Symplectic Geometry

Nuno Romão
Jagiellonian University, 2nd Semester 2009/10

Exercises:

1. Consider the standard symplectic 2 -form $\omega_{0}=\sum_{i=1}^{n} \mathrm{~d} x_{i} \wedge \mathrm{~d} y_{i}$ on $\mathbb{R}^{2 n}$. Describe the group of linear symplectomorphisms $\operatorname{Sp}_{2 n}(\mathbb{R}):=\mathrm{GL}_{2 n}(\mathbb{R}) \cap \operatorname{Symp}\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ explicitly as a matrix group and compute its dimension.
2. Show that any closed orientable smooth surface admits a symplectic structure.
3. Let (M, ω) be a symplectic manifold; show that M is necessarily orientable.
4. Which of the (unit) even-dimensional spheres $S^{2 n} \subset \mathbb{R}^{2 n+1}, n \in \mathbb{N}$, are symplectic?
5. Show that the set of oriented lines in \mathbb{R}^{3} can be given a symplectic structure ω which admits Diff $\left(S^{2}\right)$ as a subgroup of symplectomorphisms.
6. Let (M, ω) be a symplectic manifold and $\alpha \in \Omega^{1}(M, \mathbb{R})$ such that $\omega=-\mathrm{d} \alpha$.
(a) Show that there is a unique vector field $v \in \mathcal{X}(M)$ for which $\iota_{v} \omega=-\alpha$.
(b) If $g \in \operatorname{Symp}(M, \omega)$ preserves α (i.e. $g^{*} \alpha=\alpha$), prove that g commutes with all the elements of the one-parameter subgroup of $\operatorname{Diff}(M)$ generated by v.
7. Let X be a manifold, and consider $M=\mathrm{T}^{*} X$ with tautological 1-form α and canonical symplectic structure $\omega=-\mathrm{d} \alpha$. Show that any $g \in \operatorname{Symp}(M, \omega)$ preserving α must preserve the fibres of $\mathrm{T}^{*} X \rightarrow X$ and lie in the image of $\operatorname{Diff}(X) \hookrightarrow \operatorname{Symp}(M, \omega)$.
8. Let S be an isotropic submanifold of a symplectic manifold (M, ω). Show that S is lagrangian (i.e. also co-isotropic) if and only if $\operatorname{dim} S=\frac{1}{2} \operatorname{dim} M$.
9. Let X be a manifold and $M=\mathrm{T}^{*} X$ equipped with the canonical symplectic structure ω. Suppose that $f: X \times X \rightarrow \mathbb{R}$ is a generating function for some $\varphi \in \operatorname{Symp}(M, \omega)$.
(a) Give a geometric interpretation for the fixed points of φ in terms of the function $f \circ i_{\Delta}$: $X \rightarrow \mathbb{R}$, where $i_{\Delta}: x \mapsto(x, x)$ is the diagonal inclusion.
(b) Construct (locally) a generating function for the symplectomorphism $\varphi^{(2)}:=\varphi \circ \varphi$.
10. Suppose that (X, g) is a Riemannian manifold which is geodesically convex and complete, and let $d: X \times X \rightarrow \mathbb{R}$ be the corresponding metric distance. The function $f(x, y)=-\frac{1}{2} d(x, y)^{2}$ generates a canonical transformation $\varphi \in \operatorname{Symp}\left(T^{*} X, \omega\right)$, which can also be interpreted as a diffeomorphism $\tilde{\varphi}$ of $\mathrm{T} X$ (called geodesic flow) using the identification of $\mathrm{T} X$ with $\mathrm{T}^{*} X$ provided by the metric g. Show that $\tilde{\varphi}(x, v)=\left(\exp _{x}(v)(1),\left.\frac{\mathrm{d}}{\mathrm{d} t} \exp _{x}(v)(t)\right|_{t=1}\right)$ for $v \in \mathrm{~T}_{x} X$.
11. Let $i: X \hookrightarrow \mathbb{R}^{n}$ be the inclusion of a submanifold into Euclidean space. Show that the normal bundle $\mathrm{N} X$ can be identified with the subbundle of $i^{*} \mathrm{TR}^{n} \rightarrow X$ whose fibre at $x \in X$ is the orthogonal complement $\left(\left.\mathrm{d} i\right|_{x}\left(\mathrm{~T}_{x} X\right)\right)^{\perp} \subset \mathrm{T}_{i(x)} \mathbb{R}^{n}$.
