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Exercises:

1. Consider the standard symplectic 2-form ω0 =
∑n

i=1 dxi ∧ dyi on R2n. Describe the group
of linear symplectomorphisms Sp2n(R) := GL2n(R) ∩ Symp(R2n, ω0) explicitly as a matrix
group and compute its dimension.

2. Show that any closed orientable smooth surface admits a symplectic structure.

3. Let (M,ω) be a symplectic manifold; show that M is necessarily orientable.

4. Which of the (unit) even-dimensional spheres S2n ⊂ R2n+1, n ∈ N, are symplectic?

5. Show that the set of oriented lines in R3 can be given a symplectic structure ω which admits
Diff(S2) as a subgroup of symplectomorphisms.

6. Let (M,ω) be a symplectic manifold and α ∈ Ω1(M,R) such that ω = −dα.

(a) Show that there is a unique vector field v ∈ X (M) for which ιvω = −α.
(b) If g ∈ Symp(M,ω) preserves α (i.e. g∗α = α), prove that g commutes with all the

elements of the one-parameter subgroup of Diff(M) generated by v.

7. Let X be a manifold, and consider M = T∗X with tautological 1-form α and canonical
symplectic structure ω = −dα. Show that any g ∈ Symp(M,ω) preserving α must preserve
the fibres of T∗X → X and lie in the image of Diff(X) ↪→ Symp(M,ω).

8. Let S be an isotropic submanifold of a symplectic manifold (M,ω). Show that S is lagrangian
(i.e. also co-isotropic) if and only if dimS = 1

2 dimM .

9. Let X be a manifold and M = T∗X equipped with the canonical symplectic structure ω.
Suppose that f : X ×X → R is a generating function for some ϕ ∈ Symp(M,ω).

(a) Give a geometric interpretation for the fixed points of ϕ in terms of the function f ◦ i∆ :
X → R, where i∆ : x 7→ (x, x) is the diagonal inclusion.

(b) Construct (locally) a generating function for the symplectomorphism ϕ(2) := ϕ ◦ ϕ.

10. Suppose that (X, g) is a Riemannian manifold which is geodesically convex and complete, and
let d : X ×X → R be the corresponding metric distance. The function f(x, y) = −1

2d(x, y)2

generates a canonical transformation ϕ ∈ Symp(T∗X,ω), which can also be interpreted as
a diffeomorphism ϕ̃ of TX (called geodesic flow) using the identification of TX with T∗X
provided by the metric g. Show that ϕ̃(x, v) = (expx(v)(1), d

dt expx(v)(t)|t=1) for v ∈ TxX.
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11. Let i : X ↪→ Rn be the inclusion of a submanifold into Euclidean space. Show that the normal
bundle NX can be identified with the subbundle of i∗TRn → X whose fibre at x ∈ X is the
orthogonal complement (di|x(TxX))⊥ ⊂ Ti(x)Rn.

12. Give a complete proof of the tubular neighbourhood theorem for submanifolds.

13. Prove that two symplectic structures on a manifold M are isotopic if they are strongly isotopic
(and thus symplectomorphic). Give a topological condition on M ensuring that the converse
is true.

14. Let S be a closed surface and ω0, ω1 two symplectic structures on S with
∫
S ω0 =

∫
S ω1. Show

that ω0 and ω1 are strongly isotopic.

15. Show that the following is an equivalent definition of symplectic structure on a 2n-manifold
M : an atlas {φi, Ui}i∈I for M such that for Ui ∩ Uj 6= ∅ one has φi ◦ φ−1

j ∈ Symp(R2n, ω0),
where ω0 is the standard symplectic 2-form.

16. Find global Darboux coordinates on a 2-sphere with two antipodal points removed, equipped
with the symplectic structure induced from the usual (round) area 2-form.

17. Let (M,ω) be a compact symplectic manifold. Explain how the following statement can be
made precise: the Lie algebra of the group Symp(M,ω) is the vector space of closed 1-forms
on M .

