the sets hi(Vi) for i = 1, . . . , 11. Be-
low: the sets hi(Vi) for i = 1, . . . , 4.
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Figure 3: The first picture: g1,1(V1) (black) against V1 (gray); the
other 5 pictures: and gi,i+1(Vi) against Vi+1 for i = 1, 2, 3, 4, 5. The

sets gi,j(∂V
(u)
i ×V

(s)
i and ∂V

(u)
j ×V

(s)
j are bolder than gi,j(V

(u)
i ×V

(s)
i )

and V
(u)
j × ∂V

(s)
j . The gi,j-images of the left part of ∂V

(u)
i × V

(s)
i are

very bold.
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Figure 4: gi,i+1(Vi) against Vi+1 for i = 6, 7, 8, 9, 10 and g11,1(V11)
against V1.
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Figure 5: The set Z8 (solid line) plotted against Z; two crosses denote
fixed points.
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Figure 6: The set Z8 (aproximation of Hénon set) plotted against the
sets Vi (whole number 4758), two crosses denote fixed points.
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Figure 7: The inclusion Z8 ⊂ ⋃
Bhi(0)(∆) for ∆ = 0.31. The crosses

denote fixed points.
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6 Appendix

6.1 Mathematica-IV programs to produce Figures
2 – 4

(* This script produces the top picture in Figure 2.
To produce the bottom picture, the line “pl[1],pl[2],pl[3],pl[4],pl[5],
pl[6],pl[7],pl[8],pl[9],pl[10], pl[11],”” should be changed to
“pl[1],pl[2],pl[3],pl[4],”*)

He[{x2_, y2_}] = {1 + y2 - a*x2*x2, 0.3*x2}; a = 1.3924; b = 0.3;

q = (1 - b)/(2a); fp = (Sqrt[q^2 + 1/a] - q){1, b}; mt = {{-2*a*fp[[1]], 1.}, {b, 0}};

ev = Eigenvectors[mt]; mt2 = Inverse[ev];

cp = {fp,fp,{0.6045,0.1941},{0.6854,0.1813},{0.5273,0.2056},{0.8184,0.1582},{0.2256,

0.2455},{1.1747,0.06767},{-0.8537,0.3524},{0.3376,-0.2561},{0.5852,0.1013},

{0.6325,0.1874},fp};

al = {{0.03,0.01},{0.03,0.01},{0.025,0.01},{0.037,0.005},{0.05,0.004},{0.05,0.004},

{0.05,0.004},{0.02,0.008},{0.027,0.004},{0.02,0.01},{0.016,0.01},{0.025,0.01},

{0.03,0.01}};

For[i=1,i<12,i++,

co=cp[[i]];v1=al[[i]][[1]]*ev[[1]];v2=al[[i]][[2]]*ev[[2]];

pl[i]=ParametricPlot[{

{(v1+v2*t)[[1]]+co[[1]],(v1+v2*t)[[2]]+co[[2]]},{(v2+v1*t)[[1]]+co[[1]],(v2+v1*t)

[[2]]+co[[2]]},{(-v1+v2*t)[[1]]+co[[1]],(-v1+v2*t)[[2]]+co[[2]]},{(-v2+v1*t)[[1]]+

co[[1]],(-v2+v1*t)[[2]]+co[[2]]}},{t,-1,1}]];

Show[pl[1],pl[2],pl[3],pl[4],pl[5],pl[6],pl[7],pl[8],pl[9],pl[10],pl[11],

Axes->None,Frame->True,PlotRange->All]

(* The script below produces the last picture in Figure 4. To produce, for
instance, the first picture in Figure 3, the command “n=12” below should
be changed to “n=1”. *)

He[{x2_, y2_}] = {1 + y2 - a*x2*x2, 0.3*x2}; a = 1.3924; b = 0.3;

q = (1 - b)/(2a); fp = (Sqrt[q^2 + 1/a] - q){1, b}; mt = {{-2*a*fp[[1]], 1.}, {b, 0}};

ev = Eigenvectors[mt]; mt2 = Inverse[ev];

cp = {fp,fp,{0.6045,0.1941},{0.6854,0.1813},{0.5273,0.2056},{0.8184,0.1582},{0.2256,

0.2455},{1.1747,0.06767},{-0.8537,0.3524},{0.3376,-0.2561},{0.5852,0.1013},

{0.6325, 0.1874},fp};

al = {{0.03,0.01},{0.03,0.01},{0.025,0.01},{0.037,0.005},{0.05,0.004},{0.05,0.004},

