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Mathematics and the ‘Dark Matter’ Puzzle

Abstract [Saari, 2015a]
A classical approach used to determine the mass distribution
of a galaxy in terms of observed rotational velocities is applied to
analytic solutions of Newtonian systems of N discrete bodies
(so mass distributions are known).
Predictions significantly exaggerate the amount of mass distributed
at larger distances from the center; e.g., rather than the actual 5%
of mass on the outer edges, the method could predict over 80%.
Explanations are given for the differences.
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Central configurations

Definition

Central configuration

N bodies define a central configuration (CC) if there is a common
scalar λ (depending on distances, masses, and other N-body
variables) so that each body’s position and acceleration vectors
satisfy

r′′j = λrj , which is λrj =
1
mj

∂U

∂rj
, (1)

U =
∑
i<k

Gmimk

rik
, j = 1, . . . ,N, (2)

and rik = |ri − rk | is the distance between particles.
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Central configurations

Well-known CC

Some well-known low-dimensional central configurations:

I Kepler’s solutions to 2BP
I Euler’s co-linear solutions to 3BP
I Lagrange’s equilateral triangle solution to 3BP
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Central configurations

Well-known CC

Maxwell’s ring: n + 1 masses

In an 1859 prize winning paper, Maxwell used central configurations
to analyze the rings of Saturn:

I n equal masses placed in an evenly spaced manner on a circle
is a CC due to the symmetry;

I with additional body (of arbitrary mass) in the center of mass
is also a n + 1 body CC.
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Central configurations

Well-known CC

Moulton (1910) analyzed collinear central configurations.

Moulton’s collinear solutions
He proved that for any N > 2, any choice of masses mj , and any
ordering of the masses along a line, there exist unique (up to a
common scalar multiple) spacings between adjacent particles that
define a central configuration.

For any specified mass choices, there exist N!/2 collinear central
configurations.
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Central configurations

Properties

Scaling and rotation

A rotation or a scalar change of a central configuration is again a
central configuration.
=⇒ a central configuration defines a class of configurations.

For instance, specified mass choices define precisely four classes of
three-body central configurations: three collinear choices (where
the relative distances depend on the mass values) and the
equilateral triangle (and its reflection).
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Central configurations

Properties

CC defines a solution to N body problem

With appropriate initial conditions, any coplanar N-body central
configuration can be placed into a circular or elliptic orbit that
preserves the configuration.

I Appropriate initial conditions for the three-body equilateral
triangle configuration, then, create either a circular or elliptic
orbit that maintains the equilateral triangle configuration; e.g.,
this motion reflects the orbit behavior of the Trojan asteroids.

I To analyze the rings of Saturn, Maxwell placed his central
configuration model into a circular orbit.

I In the next section, spiderweb central configurations are placed
in circular orbits.
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Spider-web central configurations

Definition

The configurations designed next combine Moulton’s and Maxwell’s
approaches to create examples with circular symmetry.

Spider-web (Saari’s) solutions to 2nk(+1)BP

I n > 2 (number of rings) and 2k > 0 masses on each ring;
I start with k lines in the plane that pass through the origin

where adjacent lines are π/k radians apart;
I choose any mass values mj > 0, j = 1, . . . , n;
I draw n concentric circles and place mass mj at each point

where the jth circle intersects a line, j = 1, . . . , n.

Each circle has 2k masses (with two masses on each line), so this
construction defines a N = 2nk body configuration that resembles
a spiderweb.
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Spider-web central configurations

Definition

Figure: k = 4, n = 3 spiderweb central configuration.
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Spider-web central configurations

Saari’s theorem

Theorem ([Saari, 2015a, Saari, 2015b])
For positive integers k and n and any choice of mj > 0,
j = 1, . . . , n, there exist unique spacings between the concentric
circles so that the configuration is a spiderweb central configuration
for these spacings and any positive multiple of them.
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Spider-web central configurations

Saari’s theorem

Idea of proof

I Symmetry requires particles on the jth circle to satisfy
λj rj = 1

mj

∂U
∂rj

, so λj is a smooth function of mj ’s and the
positioning of particles.

I With fixed mj values, the forces, which define the λj values,
can be varied by altering the distances between circles;
decreasing distances increase the λj magnitudes.

I In this manner, spacings can be selected so that λ1 = . . . = λn
to define a central configuration.

I Conversely, for certain distances between circles, the
λ1 = . . . = λn constraint defines linear equations in the masses
that can be solved (up to a common multiple).

Warning: Saari’s proof is incomplete!
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Standard approach to mass distribution

Derivation from 2BP

Two approaches to relating mass values with circular
velocities treated in Saari’s article

‘Discrete’ approach

= the standard Newtonian N-body problem.