12. Give a complete proof of the tubular neighbourhood theorem for submanifolds.
13. Prove that two symplectic structures on a manifold M are isotopic if they are strongly isotopic (and thus symplectomorphic). Give a topological condition on M ensuring that the converse is true.
14. Let S be a closed surface and ω_{0}, ω_{1} two symplectic structures on S with $\int_{S} \omega_{0}=\int_{S} \omega_{1}$. Show that ω_{0} and ω_{1} are strongly isotopic.
15. Show that the following is an equivalent definition of symplectic structure on a $2 n$-manifold M : an atlas $\left\{\phi_{i}, U_{i}\right\}_{i \in I}$ for M such that for $U_{i} \cap U_{j} \neq \emptyset$ one has $\phi_{i} \circ \phi_{j}^{-1} \in \operatorname{Symp}\left(\mathbb{R}^{2 n}, \omega_{0}\right)$, where ω_{0} is the standard symplectic 2 -form.
16. Find global Darboux coordinates on a 2 -sphere with two antipodal points removed, equipped with the symplectic structure induced from the usual (round) area 2 -form.
17. Let (M, ω) be a compact symplectic manifold. Explain how the following statement can be made precise: the Lie algebra of the group $\operatorname{Symp}(M, \omega)$ is the vector space of closed 1-forms on M.
18. Recall that the C^{1} topology on the set of diffeomorphisms of a manifold M is defined by the following notion of convergence: a sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ in $\operatorname{Diff}(M)$ is said to C^{1}-converge iff the sequence of derivatives $\mathrm{d} f_{k}: \mathrm{T} M \rightarrow \mathrm{~T} M$ converges uniformly on compact sets. Now let (M, ω) be a compact symplectic manifold with $H^{1}(M ; \mathbb{R})=0$. Prove that a symplectomorphism of M which is sufficiently C^{1}-close to the identity (meaning: contained a sufficiently small neighbourhood of id_{M} with respect to the C^{1} topology) has at least two fixed points.
19. Let (V, Ω) be a symplectic vector space. Show that the set $\mathcal{J}(V, \Omega)$ of all Ω-compatible complex structures on V is contractible; in other words, there is a homotopy $h_{t}: \mathcal{J}(V, \Omega) \rightarrow$ $\mathcal{J}(V, \Omega)$ (continuous with $0<t<1$) such that h_{0} is the identity, h_{1} is a constant element $J \in \mathcal{J}(V, \Omega)$ and $h_{t}(J)=J$ for all $t \in[0,1]$.
20. Let (V, J) be a complex vector space. Show that there is a positive inner product $G(\cdot, \cdot)$ on V with respect to which the complex structure J is orthogonal. Use this fact to prove that V admits a symplectic structure Ω such that J is Ω-compatible.
21. Let $\Omega(V)$ and $J(V)$ denote the sets of symplectic and complex structures (respectively) on a vector space V, and fix $\Omega \in \Omega(V), J \in J(V)$. Show that there are bijections $\Omega(V) \cong$ $\mathrm{GL}(V) / \mathrm{Sp}(V, \Omega)$ and $J(V) \cong \mathrm{GL}(V) / \mathrm{GL}(V, J)$.
22. Given $n \in \mathbb{N}$, show that the intersection of any two of $\mathrm{O}(2 n), \operatorname{Sp}_{2 \mathrm{n}}(\mathbb{R})$ and $\mathrm{GL}_{n}(\mathbb{C})$, identified as subgroups of $\mathrm{GL}_{2 n}(\mathbb{R})$, is the unitary group $\mathrm{U}(n)$.
23. A symplectic structure on a (real) vector bundle $E \rightarrow M$ is a smooth section ω of $\Lambda^{2}\left(E^{*}\right) \rightarrow M$ for which the bilinear maps $\omega_{p}: E_{p} \times E_{p} \rightarrow \mathbb{R}$ are nondegenerate for all $p \in M$. Show that:
(a) If a vector bundle admits a symplectic structure, its structure group can be reduced from the linear group to a linear symplectic group, and conversely an $\mathrm{Sp}_{2 n}(\mathbb{R})$-vector bundle of rank $2 n$ admits a symplectic structure.