{0.05,0.004},{0.02,0.008},{0.027,0.004},{0.02,0.01},{0.016,0.01},{0.025,0.01},

{0.03,0.01}};

n = 12;

ao = al[[n]]; an = al[[n + 1]]; co = cp[[n]]; cn = cp[[n + 1]];

v1 = ao[[1]]*ev[[1]]; v2 = ao[[2]]*ev[[2]];

h1 = ParametricPlot[{

{((He[v1+v2*t+co]-cn).mt2)[[1]],((He[v1+v2*t+co]-cn).mt2)[[2]]},

{((He[-v1+v2*t+co]-cn).mt2)[[1]],((He[-v1+v2*t+co]-cn).mt2)[[2]]},

{((He[v2+v1*t+co]-cn).mt2)[[1]],((He[v2+v1*t+co]-cn).mt2)[[2]]},

{((He[-v2+v1*t+co]-cn).mt2)[[1]],((He[-v2+v1*t+co]-cn).mt2)[[2]]},

{an[[1]], an[[2]]*t}, {-an[[1]], an[[2]]*t},

{an[[1]]*t, an[[2]]}, {an[[1]]*t, -an[[2]]}},

{t, -1, 1},

PlotStyle->{{Thickness[0.03]},{Thickness[0.01]},{Thickness[ 0.005]},

{Thickness[0.005]}, {Thickness[0.01],GrayLevel[0.7]},

{Thickness[0.01], GrayLevel[0.7]}, {Thickness[0.005],

GrayLevel[0.7]}, {Thickness[0.005], GrayLevel[0.7]}},

Axes -> None, Frame -> True, PlotRange -> {-0.02, 0.02}]
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6.2 Sample numerical values for Example 2
i x

(1)
i x

(2)
i α

(u)
i α

(s)
i

1 0.633233262735324766756524911205258 0.189782120425760776933831970635397 0.0300000 0.0100000

2 0.631451490551827621494388066149965 0.189969978820597430026957473361577 0.0299700 0.0103200

3 0.634776955417815591760747893496190 0.189435447165548286448316419844989 0.0299400 0.0103889

4 0.628379308336016552723054594516833 0.190433086625344677528224368048857 0.0299101 0.0103975

5 0.640629249641654755185693726245766 0.188513792500804965816916378355050 0.0298802 0.0103917

6 0.617064707155576377861709510518119 0.192188774892496426555708117873730 0.0298503 0.0103824

7 0.662006224230109479233331298898778 0.185119412146672913358512853155436 0.0298204 0.0110887

8 0.574896991890492011544864097665191 0.198601867269032843769999389669633 0.0297906 0.0105339

9 0.738404545260165827935546138656690 0.172469097567147603463459229299557 0.0297608 0.0118228

10 0.413275149792629034288565910854155 0.221521363578049748380663841597007 0.0297311 0.0092658

11 0.983704526623196307551100067345900 0.123982544937788710286569773256247 0.0297013 0.0150676

12 -0.223407562113452568794683517305720 0.295111357986958892265330020203770 0.0296716 0.0078932

13 1.225615366788644276489361973476075 -0.067022268634035770638405055191716 0.0033279 0.0100328

14 -1.158592295858339712781788288698079 0.367684610036593282946808592042822 0.0033246 0.0015021

15 -0.501384186773655261487851522635037 -0.347577688757501913834536486609424 0.0033213 0.0006147

16 0.302392301778021378195273644737929 -0.150415256032096578446355456790511 0.0031257 0.0014467

17 0.722262150515176525552003546579347 0.090717690533406413458582093421379 0.0023489 0.0018475

18 0.364354666706783636235429284899462 0.216678645154552957665601063973804 0.0023466 0.0009508

19 1.031831525599084701112991648346410 0.109306400012035090870628785469839 0.0023224 0.0013545

20 -0.373148876237280307881697133929807 0.309549457679725410333897494503923 0.0023201 0.0006038

21 1.115671564944884522379514269017835 -0.111944662871184092364509140178942 0.0011838 0.0007871

22 -0.845097024918096933697366500266341 0.334701469483465356713854280705350 0.0011827 0.0003026

23 0.340264731607472568159972055525215 -0.253529107475429080109209950079902 0.0011815 0.0003248

24 0.585258698583880322582954223850233 0.102079419482241770447991616657564 0.0011466 0.0006451

25 0.625143788363343119020301796298662 0.175577609575164096774886267155070 0.0011454 0.0004850

26 0.631421067140765302160097327862777 0.187543136509002935706090538889598 0.0011443 0.0004188

27 0.632403610354768744287438238768069 0.189426320142229590648029198358833 0.0011431 0.0004026

28 0.632557764077147024471619289501441 0.189721083106430623286231471630421 0.0011420 0.0003984

29 0.632581011123635715759631309543990 0.189767329223144107341485786850432 0.0011408 0.0003971

30 0.632586305726082171053458703923064 0.189774303337090714727889392863197 0.0011397 0.0003965

31 0.632583952767910002880422411425322 0.189775891717824651316037611176919 0.0011386 0.0003960

32 0.632589686174037898353474883343348 0.189775185830373000864126723427596 0.0011374 0.0003956

33 0.632578880159106778839250367307550 0.189776905852211369506042465003004 0.0011363 0.0003952

34 0.632599636280659419963849770756660 0.189773664047732033651775110192265 0.0011351 0.0003948

35 0.632559829774990819479227529149699 0.189779890884197825989154931226998 0.0011340 0.0003944

36 0.632636180071908055810428917528656 0.189767948932497245843768258744910 0.0011329 0.0003940

37 0.632489734938284715300621003596721 0.189790854021572416743128675258597 0.0011317 0.0003936

38 0.632770612110847589711925319529616 0.189746920481485414590186301079016 0.0011306 0.0003933

39 0.632231843631282620078553179821938 0.189831183633254276913577595858885 0.0011295 0.0003929

40 0.633265087882450160131971750847665 0.189669553089384786023565953946581 0.0011284 0.0003925
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