Symplectic Geometry

Nuno Romão

Jagiellonian University, 2nd Semester 2009/10

Exercises:

- 1. Consider the standard symplectic 2-form $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$ on \mathbb{R}^{2n} . Describe the group of linear symplectomorphisms $\operatorname{Sp}_{2n}(\mathbb{R}) := \operatorname{GL}_{2n}(\mathbb{R}) \cap \operatorname{Symp}(\mathbb{R}^{2n}, \omega_0)$ explicitly as a matrix group and compute its dimension.
- 2. Show that any closed orientable smooth surface admits a symplectic structure.
- 3. Let (M, ω) be a symplectic manifold; show that M is necessarily orientable.
- 4. Which of the (unit) even-dimensional spheres $S^{2n} \subset \mathbb{R}^{2n+1}$, $n \in \mathbb{N}$, are symplectic?
- 5. Show that the set of oriented lines in \mathbb{R}^3 can be given a symplectic structure ω which admits $\text{Diff}(S^2)$ as a subgroup of symplectomorphisms.
- 6. Let (M, ω) be a symplectic manifold and $\alpha \in \Omega^1(M, \mathbb{R})$ such that $\omega = -d\alpha$.
 - (a) Show that there is a unique vector field $v \in \mathcal{X}(M)$ for which $\iota_v \omega = -\alpha$.
 - (b) If $g \in \text{Symp}(M, \omega)$ preserves α (i.e. $g^* \alpha = \alpha$), prove that g commutes with all the elements of the one-parameter subgroup of Diff(M) generated by v.
- 7. Let X be a manifold, and consider $M = T^*X$ with tautological 1-form α and canonical symplectic structure $\omega = -d\alpha$. Show that any $g \in \text{Symp}(M, \omega)$ preserving α must preserve the fibres of $T^*X \to X$ and lie in the image of $\text{Diff}(X) \hookrightarrow \text{Symp}(M, \omega)$.
- 8. Let S be an isotropic submanifold of a symplectic manifold (M, ω) . Show that S is lagrangian (i.e. also co-isotropic) if and only if dim $S = \frac{1}{2} \dim M$.
- 9. Let X be a manifold and $M = T^*X$ equipped with the canonical symplectic structure ω . Suppose that $f: X \times X \to \mathbb{R}$ is a generating function for some $\varphi \in \text{Symp}(M, \omega)$.
 - (a) Give a geometric interpretation for the fixed points of φ in terms of the function $f \circ i_{\Delta}$: $X \to \mathbb{R}$, where $i_{\Delta} : x \mapsto (x, x)$ is the diagonal inclusion.
 - (b) Construct (locally) a generating function for the symplectomorphism $\varphi^{(2)} := \varphi \circ \varphi$.
- 10. Suppose that (X, g) is a Riemannian manifold which is geodesically convex and complete, and let $d: X \times X \to \mathbb{R}$ be the corresponding metric distance. The function $f(x, y) = -\frac{1}{2}d(x, y)^2$ generates a canonical transformation $\varphi \in \text{Symp}(T^*X, \omega)$, which can also be interpreted as a diffeomorphism $\tilde{\varphi}$ of TX (called *geodesic flow*) using the identification of TX with T^*X provided by the metric g. Show that $\tilde{\varphi}(x, v) = (\exp_x(v)(1), \frac{d}{dt} \exp_x(v)(t)|_{t=1})$ for $v \in T_x X$.