(b) A real vector bundle admits a symplectic structure if and only if it is also a complex vector bundle.
24. Let (V, Ω) be a symplectic vector space and J an Ω-compatible complex structure. Prove that L is a lagrangian subspace if and only if $J(L)$ is lagrangian, and that these two subspaces are orthogonal with respect to the inner product defined by the Ω-compatibility condition.
25 . Show that the (unit) 6 -dimensional sphere $S^{6} \subset \mathbb{R}^{7}$ is an almost complex manifold.
25. Let (M, J) be an almost complex manifold, and for $v, w \in \mathcal{X}(M)$ set $N_{J}(v, w):=[J v, J w]-$ $[J v, w]-[v, J w]-[v, w]$. Show that this defines a tensor $N_{J} \in \Gamma\left(M, \mathrm{TM} \otimes \mathrm{T}^{*} M^{\otimes 2}\right)$, called the Nijenhuis tensor of (M, J).
26. Let $J \in \operatorname{End}\left(\mathbb{R}^{2 n}\right)$ be a complex structure, and suppose that there are $n J$-holomorphic functions $f_{j}: \mathbb{R}^{2 n} \rightarrow \mathbb{C}, j=1, \ldots, n$, such that the real and imaginary parts of all the $\mathrm{d} f_{j}$ at $p \in \mathbb{R}^{2 n}$ form a basis of $\mathrm{T}_{p} \mathbb{R}^{2 n}$. Show that $\left.N_{J}\right|_{p}=0$. Deduce that the Nijenhuis tensor of the canonical almost complex structure of a complex manifold vanishes everywhere.
27. Use the Newlander-Nirenberg theorem to show that any orientable closed surface is a smooth complex curve.
28. For $n \in \mathbb{N}$, the complex projective space $\mathbb{C P}^{n}$ is defined as the set of 1 -dimensional subspaces of \mathbb{C}^{n+1}; in other words, it is the quotient $\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{*}$. Let $\left[z_{0}, z_{1}, \ldots, z_{n}\right]$ denote a point in this quotient, and for each integer $0 \leq j \leq n$ consider the map defined by $\varphi_{j}\left(\left[z_{0}, \ldots, z_{n}\right]\right):=$ $\left(\frac{z_{0}}{z_{j}}, \ldots, \frac{z_{n}}{z_{j}}\right)$ for points where $z_{j} \neq 0$, where the quotient $\frac{z_{j}}{z_{j}}$ has been omitted in the righthand side. Show that these $n+1$ maps φ_{j} define an atlas giving $\mathbb{C P}^{n}$ the structure of a complex manifold.
29. Let J denote the canonical complex structure on \mathbb{C}, and consider the subgroup $\Lambda_{\tau}=\{k+m \tau \in$ $\mathbb{C}: k, m \in \mathbb{Z}\} \cong \mathbb{Z}^{2}$ of $(\mathbb{C},+)$ that is to each $\tau \in\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$. Show that J descends to an integrable almost complex structure J_{τ} on the quotient $\mathbb{T}_{\tau}^{2}:=\mathbb{C} / \Lambda_{\tau} \cong S^{1} \times S^{1}$. When are two such \mathbb{T}_{τ}^{2} isomorphic as complex manifolds?
30. Let ω_{0} and ω_{1} be two cohomologous Kähler structures on a complex manifold M; prove that there exists a symplectomorphism between $\left(M, \omega_{0}\right)$ and $\left(M, \omega_{1}\right)$.
31. Calculate a global Kähler potential for the hyperbolic plane, which is the surface $\{x+i y \in$ $\mathbb{C}: y>0\}$ equipped with the Riemannian metric $\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}}{y^{2}}$.
32. Show that $\mathbb{C P}^{1}$ with the Kähler metric defined by the Fubini-Study structure is isometric to a 2 -sphere embedded in \mathbb{R}^{3}. What is its radius?