18. Recall that the C1 topology on the set of diffeomorphisms of a manifold M is defined by the
following notion of convergence: a sequence (fk)k∈N in Diff(M) is said to C1-converge iff the
sequence of derivatives dfk : TM → TM converges uniformly on compact sets. Now let (M,ω)
be a compact symplectic manifold with H1(M ; R) = 0. Prove that a symplectomorphism of
M which is sufficiently C1-close to the identity (meaning: contained a sufficiently small
neighbourhood of idM with respect to the C1 topology) has at least two fixed points.

19. Let (V,Ω) be a symplectic vector space. Show that the set J (V,Ω) of all Ω-compatible
complex structures on V is contractible; in other words, there is a homotopy ht : J (V,Ω)→
J (V,Ω) (continuous with 0 < t < 1) such that h0 is the identity, h1 is a constant element
J ∈ J (V,Ω) and ht(J) = J for all t ∈ [0, 1].

20. Let (V, J) be a complex vector space. Show that there is a positive inner product G(·, ·) on
V with respect to which the complex structure J is orthogonal. Use this fact to prove that
V admits a symplectic structure Ω such that J is Ω-compatible.

21. Let Ω(V ) and J(V ) denote the sets of symplectic and complex structures (respectively) on
a vector space V , and fix Ω ∈ Ω(V ), J ∈ J(V ). Show that there are bijections Ω(V ) ∼=
GL(V )/Sp(V,Ω) and J(V ) ∼= GL(V )/GL(V, J).

22. Given n ∈ N, show that the intersection of any two of O(2n), Sp2n(R) and GLn(C), identified
as subgroups of GL2n(R), is the unitary group U(n).

23. A symplectic structure on a (real) vector bundle E →M is a smooth section ω of Λ2(E∗)→M
for which the bilinear maps ωp : Ep × Ep → R are nondegenerate for all p ∈M . Show that:
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(a) If a vector bundle admits a symplectic structure, its structure group can be reduced
from the linear group to a linear symplectic group, and conversely an Sp2n(R)-vector
bundle of rank 2n admits a symplectic structure.

(b) A real vector bundle admits a symplectic structure if and only if it is also a complex
vector bundle.

24. Let (V,Ω) be a symplectic vector space and J an Ω-compatible complex structure. Prove that
L is a lagrangian subspace if and only if J(L) is lagrangian, and that these two subspaces are
orthogonal with respect to the inner product defined by the Ω-compatibility condition.

25. Show that the (unit) 6-dimensional sphere S6 ⊂ R7 is an almost complex manifold.

26. Let (M,J) be an almost complex manifold, and for v, w ∈ X (M) set NJ(v, w) := [Jv, Jw]−
[Jv,w] − [v, Jw] − [v, w]. Show that this defines a tensor NJ ∈ Γ(M,TM ⊗ T∗M⊗2), called
the Nijenhuis tensor of (M,J).

27. Let J ∈ End(R2n) be a complex structure, and suppose that there are n J-holomorphic
functions fj : R2n → C, j = 1, . . . , n, such that the real and imaginary parts of all the dfj at
p ∈ R2n form a basis of TpR2n. Show that NJ |p = 0. Deduce that the Nijenhuis tensor of the
canonical almost complex structure of a complex manifold vanishes everywhere.

28. Use the Newlander–Nirenberg theorem to show that any orientable closed surface is a smooth
complex curve.

29. For n ∈ N, the complex projective space CPn is defined as the set of 1-dimensional subspaces
of Cn+1; in other words, it is the quotient (Cn+1−{0})/C∗. Let [z0, z1, . . . , zn] denote a point
in this quotient, and for each integer 0 ≤ j ≤ n consider the map defined by ϕj([z0, . . . , zn]) :=(
z0
zj
, . . . , znzj

)
for points where zj 6= 0, where the quotient zj

zj
has been omitted in the right-

hand side. Show that these n + 1 maps ϕj define an atlas giving CPn the structure of a
complex manifold.

30. Let J denote the canonical complex structure on C, and consider the subgroup Λτ = {k+mτ ∈
C : k,m ∈ Z} ∼= Z2 of (C,+) that is to each τ ∈ {z ∈ C : Im(z) > 0}. Show that J descends
to an integrable almost complex structure Jτ on the quotient T2

τ := C/Λτ ∼= S1 × S1. When
are two such T2

τ isomorphic as complex manifolds?