- 11. Let $i: X \hookrightarrow \mathbb{R}^n$ be the inclusion of a submanifold into Euclidean space. Show that the normal bundle NX can be identified with the subbundle of $i^* \mathbb{TR}^n \to X$ whose fibre at $x \in X$ is the orthogonal complement $(di|_x(\mathbb{T}_x X))^{\perp} \subset \mathbb{T}_{i(x)}\mathbb{R}^n$.
- 12. Give a complete proof of the tubular neighbourhood theorem for submanifolds.
- 13. Prove that two symplectic structures on a manifold M are isotopic if they are strongly isotopic (and thus symplectomorphic). Give a topological condition on M ensuring that the converse is true.
- 14. Let S be a closed surface and ω_0, ω_1 two symplectic structures on S with $\int_S \omega_0 = \int_S \omega_1$. Show that ω_0 and ω_1 are strongly isotopic.
- 15. Show that the following is an equivalent definition of symplectic structure on a 2*n*-manifold M: an atlas $\{\phi_i, U_i\}_{i \in I}$ for M such that for $U_i \cap U_j \neq \emptyset$ one has $\phi_i \circ \phi_j^{-1} \in \text{Symp}(\mathbb{R}^{2n}, \omega_0)$, where ω_0 is the standard symplectic 2-form.
- 16. Find global Darboux coordinates on a 2-sphere with two antipodal points removed, equipped with the symplectic structure induced from the usual (round) area 2-form.
- 17. Let (M, ω) be a compact symplectic manifold. Explain how the following statement can be made precise: the Lie algebra of the group $\text{Symp}(M, \omega)$ is the vector space of closed 1-forms on M.
- 18. Recall that the C^1 topology on the set of diffeomorphisms of a manifold M is defined by the following notion of convergence: a sequence $(f_k)_{k \in \mathbb{N}}$ in Diff(M) is said to C^1 -converge iff the sequence of derivatives $df_k : TM \to TM$ converges uniformly on compact sets. Now let (M, ω) be a compact symplectic manifold with $H^1(M; \mathbb{R}) = 0$. Prove that a symplectomorphism of M which is sufficiently C^1 -close to the identity (meaning: contained a sufficiently small neighbourhood of id_M with respect to the C^1 topology) has at least two fixed points.
- 19. Let (V, Ω) be a symplectic vector space. Show that the set $\mathcal{J}(V, \Omega)$ of all Ω -compatible complex structures on V is contractible; in other words, there is a homotopy $h_t : \mathcal{J}(V, \Omega) \to \mathcal{J}(V, \Omega)$ (continuous with 0 < t < 1) such that h_0 is the identity, h_1 is a constant element $J \in \mathcal{J}(V, \Omega)$ and $h_t(J) = J$ for all $t \in [0, 1]$.
- 20. Let (V, J) be a complex vector space. Show that there is a positive inner product $G(\cdot, \cdot)$ on V with respect to which the complex structure J is orthogonal. Use this fact to prove that V admits a symplectic structure Ω such that J is Ω -compatible.
- 21. Let $\Omega(V)$ and J(V) denote the sets of symplectic and complex structures (respectively) on a vector space V, and fix $\Omega \in \Omega(V)$, $J \in J(V)$. Show that there are bijections $\Omega(V) \cong$ $GL(V)/Sp(V,\Omega)$ and $J(V) \cong GL(V)/GL(V,J)$.
- 22. Given $n \in \mathbb{N}$, show that the intersection of any two of O(2n), $Sp_{2n}(\mathbb{R})$ and $GL_n(\mathbb{C})$, identified as subgroups of $GL_{2n}(\mathbb{R})$, is the unitary group U(n).
- 23. A symplectic structure on a (real) vector bundle $E \to M$ is a smooth section ω of $\Lambda^2(E^*) \to M$ for which the bilinear maps $\omega_p : E_p \times E_p \to \mathbb{R}$ are nondegenerate for all $p \in M$. Show that:

- (a) If a vector bundle admits a symplectic structure, its structure group can be reduced from the linear group to a linear symplectic group, and conversely an $\text{Sp}_{2n}(\mathbb{R})$ -vector bundle of rank 2n admits a symplectic structure.
- (b) A real vector bundle admits a symplectic structure if and only if it is also a complex vector bundle.
- 24. Let (V, Ω) be a symplectic vector space and J an Ω -compatible complex structure. Prove that L is a lagrangian subspace if and only if J(L) is lagrangian, and that these two subspaces are orthogonal with respect to the inner product defined by the Ω -compatibility condition.
- 25. Show that the (unit) 6-dimensional sphere $S^6 \subset \mathbb{R}^7$ is an almost complex manifold.
- 26. Let (M, J) be an almost complex manifold, and for $v, w \in \mathcal{X}(M)$ set $N_J(v, w) := [Jv, Jw] [Jv, w] [v, Jw] [v, w]$. Show that this defines a tensor $N_J \in \Gamma(M, TM \otimes T^*M^{\otimes 2})$, called the Nijenhuis tensor of (M, J).
- 27. Let $J \in \text{End}(\mathbb{R}^{2n})$ be a complex structure, and suppose that there are n J-holomorphic functions $f_j : \mathbb{R}^{2n} \to \mathbb{C}, j = 1, ..., n$, such that the real and imaginary parts of all the df_j at $p \in \mathbb{R}^{2n}$ form a basis of $T_p \mathbb{R}^{2n}$. Show that $N_J|_p = 0$. Deduce that the Nijenhuis tensor of the canonical almost complex structure of a complex manifold vanishes everywhere.
- 28. Use the Newlander–Nirenberg theorem to show that any orientable closed surface is a smooth complex curve.
- 29. For $n \in \mathbb{N}$, the complex projective space \mathbb{CP}^n is defined as the set of 1-dimensional subspaces of \mathbb{C}^{n+1} ; in other words, it is the quotient $(\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^*$. Let $[z_0, z_1, \ldots, z_n]$ denote a point in this quotient, and for each integer $0 \leq j \leq n$ consider the map defined by $\varphi_j([z_0, \ldots, z_n]) :=$ $\left(\frac{z_0}{z_j}, \ldots, \frac{z_n}{z_j}\right)$ for points where $z_j \neq 0$, where the quotient $\frac{z_j}{z_j}$ has been omitted in the righthand side. Show that these n + 1 maps φ_j define an atlas giving \mathbb{CP}^n the structure of a complex manifold.
- 30. Let J denote the canonical complex structure on \mathbb{C} , and consider the subgroup $\Lambda_{\tau} = \{k+m\tau \in \mathbb{C} : k, m \in \mathbb{Z}\} \cong \mathbb{Z}^2$ of $(\mathbb{C}, +)$ that is to each $\tau \in \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$. Show that J descends to an integrable almost complex structure J_{τ} on the quotient $\mathbb{T}^2_{\tau} := \mathbb{C}/\Lambda_{\tau} \cong S^1 \times S^1$. When are two such \mathbb{T}^2_{τ} isomorphic as complex manifolds?
- 31. Let ω_0 and ω_1 be two cohomologous Kähler structures on a complex manifold M; prove that there exists a symplectomorphism between (M, ω_0) and (M, ω_1) .
- 32. Calculate a global Kähler potential for the hyperbolic plane, which is the surface $\{x + iy \in \mathbb{C} : y > 0\}$ equipped with the Riemannian metric $\frac{dx^2 + dy^2}{y^2}$.
- 33. Show that \mathbb{CP}^1 with the Kähler metric defined by the Fubini–Study structure is isometric to a 2-sphere embedded in \mathbb{R}^3 . What is its radius?
- 34. Show that U(n+1) acts transitively on \mathbb{CP}^n by isometries of the Fubini–Study metric.
- 35. Let (M, J, ω) be a Kähler structure, and consider the Riemann curvature tensor R_{∇} for the Levi-Civita connection ∇ of the underlying Kähler metric, defined by $R_{\nabla}(X, Y)Z :=$ $[\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z$ for $X, Y, Z \in \mathcal{X}(M)$. Recall that the Ricci tensor is defined by $\operatorname{Ric}(X, Y) := \operatorname{Tr}(Z \mapsto R_{\nabla}(Z, X)Y)$. Show that:

- (a) The equation $\rho(X, Y) := \operatorname{Ric}(JX, Y)$ defines a closed 2-form ρ on M.
- (b) The cohomology class $[\rho] \in H^2(M; \mathbb{R})$ does not depend on the choice of symplectic structure ω .
- 36. Let ω be a Kähler structure on a compact complex manifold M, and denote by Λ the L^2 adjoint of the operator $\alpha \mapsto \alpha \wedge \omega$ on forms. Use the Hodge identities $[\Lambda, \bar{\partial}] = -i\partial^*$ and $[\Lambda, \partial] = i\bar{\partial}^*$ to show that the Laplacians on M satisfy $\Delta_d = 2\Delta_{\bar{\partial}} = 2\Delta_{\bar{\partial}}$.
- 37. Show that the complex surface $Q = \mathbb{CP}^1 \times \mathbb{CP}^1$ embeds in \mathbb{CP}^3 as a quadric hypersurface. Relate the Kähler structure on Q induced by the Fubini–Study structure $\omega_{\mathbb{CP}^3}$ to the product Kähler structure $\omega_1 + \omega_2$, where $\omega_j = \mathrm{pr}_j^* \omega_{\mathbb{CP}^1}$ for j = 1, 2 are the pull-backs of the Fubini–Study structure by the projections $\mathrm{pr}_j : Q \to \mathbb{CP}^1$ onto each factor. Construct the Hodge diamond of Q.
- 38. Let X be a vector field on a compact manifold Q and ρ_t^X its flow. Show that there is a unique vector field X_{\sharp} on T^*Q whose flow satisfies $\pi \circ \rho_t^{X_{\sharp}} = \rho_t^X \circ \pi$ for $t \in \mathbb{R}$, where $\pi : T^*Q \to Q$ is the standard projection, and that X_{\sharp} is hamiltonian with respect to the canonical symplectic structure.
- 39. Show that the vector space of (real) smooth functions on a symplectic manifold (M, ω) is a Poisson algebra, when supplemented by the operations of pointwise multiplication and the Poisson bracket defined by ω .
- 40. Let (M, ω, H) be an integrable system with dim M = 2n and $f_1 = H, f_2, \ldots, f_n$ independent integrals of motion in involution; consider a connected component M_c of the level set $f^{-1}(\{c\})$ of the map $f = (f_1, \ldots, f_n) : M \to \mathbb{R}^n$, where $c \in \mathbb{R}^n$ is a regular value of f.
 - (a) If the fluxes $\rho_{t_i}^{X_{f_i}}$ of the hamiltonian vector fields associated to the f_i are defined for all $t_i \in \mathbb{R}$, show that the map $\mathbb{R}^n \times M_c \to M_c$ given by $((t_1, \ldots, t_n), p) \mapsto \phi_{t_n}^{X_{f_n}} \circ \cdots \circ \phi_{t_1}^{X_{f_1}}(p)$ defines a transitive action of the group $(\mathbb{R}^n, +)$ on M_c .
 - (b) Show that the stabilisator subgroup $\operatorname{Stab}_p \mathbb{R}^n$ of any $p \in M_c$ is a discrete subgroup of \mathbb{R}^n , hence a lattice $\Lambda \cong \mathbb{Z}^k$ of rank $k \leq n$.
- 41. Let $M_c \hookrightarrow M \cong \mathbb{T}^k \times \mathbb{R}^{n-k}$ be a submanifold as in exercise 40, and suppose that there is an open set $\mathcal{U} \subset M$ with $M_c \cap \mathcal{U} \neq \emptyset$, and $\alpha \in \Omega^1(\mathcal{U})$ such that $\omega|_{\mathcal{U}} = -d\alpha$. Consider a noncontractible loop γ in $M_c \cap \mathcal{U}$. Show that the integral $\oint_{\gamma} \alpha$ does not change if one adds a closed 1-form to α , or deforms γ within the same homology class.
- 42. Consider the harmonic oscillator, which is the hamiltonian system on $T^*\mathbb{R}$ (with canonical symplectic structure $\omega = dx \wedge dp$) defined by the hamiltonian $H(x,p) = \frac{1}{2m}p^2 + \frac{k}{2}x^2$, where m, k are positive constants. Calculate action-angle variables for $(T^*\mathbb{R}, \omega, H)$ outside the critical point (0, 0).
- 43. Prove Liouville's theorem: if (M, ω) is a symplectic manifold of dimension 2n, the symplectic volume form $\frac{1}{n!}\omega^{\wedge n}$ is preserved by the flux of a hamiltonian vector field.
- 44. A Riemannian metric g on a manifold Q yields a function $T : TQ \to \mathbb{R}$ by setting $T(q, \dot{q}) := \frac{1}{2}g_q(\dot{q}, \dot{q})$, where $q \in Q$ and $\dot{q} \in T_qQ$. Consider the lagrangian system on Q defined by the

lagrangian T. Write down the corresponding Euler–Lagrange equations in local coordinates and interpret the motions geometrically.