33. Show that $\mathrm{U}(n+1)$ acts transitively on $\mathbb{C P}^{n}$ by isometries of the Fubini-Study metric.
34. Let (M, J, ω) be a Kähler structure, and consider the Riemann curvature tensor R_{∇} for the Levi-Civita connection ∇ of the underlying Kähler metric, defined by $R_{\nabla}(X, Y) Z:=$ $\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z$ for $X, Y, Z \in \mathcal{X}(M)$. Recall that the Ricci tensor is defined by $\operatorname{Ric}(X, Y):=\operatorname{Tr}\left(Z \mapsto R_{\nabla}(Z, X) Y\right)$. Show that:
(a) The equation $\rho(X, Y):=\operatorname{Ric}(J X, Y)$ defines a closed 2 -form ρ on M.
(b) The cohomology class $[\rho] \in H^{2}(M ; \mathbb{R})$ does not depend on the choice of symplectic structure ω.
35. Let ω be a Kähler structure on a compact complex manifold M, and denote by Λ the L^{2} adjoint of the operator $\alpha \mapsto \alpha \wedge \omega$ on forms. Use the Hodge identities $[\Lambda, \bar{\partial}]=-i \partial^{*}$ and $[\Lambda, \partial]=i \bar{\partial}^{*}$ to show that the Laplacians on M satisfy $\Delta_{d}=2 \Delta_{\partial}=2 \Delta_{\bar{\partial}}$.
36. Show that the complex surface $Q=\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ embeds in $\mathbb{C P}^{3}$ as a quadric hypersurface. Relate the Kähler structure on Q induced by the Fubini-Study structure $\omega_{\mathbb{C P}^{3}}$ to the product Kähler structure $\omega_{1}+\omega_{2}$, where $\omega_{j}=\operatorname{pr}_{j}^{*} \omega_{\mathbb{C P}^{1}}$ for $j=1,2$ are the pull-backs of the FubiniStudy structure by the projections $\mathrm{pr}_{j}: Q \rightarrow \mathbb{C} \mathbb{P}^{1}$ onto each factor. Construct the Hodge diamond of Q.
37. Let X be a vector field on a compact manifold Q and ρ_{t}^{X} its flow. Show that there is a unique vector field X_{\sharp} on $\mathrm{T}^{*} Q$ whose flow satisfies $\pi \circ \rho_{t}^{X_{\sharp}}=\rho_{t}^{X} \circ \pi$ for $t \in \mathbb{R}$, where $\pi: \mathrm{T}^{*} Q \rightarrow Q$ is the standard projection, and that X_{\sharp} is hamiltonian with respect to the canonical symplectic structure.
38. Show that the vector space of (real) smooth functions on a symplectic manifold (M, ω) is a Poisson algebra, when supplemented by the operations of pointwise multiplication and the Poisson bracket defined by ω.
39. Let (M, ω, H) be an integrable system with $\operatorname{dim} M=2 n$ and $f_{1}=H, f_{2}, \ldots, f_{n}$ independent integrals of motion in involution; consider a connected component M_{c} of the level set $f^{-1}(\{c\})$ of the map $f=\left(f_{1}, \ldots, f_{n}\right): M \rightarrow \mathbb{R}^{n}$, where $c \in \mathbb{R}^{n}$ is a regular value of f.
(a) If the fluxes $\rho_{t_{i}}^{X_{f_{i}}}$ of the hamiltonian vector fields associated to the f_{i} are defined for all $t_{i} \in \mathbb{R}$, show that the map $\mathbb{R}^{n} \times M_{c} \rightarrow M_{c}$ given by $\left(\left(t_{1}, \ldots, t_{n}\right), p\right) \mapsto \phi_{t_{n}}^{X_{f_{n}}} \circ \cdots \circ \phi_{t_{1}}^{X_{f_{1}}}(p)$ defines a transitive action of the group $\left(\mathbb{R}^{n},+\right)$ on M_{c}.
(b) Show that the stabilisator subgroup $\operatorname{Stab}_{p} \mathbb{R}^{n}$ of any $p \in M_{c}$ is a discrete subgroup of \mathbb{R}^{n}, hence a lattice $\Lambda \cong \mathbb{Z}^{k}$ of rank $k \leq n$.