‘Continuum’ approach – assumptions

I based on Newton’s first and second laws
I In a symmetric continuum setting, a body inside a spherical

shell experiences no net gravitational force from the shell; the
gravitational force on a body outside a spherical shell behaves
as though the shell’s matter is concentrated at the center.
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Standard approach to mass distribution

Derivation from 2BP

I In the 2BP (m–M), the scalar acceleration of the mass m
satisfies (‘centripetal and centrifugal force’)

mr ′′ = −GMm

r2 +
mv2

rot
r

. (3)

I on a circular orbit: r ′′ = 0 =⇒ M =
rv2

rot
G

‘Continuum’ approach [Binney and Tremaine, 2008]
In symmetric settings where Newton’s two laws apply, the mass up
to radius r from the center of mass, M(r), has the form

M(r) =
rv2

rot
G

(c)

where vrot is the circular velocity of a star at distance r .
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Standard approach to mass distribution

Comparison to observation

The observations of rotational velocities vrot of objects vs. their
distance r to galaxy center show that, for large r ,

vrot(r) ≈ D = const.
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Standard approach to mass distribution

Comparison to observation

With the Equation (c) classical approach, the observed flattening of
rotational velocities implies for large r values that

M(r) ≈ Dr , (4)

where D is a positive constant.

As extensively described (often using Equation (c)), this M(r)
value is much larger than justified from the luminosity of stars and
other methods. There are more sophisticated ways to estimate
M(r) (c.f. [Binney and Tremaine, 2008, Sec. 2.2.6–7], but
Equation (c) is a standard approach.
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Predictions of mass values for Saari CC

Apply Equation (c) to N = 2nk or N = 2nk + 1 body spiderweb
central configuration, placed in a circular orbit.

I By scaling, set the minimal distance between adjacent
concentric circles equal to one unit.

I Independent of the mj values, a spider-web solution behaves
like a rotating rigid body, therefore the rotational velocity of a
body with distance r to the center of mass is

vrot(r) = Dr , for some common constant D.

I Now, apply Eq (c): M(r) =
rv2

rot
G

=
D

G
r3.

I This means that the predicted mass distribution is always
given by a cubic equation even though mass values have yet to
be selected!
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Predictions of mass values for Saari CC

Predicting mass values

To illustrate, consider an n = 100 ring configuration where each
ring has a mass equal to unity.

I M(r) 6 r , for we set the minimal distance between adjacent
concentric circles equal to 1.

I In other words, rather than being cubic, the precise M(r)
distribution is, at best, linear.

I Next, we shall see some actual (numerically obtained) spacing
between the rings of equal masses [Hénot and Rousseau, 2019]
and later their mass distribution.



Mathematics and the ‘Dark Matter’ Puzzle

Predictions of mass values for Saari CC

Predicting mass values

To illustrate, consider an n = 100 ring configuration where each
ring has a mass equal to unity.
I M(r) 6 r , for we set the minimal distance between adjacent

concentric circles equal to 1.

I In other words, rather than being cubic, the precise M(r)
distribution is, at best, linear.

I Next, we shall see some actual (numerically obtained) spacing
between the rings of equal masses [Hénot and Rousseau, 2019]
and later their mass distribution.



Mathematics and the ‘Dark Matter’ Puzzle

Predictions of mass values for Saari CC

Predicting mass values

To illustrate, consider an n = 100 ring configuration where each
ring has a mass equal to unity.
I M(r) 6 r , for we set the minimal distance between adjacent

concentric circles equal to 1.
I In other words, rather than being cubic, the precise M(r)

distribution is, at best, linear.

I Next, we shall see some actual (numerically obtained) spacing
between the rings of equal masses [Hénot and Rousseau, 2019]
and later their mass distribution.



Mathematics and the ‘Dark Matter’ Puzzle

Predictions of mass values for Saari CC

Predicting mass values

To illustrate, consider an n = 100 ring configuration where each
ring has a mass equal to unity.
I M(r) 6 r , for we set the minimal distance between adjacent

concentric circles equal to 1.
I In other words, rather than being cubic, the precise M(r)

distribution is, at best, linear.
I Next, we shall see some actual (numerically obtained) spacing

between the rings of equal masses [Hénot and Rousseau, 2019]
and later their mass distribution.







Mathematics and the ‘Dark Matter’ Puzzle

Discussion

What is wrong? [Saari, 2015b]

1. Newton’s laws are incorrect. At least, they fail over the
thousands of light-year distances in a galaxy; an attracting
force stronger than Newton’s law is needed.

2. The observed mass is correct, but it is insufficient to sustain
the observed rotational velocities. With these larger velocities,
expect the galaxy to fly apart.

3. The difference between the prediction and the known amount
of mass is there; it just cannot be seen. The mass difference is
due to unobserved dark matter.

4. The derivation of equation (c) is incorrect for systems of N
discrete bodies. With discrete systems, the equation (c)
predictions can be seriously exaggerated.
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