- 45. Suppose $F: V \to \mathbb{R}$ is a strictly convex function on a vector space V with quadratic growth at infinity, i.e. $F(p) > Q(p) \forall_{p \in V}$ holds for some positive-definite quadratic form Q on V; prove that the stability set of F is the whole V^* . Show that the dual function $F^*: V^* \to \mathbb{R}$ also has maximal stability set $S_{F^*} = V$ and that the two Legendre transforms $\mathcal{L}_F: V \to V^*$ and $\mathcal{L}_{F^*}: V^* \to V$ are inverses of each other.
- 46. Let $0 < \phi < 2\pi$ and $0 < \theta < \pi$ denote polar coordinates on $S^2 \subset \mathbb{R}^3$, inducing coordinates p_{ϕ}, p_{θ} on the fibres of $T^*S^2 \to S^2$, and $\ell, m, g > 0$. Show that $H : T^*S^2 \to \mathbb{R}$ given by $(\phi, \theta, p_{\phi}, p_{\theta}) \mapsto \frac{\ell^2}{2m} (\frac{p_{\phi}^2}{\sin^2 \theta} + p_{\theta}^2) + m\ell g \cos \theta$ can be interpreted as the energy of a spherical pendulum. Write down Hamilton's equations for H and verify that they are equivalent to the Euler-Lagrange equations for the dual function $H^* : TS^2 \to \mathbb{R}$ obtained by fibrewise Legendre transform. Discuss the integrability of this system.
- 47. Consider the lattice $\Lambda_{\tau} := \{k + m\tau \in \mathbb{C} : k, m \in \mathbb{Z}\} \cong \mathbb{Z}^2$ where $\operatorname{Im}(\tau) > 0$, and let ω_{τ} be the Kähler structure on $\mathbb{T}^2_{\tau} := \mathbb{C}/\Lambda_{\tau}$ induced by the standard Kähler structure on \mathbb{C} . Find the values of τ and \hbar for which $(\mathbb{T}_{\tau}, \omega_{\tau})$ admits a prequantisation.
- 48. Consider the symplectic manifold $M = T^*S^1$ with canonical symplectic structure $\omega = -d\alpha$, where $\alpha = p \, d\theta$ is the tautological 1-form. For $\hbar > 0$ and $\nu \in [0, 1[$, construct a prequantisation of (M, ω) using the operator $\nabla^{\hbar, \nu} := d + i\hbar \alpha + i\nu \, d\theta$, acting on smooth functions $f : M \to$ \mathbb{C} . Determine the spectrum of the prequantum operator associated to the fibre coordinate p for each pair (\hbar, ν) , and show that prequantisations corresponding to different pairs are inequivalent.
- 49. Let M be a manifold, \tilde{M} its universal cover, and $\tilde{\alpha}$ the standard action of $\pi_1(M)$ on \tilde{M} . If $\rho: \pi_1(M) \to \mathrm{U}(1)$ is a group homomorphism, then $\pi_1(M)$ also acts on $\tilde{M} \times \mathbb{C}$ via $\alpha_{[\gamma]}(\tilde{p}, z) = (\tilde{\rho}_{[\gamma]}\tilde{p}, \rho([\gamma])z)$ for $[\gamma] \in \pi_1(M), \tilde{p} \in \tilde{M}$ and $z \in \mathbb{C}$. Show that the space of orbits of this action is a complex line bundle over M, equipped with a flat connection, and that all flat line bundles on M arise in this way. Show that $b_1 = \dim H^1(M, \mathbb{R})$ determines the topology of the space of flat line bundles on M.
- 50. Let $i : S^2 \hookrightarrow \mathbb{R}^3$ be the standard unit sphere and ω the area form of the round metric $i^*(\sum_{j=1}^3 dx_j^2)$ on S^2 . For which $\ell, \hbar > 0$ can one construct a (unique) prequantisation of the Kähler manifold $(S^2, \ell\omega)$? Given such ℓ and \hbar , describe the action of the quantum operators associated to $i^*x_j : S^2 \to \mathbb{R}$ in holomorphic quantisation and compute the dimension of the quantum Hilbert space.
- 51. Let K be a strictly plurisubharmonic function on a bounded, connected and simply connected domain $\Omega \in \mathbb{C}^n$, and let $\omega = i\partial\bar{\partial}K$ be the associated Kähler 2-form. If $z = (z_1, \ldots z_n)$ are complex coordinates on \mathbb{C}^n , show that the quantum Hilbert space of (Ω, ω) in holomorphic quantisation can be described as the vector space $\mathcal{O}(\Omega)$ of holomorphic functions on Ω , with inner product given by $\langle \psi_1, \psi_2 \rangle = \int_{\Omega} \overline{\psi_1(z)} \psi_2(z) e^{-\frac{1}{\hbar}K(z)} \frac{\omega^n}{n!}$.
- 52. Consider the hamiltonian action of a group G on a symplectic manifold (M, ω) . Verify that the equivariance property of the moment map $\mu : M \to \mathfrak{g}^*$ is equivalent to the co-moment

map $\mu^* : \mathfrak{g} \to \mathcal{C}^{\infty}(M)$ being a Lie algebra homomorphism between $\mathfrak{g} = \text{Lie}(G)$ and $\mathcal{C}^{\infty}(M)$ (equipped with the Poison bracket of ω).