31. Let ω0 and ω1 be two cohomologous Kähler structures on a complex manifold M ; prove that
there exists a symplectomorphism between (M,ω0) and (M,ω1).

32. Calculate a global Kähler potential for the hyperbolic plane, which is the surface {x + iy ∈
C : y > 0} equipped with the Riemannian metric dx2+dy2

y2
.

33. Show that CP1 with the Kähler metric defined by the Fubini–Study structure is isometric to
a 2-sphere embedded in R3. What is its radius?

34. Show that U(n+ 1) acts transitively on CPn by isometries of the Fubini–Study metric.

35. Let (M,J, ω) be a Kähler structure, and consider the Riemann curvature tensor R∇ for
the Levi-Civita connection ∇ of the underlying Kähler metric, defined by R∇(X,Y )Z :=
[∇X ,∇Y ]Z − ∇[X,Y ]Z for X,Y, Z ∈ X (M). Recall that the Ricci tensor is defined by
Ric(X,Y ) := Tr(Z 7→ R∇(Z,X)Y ). Show that:
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(a) The equation ρ(X,Y ) := Ric(JX, Y ) defines a closed 2-form ρ on M .

(b) The cohomology class [ρ] ∈ H2(M ; R) does not depend on the choice of symplectic
structure ω.

36. Let ω be a Kähler structure on a compact complex manifold M , and denote by Λ the L2-
adjoint of the operator α 7→ α ∧ ω on forms. Use the Hodge identities [Λ, ∂̄] = −i∂∗ and
[Λ, ∂] = i∂̄∗ to show that the Laplacians on M satisfy ∆d = 2∆∂ = 2∆∂̄ .

37. Show that the complex surface Q = CP1 × CP1 embeds in CP3 as a quadric hypersurface.
Relate the Kähler structure on Q induced by the Fubini–Study structure ωCP3 to the product
Kähler structure ω1 + ω2, where ωj = pr∗jωCP1 for j = 1, 2 are the pull-backs of the Fubini–
Study structure by the projections prj : Q → CP1 onto each factor. Construct the Hodge
diamond of Q.

38. Let X be a vector field on a compact manifold Q and ρXt its flow. Show that there is a unique
vector field X] on T∗Q whose flow satisfies π ◦ ρX]t = ρXt ◦ π for t ∈ R, where π : T∗Q→ Q is
the standard projection, and that X] is hamiltonian with respect to the canonical symplectic
structure.

39. Show that the vector space of (real) smooth functions on a symplectic manifold (M,ω) is a
Poisson algebra, when supplemented by the operations of pointwise multiplication and the
Poisson bracket defined by ω.

40. Let (M,ω,H) be an integrable system with dimM = 2n and f1 = H, f2, . . . , fn independent
integrals of motion in involution; consider a connected component Mc of the level set f−1({c})
of the map f = (f1, . . . , fn) : M → Rn, where c ∈ Rn is a regular value of f .

(a) If the fluxes ρ
Xfi
ti

of the hamiltonian vector fields associated to the fi are defined for all

ti ∈ R, show that the map Rn×Mc →Mc given by ((t1, . . . , tn), p) 7→ φ
Xfn
tn ◦· · ·◦φ

Xf1
t1

(p)
defines a transitive action of the group (Rn,+) on Mc.

(b) Show that the stabilisator subgroup StabpRn of any p ∈ Mc is a discrete subgroup of
Rn, hence a lattice Λ ∼= Zk of rank k ≤ n.

41. Let Mc ↪→ M ∼= Tk × Rn−k be a submanifold as in exercise 40, and suppose that there is
an open set U ⊂ M with Mc ∩ U 6= ∅, and α ∈ Ω1(U) such that ω|U = −dα. Consider a
noncontractible loop γ in Mc ∩ U . Show that the integral

∮
γ α does not change if one adds a

closed 1-form to α, or deforms γ within the same homology class.

