The Spectral Analysis of the Hotspots of Pictor A Radio Galaxy with Chandra

Rameshan Thimmappa

Astronomical Observatory Jagiellonian University Krakow

Rameshan Thimmappa (OAUJ)

Astrophysics seminar

- 1 Introduction
- 2 Data analysis
- 3 Analysis results
- 4 Conclusion
- **G** Q & A

Outline

1 Introduction

- 2 Data analysis
- Analysis results

4 Conclusion

G Q & A

Rameshan Thimmappa (OAUJ)

イロト イヨト イヨト イヨト

э

Э

- Pictor A Radio Galaxy.
- X-ray Telescopes

Э

< 17 ▶

- Pictor A Radio Galaxy.
- X-ray Telescopes
- Chandra X-ray Observatory

X-ray:NASA/CXC&Radio:CSIRO/ATNF/ATCA

• Pictor A (z=0.035) is FR-II type Broad Line Radio Galaxy.

X-ray:NASA/CXC&Radio:CSIRO/ATNF/ATCA

- Pictor A (z=0.035) is FR-II type Broad Line Radio Galaxy.
- Luminosity distance \Rightarrow 154 Mpc.

X-ray:NASA/CXC&Radio:CSIRO/ATNF/ATCA

- Pictor A (z=0.035) is FR-II type Broad Line Radio Galaxy.
- Luminosity distance \Rightarrow 154 Mpc.
- There is a well-collimated radio jet passing through prominent radio lobes and terminating into a bright hotspot.

X-ray:NASA/CXC&Radio:CSIRO/ATNF/ATCA

- Pictor A (z=0.035) is FR-II type Broad Line Radio Galaxy.
- Luminosity distance \Rightarrow 154 Mpc.
- There is a well-collimated radio jet passing through prominent radio lobes and terminating into a bright hotspot.
- Total angular extension $\sim 8'$ ($\sim 330 \text{ kpc}$).

Why Pictor A Radio Galaxy

credit: NASA/CXC/Univ of Hertfordshire/ M.Hardcastle et al.,2016

• Pictor A is recognized as an archetypal powerful radio galaxy.

Why Pictor A Radio Galaxy

credit: NASA/CXC/Univ of Hertfordshire/ M.Hardcastle et al.,2016

- Pictor A is recognized as an archetypal powerful radio galaxy.
- It became the prime target for detailed multiwavelength investigations in the recent decades, from radio to the γ-ray ranges.

Why Pictor A Radio Galaxy

credit: NASA/CXC/Univ of Hertfordshire/ M.Hardcastle et al.,2016

- Pictor A is recognized as an archetypal powerful radio galaxy.
- It became the prime target for detailed multiwavelength investigations in the recent decades, from radio to the γ-ray ranges.
- With Chandra's high spatial resolution and sensitivity, we can resolve in detail the X-ray structure of the core, the jet, the western/eastern hotspots, and the lobes.

Hotspot

- AGN jets display complex morphology: Knots, Termination hotspot & Radio lobes
- The termination hotspot, marks the location of a strong shock wave, formed where relativistic jet interacts with the intergalactic medium.
- Ultra-relativistic electrons are accelerated efficiently at the front of the termination shock.

Left: Saxton_et al.,2002 & Right: Meisenheimer et al.1989

Hotspot

- Hotspots are known for their broad-band radiation from radio to X-ray bands.
- The two radiative processes at work: At low photon energies : synchrotron radiation At high photon energies: inverse-Compton radiation
- There are varieties of spectral shapes for the individual hotspots
- W hotspot in Pictor A is particularly prominent in X-rays

What X-rays can tell us?

Э

What X-rays can tell us?

• Thermal emission (= bremsstrahlung + lines) from hot gas: 10^5-10^7 K \Rightarrow hot gas is there !

What X-rays can tell us?

- Thermal emission (= bremsstrahlung + lines) from hot gas: 10^5-10^7 K \Rightarrow hot gas is there !
- Non-thermal emission: synchrotron, inverse-Comptonization ⇒ relativistic plasma!

X-ray Telescopes

credit: www.nustar.caltech.edu

• Chandra X-ray Observatory

Rameshan Thimmappa (OAUJ)

Astrophysics seminar

27 October 2021 10 / 52

X-ray Telescopes

credit: www.nustar.caltech.edu

- Chandra X-ray Observatory
- XMM-Newton

Rameshan Thimmappa (OAUJ)

Astrophysics seminar

X-ray Telescopes

credit: www.nustar.caltech.edu

- Chandra X-ray Observatory
- XMM-Newton
- Nuclear Spectroscopic Telescope Array (NuSTAR)

Rameshan Thimmappa (OAUJ)

Astrophysics seminar

Introduction \Rightarrow X-ray Telescopes

Chandra X-ray Observatory (CXO)

https://science.nasa.gov/toolkits/spacecraft-icons

- Energy Range: 0.1–10 keV
- High spatial resolution $\sim 0.5^{\prime\prime}$
- High spectral and timing ($\sim 16\mu s$) resolution
- Lifetime: 25-30 years of operation
- A very low background, and so very efficient in detecting low-flux/low-surface brightness sources

2 Data analysis

Analysis results

Onclusion

6 Q & A

Rameshan Thimmappa (OAUJ)

▶ < ∃ ▶</p>

< □ > < □ > < □

E

Data analysis \Rightarrow Chandra X-ray Observatory

Focusing X-rays

Rameshan Thimmappa (OAUJ)

credits: NASA/CXC

Astrophysics seminar

27 October 2021 13 / 52

Advanced CCD Imaging Spectrometer (ACIS)