40. Let $M_{c} \hookrightarrow M \cong \mathbb{T}^{k} \times \mathbb{R}^{n-k}$ be a submanifold as in exercise 40 , and suppose that there is an open set $\mathcal{U} \subset M$ with $M_{c} \cap \mathcal{U} \neq \emptyset$, and $\alpha \in \Omega^{1}(\mathcal{U})$ such that $\left.\omega\right|_{\mathcal{U}}=-\mathrm{d} \alpha$. Consider a noncontractible loop γ in $M_{c} \cap \mathcal{U}$. Show that the integral $\oint_{\gamma} \alpha$ does not change if one adds a closed 1-form to α, or deforms γ within the same homology class.
41. Consider the harmonic oscillator, which is the hamiltonian system on $\mathrm{T}^{*} \mathbb{R}$ (with canonical symplectic structure $\omega=\mathrm{d} x \wedge \mathrm{~d} p$) defined by the hamiltonian $H(x, p)=\frac{1}{2 m} p^{2}+\frac{k}{2} x^{2}$, where m, k are positive constants. Calculate action-angle variables for ($\mathrm{T}^{*} \mathbb{R}, \omega, H$) outside the critical point $(0,0)$.
42. Prove Liouville's theorem: if (M, ω) is a symplectic manifold of dimension $2 n$, the symplectic volume form $\frac{1}{n!} \omega^{\wedge n}$ is preserved by the flux of a hamiltonian vector field.
43. A Riemannian metric g on a manifold Q yields a function $T: \mathrm{T} Q \rightarrow \mathbb{R}$ by setting $T(q, \dot{q}):=$ $\frac{1}{2} g_{q}(\dot{q}, \dot{q})$, where $q \in Q$ and $\dot{q} \in \mathrm{~T}_{q} Q$. Consider the lagrangian system on Q defined by the
lagrangian T. Write down the corresponding Euler-Lagrange equations in local coordinates and interpret the motions geometrically.
44. Suppose $F: V \rightarrow \mathbb{R}$ is a strictly convex function on a vector space V with quadratic growth at infinity, i.e. $F(p)>Q(p) \forall_{p \in V}$ holds for some positive-definite quadratic form Q on V; prove that the stability set of F is the whole V^{*}. Show that the dual function $F^{*}: V^{*} \rightarrow \mathbb{R}$ also has maximal stability set $S_{F^{*}}=V$ and that the two Legendre transforms $\mathcal{L}_{F}: V \rightarrow V^{*}$ and $\mathcal{L}_{F^{*}}: V^{*} \rightarrow V$ are inverses of each other.
45. Let $0<\phi<2 \pi$ and $0<\theta<\pi$ denote polar coordinates on $S^{2} \subset \mathbb{R}^{3}$, inducing coordinates p_{ϕ}, p_{θ} on the fibres of $\mathrm{T}^{*} S^{2} \rightarrow S^{2}$, and $\ell, m, g>0$. Show that $H: \mathrm{T}^{*} S^{2} \rightarrow \mathbb{R}$ given by $\left(\phi, \theta, p_{\phi}, p_{\theta}\right) \mapsto \frac{\ell^{2}}{2 m}\left(\frac{p_{\phi}^{2}}{\sin ^{2} \theta}+p_{\theta}^{2}\right)+m \ell g \cos \theta$ can be interpreted as the energy of a spherical pendulum. Write down Hamilton's equations for H and verify that they are equivalent to the Euler-Lagrange equations for the dual function $H^{*}: \mathrm{T} S^{2} \rightarrow \mathbb{R}$ obtained by fibrewise Legendre transform. Discuss the integrability of this system.
46. Consider the lattice $\Lambda_{\tau}:=\{k+m \tau \in \mathbb{C}: k, m \in \mathbb{Z}\} \cong \mathbb{Z}^{2}$ where $\operatorname{Im}(\tau)>0$, and let ω_{τ} be the Kähler structure on $\mathbb{T}_{\tau}^{2}:=\mathbb{C} / \Lambda_{\tau}$ induced by the standard Kähler structure on \mathbb{C}. Find the values of τ and \hbar for which ($\mathbb{T}_{\tau}, \omega_{\tau}$) admits a prequantisation.