42. Consider the harmonic oscillator, which is the hamiltonian system on T∗R (with canonical
symplectic structure ω = dx ∧ dp) defined by the hamiltonian H(x, p) = 1

2mp
2 + k

2x
2, where

m, k are positive constants. Calculate action-angle variables for (T∗R, ω,H) outside the
critical point (0, 0).

43. Prove Liouville’s theorem: if (M,ω) is a symplectic manifold of dimension 2n, the symplectic
volume form 1

n!ω
∧n is preserved by the flux of a hamiltonian vector field.

44. A Riemannian metric g on a manifold Q yields a function T : TQ→ R by setting T (q, q̇) :=
1
2gq(q̇, q̇), where q ∈ Q and q̇ ∈ TqQ. Consider the lagrangian system on Q defined by the
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lagrangian T . Write down the corresponding Euler–Lagrange equations in local coordinates
and interpret the motions geometrically.

45. Suppose F : V → R is a strictly convex function on a vector space V with quadratic growth
at infinity, i.e. F (p) > Q(p) ∀p∈V holds for some positive-definite quadratic form Q on V ;
prove that the stability set of F is the whole V ∗. Show that the dual function F ∗ : V ∗ → R
also has maximal stability set SF ∗ = V and that the two Legendre transforms LF : V → V ∗

and LF ∗ : V ∗ → V are inverses of each other.

46. Let 0 < φ < 2π and 0 < θ < π denote polar coordinates on S2 ⊂ R3, inducing coordinates
pφ, pθ on the fibres of T∗S2 → S2, and `,m, g > 0. Show that H : T∗S2 → R given by

(φ, θ, pφ, pθ) 7→ `2

2m(
p2φ

sin2 θ
+ p2

θ) + m`g cos θ can be interpreted as the energy of a spherical
pendulum. Write down Hamilton’s equations for H and verify that they are equivalent to
the Euler–Lagrange equations for the dual function H∗ : TS2 → R obtained by fibrewise
Legendre transform. Discuss the integrability of this system.

47. Consider the lattice Λτ := {k+mτ ∈ C : k,m ∈ Z} ∼= Z2 where Im(τ) > 0, and let ωτ be the
Kähler structure on T2

τ := C/Λτ induced by the standard Kähler structure on C. Find the
values of τ and ~ for which (Tτ , ωτ ) admits a prequantisation.

48. Consider the symplectic manifold M = T∗S1 with canonical symplectic structure ω = −dα,
where α = p dθ is the tautological 1-form. For ~ > 0 and ν ∈ [0, 1[, construct a prequantisation
of (M,ω) using the operator ∇~,ν := d + i~α + iν dθ, acting on smooth functions f : M →
C. Determine the spectrum of the prequantum operator associated to the fibre coordinate
p for each pair (~, ν), and show that prequantisations corresponding to different pairs are
inequivalent.

49. Let M be a manifold, M̃ its universal cover, and α̃ the standard action of π1(M) on M̃ . If
ρ : π1(M)→ U(1) is a group homomorphism, then π1(M) also acts on M̃ ×C via α[γ](p̃, z) =
(ρ̃[γ]p̃, ρ([γ])z) for [γ] ∈ π1(M), p̃ ∈ M̃ and z ∈ C. Show that the space of orbits of this
action is a complex line bundle over M , equipped with a flat connection, and that all flat line
bundles on M arise in this way. Show that b1 = dimH1(M,R) determines the topology of
the space of flat line bundles on M .

50. Let i : S2 ↪→ R3 be the standard unit sphere and ω the area form of the round metric
i∗(
∑3

j=1 dxj2) on S2. For which `, ~ > 0 can one construct a (unique) prequantisation of the
Kähler manifold (S2, `ω)? Given such ` and ~, describe the action of the quantum operators
associated to i∗xj : S2 → R in holomorphic quantisation and compute the dimension of the
quantum Hilbert space.