- 53. Describe the orbits of the (adjoint) action of U(2) on the space $\mathfrak{u}(2)$ of 2×2 skew-hermitian matrices by conjugation.
- 54. Consider the Lie algebra \mathfrak{g} . If $f, g \in \mathcal{C}^{\infty}(\mathfrak{g}^*)$, let $\{f, g\}(\ell) := \langle \ell, [(\mathrm{d}f)_{\ell}, (\mathrm{d}g)_{\ell}] \rangle$ for each $\ell \in \mathfrak{g}^*$. Show that this operation turns $\mathcal{C}^{\infty}(\mathfrak{g}^*)$ into a Poisson algebra.
- 55. Show that, for $\eta \in \mathfrak{g}$, $X_{\xi}|_{\eta} = [\xi, \eta]$ coincides with the vector field generated by $\xi \in \mathfrak{g}$ via the adjoint representation of a Lie group G on $\mathfrak{g} = \text{Lie}(G)$. Now for each $\ell \in \mathfrak{g}^*$ consider the skew bilinear form on \mathfrak{g} given by $\omega_{\ell}(\xi, \eta) := \langle \ell, [\xi, \eta] \rangle$. Show that this restricts to a symplectic structure on each coadjoint orbit of G.
- 56. Consider the standard action of SO(3) on \mathbb{R}^3 . Show that it lifts to a symplectic action on $T^*\mathbb{R}^3 \cong \mathbb{R}^3 \times \mathbb{R}^3$ equipped with the canonical symplectic form. Show that the function $\mu(\vec{x}, \vec{p}) := \vec{x} \times \vec{p}$ can be interpreted as a moment map for this action.
- 57. If two hamiltonian actions of a Lie group G are given on the symplectic manifolds (M_1, ω_1) and (M_2, ω_2) , show that the diagonal action of G on $(M_1 \times M_2, \operatorname{pr}_1^* \omega_1 + \operatorname{pr}_2^* \omega_2)$ is also hamiltonian.
- 58. Let G be a compact Lie group with a free action on a manifold M. Show that the space of orbits M/G is also a manifold, and that the projection $M \to M/G$ can be interpreted as a principal G-bundle.
- 59. Show that the action of U(r) on $\operatorname{Mat}_{r \times n}(\mathbb{C}) \cong \mathbb{C}^{r \times n}$ by left multiplication preserves the standard Kähler structure of $\mathbb{C}^{r \times n}$. Identifying $\mathfrak{u}(r)^*$ with $\mathfrak{u}(r)$ using the inner product $(A, B) \mapsto$ $-\operatorname{tr}(\bar{A}^t B)$, show that all moment maps of this action are given by $\mu_{\tau}(W) = \frac{1}{2i}(W\bar{W}^t - \tau I_r)$, where I_r denotes the $r \times r$ unit matrix and $\tau \in \mathbb{R}$.
- 60. For n > r, show that the symplectic quotient corresponding to the moment map μ_1 in Exercise 59. at level 0 is the Grassmannian manifold $\operatorname{Gr}_r(\mathbb{C}^n)$ of r-dimensional subspaces of \mathbb{C}^n . Identify the symplectic structure on the quotient in the case r = 1.
- 61. Work out the details of the induction step in the proof (by induction on $m \in \mathbb{N}$) of connectedness of the level sets of any \mathbb{T}^m -moment map on a compact symplectic manifold (M, ω) .
- 62. Let G be a compact Lie group and $H \subset G$ a closed subgroup; denote by $i^* : \mathfrak{g}^* \to \mathfrak{h}^*$ the projection dual to the inclusion of the Lie algebra of H into that of G. Show that from a hamiltonian space (M, ω, G, μ) one obtains another hamiltonian space $(M, \omega, H, i^*\mu)$ by restricting the G-action to H.
- 63. Let $\Delta \subset (\mathbb{R}^n)^*$ be a Delzant polytope. Show that the orientation of each of its facets is specified by a unique outward-pointing vector $v_i \in \mathbb{R}^n$ which is primitive in \mathbb{Z}^n .
- 64. Classify all Delzant polytopes in \mathbb{R}^2 with four vertices, up to translation, the action of $\mathrm{SL}_2(\mathbb{Z})$ and global rescaling.
- 65. Let $\Delta = [0,1]^4 \subset \mathbb{R}^4$ be the unit hypercube. (An orthogonal projection of its 1-edges and vertices in two dimensions, known as a *tesseract*, is depicted on the webpage of this course.) Show that this is a Delzant polytope and describe the symplectic toric manifold $(M_{\Delta}, \omega_{\Delta})$ associated to it via Delzant's theorem. What is the Euler characteristic of M_{Δ} ?