47. Consider the symplectic manifold $M=\mathrm{T}^{*} S^{1}$ with canonical symplectic structure $\omega=-\mathrm{d} \alpha$, where $\alpha=p \mathrm{~d} \theta$ is the tautological 1 -form. For $\hbar>0$ and $\nu \in[0,1[$, construct a prequantisation of (M, ω) using the operator $\nabla^{\hbar, \nu}:=\mathrm{d}+i \hbar \alpha+i \nu \mathrm{~d} \theta$, acting on smooth functions $f: M \rightarrow$ \mathbb{C}. Determine the spectrum of the prequantum operator associated to the fibre coordinate p for each pair (\hbar, ν), and show that prequantisations corresponding to different pairs are inequivalent.
48. Let M be a manifold, \tilde{M} its universal cover, and $\tilde{\alpha}$ the standard action of $\pi_{1}(M)$ on \tilde{M}. If $\rho: \pi_{1}(M) \rightarrow \mathrm{U}(1)$ is a group homomorphism, then $\pi_{1}(M)$ also acts on $\tilde{M} \times \mathbb{C}$ via $\alpha_{[\gamma]}(\tilde{p}, z)=$ $\left(\tilde{\rho}_{[\gamma]} \tilde{p}, \rho([\gamma]) z\right)$ for $[\gamma] \in \pi_{1}(M), \tilde{p} \in \tilde{M}$ and $z \in \mathbb{C}$. Show that the space of orbits of this action is a complex line bundle over M, equipped with a flat connection, and that all flat line bundles on M arise in this way. Show that $b_{1}=\operatorname{dim} H^{1}(M, \mathbb{R})$ determines the topology of the space of flat line bundles on M.
49. Let $i: S^{2} \hookrightarrow \mathbb{R}^{3}$ be the standard unit sphere and ω the area form of the round metric $i^{*}\left(\sum_{j=1}^{3} \mathrm{~d} x_{j}{ }^{2}\right)$ on S^{2}. For which $\ell, \hbar>0$ can one construct a (unique) prequantisation of the Kähler manifold ($S^{2}, \ell \omega$)? Given such ℓ and \hbar, describe the action of the quantum operators associated to $i^{*} x_{j}: S^{2} \rightarrow \mathbb{R}$ in holomorphic quantisation and compute the dimension of the quantum Hilbert space.
50. Let K be a strictly plurisubharmonic function on a bounded, connected and simply connected domain $\Omega \in \mathbb{C}^{n}$, and let $\omega=i \partial \bar{\partial} K$ be the associated Kähler 2-form. If $z=\left(z_{1}, \ldots z_{n}\right)$ are complex coordinates on \mathbb{C}^{n}, show that the quantum Hilbert space of (Ω, ω) in holomorphic quantisation can be described as the vector space $\mathcal{O}(\Omega)$ of holomorphic functions on Ω, with inner product given by $\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{\Omega} \overline{\psi_{1}(z)} \psi_{2}(z) e^{-\frac{1}{\hbar} K(z)} \frac{\omega^{n}}{n!}$.
51. Consider the hamiltonian action of a group G on a symplectic manifold (M, ω). Verify that the equivariance property of the moment map $\mu: M \rightarrow \mathfrak{g}^{*}$ is equivalent to the co-moment
map $\mu^{*}: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(M)$ being a Lie algebra homomorphism between $\mathfrak{g}=\operatorname{Lie}(G)$ and $\mathcal{C}^{\infty}(M)$ (equipped with the Poison bracket of ω).
52. Describe the orbits of the (adjoint) action of $U(2)$ on the space $\mathfrak{u}(2)$ of 2×2 skew-hermitian matrices by conjugation.
53. Consider the Lie algebra \mathfrak{g}. If $f, g \in \mathcal{C}^{\infty}\left(\mathfrak{g}^{*}\right)$, let $\{f, g\}(\ell):=\left\langle\ell,\left[(\mathrm{d} f)_{\ell},(\mathrm{d} g)_{\ell}\right]\right\rangle$ for each $\ell \in \mathfrak{g}^{*}$. Show that this operation turns $\mathcal{C}^{\infty}\left(\mathfrak{g}^{*}\right)$ into a Poisson algebra.