51. Let K be a strictly plurisubharmonic function on a bounded, connected and simply connected
domain Ω ∈ Cn, and let ω = i∂∂̄K be the associated Kähler 2-form. If z = (z1, . . . zn) are
complex coordinates on Cn, show that the quantum Hilbert space of (Ω, ω) in holomorphic
quantisation can be described as the vector space O(Ω) of holomorphic functions on Ω, with
inner product given by 〈ψ1, ψ2〉 =

∫
Ω ψ1(z)ψ2(z)e−

1
~K(z) ωn

n! .

52. Consider the hamiltonian action of a group G on a symplectic manifold (M,ω). Verify that
the equivariance property of the moment map µ : M → g∗ is equivalent to the co-moment
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map µ∗ : g → C∞(M) being a Lie algebra homomorphism between g = Lie(G) and C∞(M)
(equipped with the Poison bracket of ω).

53. Describe the orbits of the (adjoint) action of U(2) on the space u(2) of 2× 2 skew-hermitian
matrices by conjugation.

54. Consider the Lie algebra g. If f, g ∈ C∞(g∗), let {f, g}(`) := 〈`, [(df)`, (dg)`]〉 for each ` ∈ g∗.
Show that this operation turns C∞(g∗) into a Poisson algebra.

55. Show that, for η ∈ g, Xξ|η = [ξ, η] coincides with the vector field generated by ξ ∈ g via the
adjoint representation of a Lie group G on g = Lie(G). Now for each ` ∈ g∗ consider the
skew bilinear form on g given by ω`(ξ, η) := 〈`, [ξ, η]〉. Show that this restricts to a symplectic
structure on each coadjoint orbit of G.

56. Consider the standard action of SO(3) on R3. Show that it lifts to a symplectic action on
T∗R3 ∼= R3 × R3 equipped with the canonical symplectic form. Show that the function
µ(~x, ~p) := ~x× ~p can be interpreted as a moment map for this action.

57. If two hamiltonian actions of a Lie group G are given on the symplectic manifolds (M1, ω1) and
(M2, ω2), show that the diagonal action of G on (M1×M2,pr∗1ω1 +pr∗2ω2) is also hamiltonian.

58. Let G be a compact Lie group with a free action on a manifold M . Show that the space of
orbits M/G is also a manifold, and that the projection M → M/G can be interpreted as a
principal G-bundle.

59. Show that the action of U(r) on Matr×n(C) ∼= Cr×n by left multiplication preserves the stan-
dard Kähler structure of Cr×n. Identifying u(r)∗ with u(r) using the inner product (A,B) 7→
−tr(ĀtB), show that all moment maps of this action are given by µτ (W ) = 1

2i(WW̄ t − τIr),
where Ir denotes the r × r unit matrix and τ ∈ R.

60. For n > r, show that the symplectic quotient corresponding to the moment map µ1 in
Exercise 59. at level 0 is the Grassmannian manifold Grr(Cn) of r-dimensional subspaces of
Cn. Identify the symplectic structure on the quotient in the case r = 1.

61. Work out the details of the induction step in the proof (by induction on m ∈ N) of connect-
edness of the level sets of any Tm-moment map on a compact symplectic manifold (M,ω).

62. Let G be a compact Lie group and H ⊂ G a closed subgroup; denote by i∗ : g∗ → h∗ the
projection dual to the inclusion of the Lie algebra of H into that of G. Show that from
a hamiltonian space (M,ω,G, µ) one obtains another hamiltonian space (M,ω,H, i∗µ) by
restricting the G-action to H.

63. Let ∆ ⊂ (Rn)∗ be a Delzant polytope. Show that the orientation of each of its facets is
specified by a unique outward-pointing vector vi ∈ Rn which is primitive in Zn.

64. Classify all Delzant polytopes in R2 with four vertices, up to translation, the action of SL2(Z)
and global rescaling.

65. Let ∆ = [0, 1]4 ⊂ R4 be the unit hypercube. (An orthogonal projection of its 1-edges and
vertices in two dimensions, known as a tesseract, is depicted on the webpage of this course.)
Show that this is a Delzant polytope and describe the symplectic toric manifold (M∆, ω∆)
associated to it via Delzant’s theorem. What is the Euler characteristic of M∆?
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