54. Show that, for $\eta \in \mathfrak{g},\left.X_{\xi}\right|_{\eta}=[\xi, \eta]$ coincides with the vector field generated by $\xi \in \mathfrak{g}$ via the adjoint representation of a Lie group G on $\mathfrak{g}=\operatorname{Lie}(G)$. Now for each $\ell \in \mathfrak{g}^{*}$ consider the skew bilinear form on \mathfrak{g} given by $\omega_{\ell}(\xi, \eta):=\langle\ell,[\xi, \eta]\rangle$. Show that this restricts to a symplectic structure on each coadjoint orbit of G.
55. Consider the standard action of $\operatorname{SO}(3)$ on \mathbb{R}^{3}. Show that it lifts to a symplectic action on $\mathrm{T}^{*} \mathbb{R}^{3} \cong \mathbb{R}^{3} \times \mathbb{R}^{3}$ equipped with the canonical symplectic form. Show that the function $\mu(\vec{x}, \vec{p}):=\vec{x} \times \vec{p}$ can be interpreted as a moment map for this action.
56. If two hamiltonian actions of a Lie group G are given on the symplectic manifolds $\left(M_{1}, \omega_{1}\right)$ and $\left(M_{2}, \omega_{2}\right)$, show that the diagonal action of G on $\left(M_{1} \times M_{2}, \operatorname{pr}_{1}^{*} \omega_{1}+\operatorname{pr}_{2}^{*} \omega_{2}\right)$ is also hamiltonian.
57. Let G be a compact Lie group with a free action on a manifold M. Show that the space of orbits M / G is also a manifold, and that the projection $M \rightarrow M / G$ can be interpreted as a principal G-bundle.
58. Show that the action of $\mathrm{U}(r)$ on $\operatorname{Mat}_{r \times n}(\mathbb{C}) \cong \mathbb{C}^{r \times n}$ by left multiplication preserves the standard Kähler structure of $\mathbb{C}^{r \times n}$. Identifying $\mathfrak{u}(r)^{*}$ with $\mathfrak{u}(r)$ using the inner product $(A, B) \mapsto$ $-\operatorname{tr}\left(\bar{A}^{t} B\right)$, show that all moment maps of this action are given by $\mu_{\tau}(W)=\frac{1}{2 i}\left(W \bar{W}^{t}-\tau I_{r}\right)$, where I_{r} denotes the $r \times r$ unit matrix and $\tau \in \mathbb{R}$.
59. For $n>r$, show that the symplectic quotient corresponding to the moment map μ_{1} in Exercise 59. at level 0 is the Grassmannian manifold $\operatorname{Gr}_{r}\left(\mathbb{C}^{n}\right)$ of r-dimensional subspaces of \mathbb{C}^{n}. Identify the symplectic structure on the quotient in the case $r=1$.
60. Work out the details of the induction step in the proof (by induction on $m \in \mathbb{N}$) of connectedness of the level sets of any \mathbb{T}^{m}-moment map on a compact symplectic manifold (M, ω).
61. Let G be a compact Lie group and $H \subset G$ a closed subgroup; denote by $i^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{h}^{*}$ the projection dual to the inclusion of the Lie algebra of H into that of G. Show that from a hamiltonian space (M, ω, G, μ) one obtains another hamiltonian space $\left(M, \omega, H, i^{*} \mu\right)$ by restricting the G-action to H.
62. Let $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ be a Delzant polytope. Show that the orientation of each of its facets is specified by a unique outward-pointing vector $v_{i} \in \mathbb{R}^{n}$ which is primitive in \mathbb{Z}^{n}.
63. Classify all Delzant polytopes in \mathbb{R}^{2} with four vertices, up to translation, the action of $\mathrm{SL}_{2}(\mathbb{Z})$ and global rescaling.
64. Let $\Delta=[0,1]^{4} \subset \mathbb{R}^{4}$ be the unit hypercube. (An orthogonal projection of its 1-edges and vertices in two dimensions, known as a tesseract, is depicted on the webpage of this course.) Show that this is a Delzant polytope and describe the symplectic toric manifold ($M_{\Delta}, \omega_{\Delta}$) associated to it via Delzant's theorem. What is the Euler characteristic of M_{Δ} ?