The back illuminated S3 chip offers the best spectral resolution without using a grating. For this reason, many observers choose the back illuminated S3 chip for high resolution imaging over small (few arcminutes) fields. credit: NASA/CXC

Data analysis \Rightarrow ACIS Layout

Advanced CCD Imaging Spectrometer (ACIS)

Data analysis \Rightarrow Chandra X-ray Data

Archival Pictor A data (https://cda.harvard.edu/chaser/)

Obs. ID	Date	Exposure (ks)	Pointing
346	2000-01-18	25.8	Core
3090	2002-09-17	46.4	W hotspot
4369	2002-09-22	49.1	W hotspot
12039	2009-12-07	23.7	Jet
12040	2009-12-09	17.3	Jet
11586	2009-12-12	14.3	Jet
14357	2012-06-17	49.3	Jet
14221	2012-11-06	37.5	Jet
15580	2012-11-08	10.5	Jet
15593	2013-08-23	49.3	Jet
14222	2014-01-17	45.4	Jet
14223	2014-04-21	50.1	Jet
16478	2015-01-09	26.8	Jet
17574	2015-01-10	18.6	Jet

~ 15 yrs (~ 464 ks)

Rameshan Thimmappa (OAUJ)

< 47 ▶

- Chandra Interactive Analysis of Observations CIAO v4.12
- Calibration database CALDB v4.7.8
- Sherpa v 4.12.0
- ChaRT
- MARX
- SAO ImageDS9 version 8.2

- All ObsID reprocessed and readout streaks removed.
- Point sources were detected in the field with the wavdetect tool and removed for all analyzed ObsIDs.
- Selected photons are in the energy range 0.5–7 keV.
- Spectral fitting Sherpa package (Freeman et al. 2001).

$\mathsf{Data} \text{ analysis} \Rightarrow \mathsf{Chandra} \ \mathsf{PSF}$

Point Spread Function (PSF)

- The shape and size of the PSF varies significantly with source location in the telescope field of view and spectral energy distribution.
- The plot shows simulated PSFs at a set of off-axis angles (0', 2.4', 4.7', and 9.6') and mono-chromatic energies (0.92 keV, 1.56 keV, and 3.8 keV) from the CSC soft, medium, and hard bands.

Data analysis \Rightarrow Regions of Interests

Focused and analysed regions of Pictor A

W hotspot

2 E hotspot

3 The core

Data analysis \Rightarrow Regions of Interests

Focused and analysed regions of Pictor A

W hotspot

2 E hotspot

3 The core

Data analysis \Rightarrow 1. W hotspot (OBsID 3090)

Spectra extracted for the source (HS) region

Energy (keV)

ID 346 ID 17574

2 Data analysis

3 Analysis results

Onclusion

6 Q & A

Rameshan Thimmappa (OAUJ)

イロト イヨト イヨト イヨト

E

Observational Data and Spectral Fitting Results

ObsID	Date	MJD	Exposure	θ	Г	$\mathrm{red.}\chi^2$	$F_{0.5-7.0{ m keV}}$	$\operatorname{Counts}^\dagger$
			[ksec]	[arcmin]			$[10^{-13}{\rm ergcm^{-2}s^{-1}}]$	
346	2000-01-18	51561	25.8	3.50	2.01 ± 0.05	0.272	5.41 (+0.20 / -0.45)	3461
3090	2002-09-17	52534	46.4	0.11	1.96 ± 0.03	0.377	5.64 (+0.03 / - 0.20)	5278
4369	2002-09-22	52539	49.1	0.11	1.99 ± 0.03	0.426	5.61 (+0.11 / - 0.15)	5564
12039	2009-12-07	55172	23.7	3.35	1.98 ± 0.06	0.260	5.71 (+0.02 / -0.10)	2290
12040	2009-12-09	55174	17.3	3.35	2.07 ± 0.08	0.265	5.47 (+0.08 / -0.25)	1710
11586	2009 - 12 - 12	55177	14.3	3.35	2.11 ± 0.09	0.212	5.39 (+0.21 / -0.40)	1427
14357	2012-06-17	56095	49.3	3.07	2.05 ± 0.05	0.321	5.88 (+0.06 / -0.14)	3043
14221	2012 - 11 - 06	56237	37.5	3.10	2.08 ± 0.05	0.356	5.84 (+0.01 / - 0.11)	3248
15580	2012-11-08	56239	10.5	3.10	2.08 ± 0.14	0.235	5.24 (+0.30 / -0.21)	935
14222	2014 - 01 - 17	56674	45.4	3.30	2.00 ± 0.05	0.329	5.78 (+0.12 / -0.10)	3428
16478	2015-01-09	57031	26.8	3.32	1.95 ± 0.08	0.232	5.30 (+0.15 / -0.54)	1657
17574	2015-01-10	57032	18.6	3.32	2.04 ± 0.11	0.209	5.33 (+0.26 / - 0.21)	1187

< □ > < 同 > < 回 > <

Э

Analysis results \Rightarrow Chandra (PSF image)

pixel

- ChaRT+MARX (Davis et al.2012) simulations show the data in different aspects of the Chandra PSF.
- We used the Energy-Dependent Sub-pixel Event Repositioning (EDSER) algorithm to adjust chip coordinates and pileup effect also included.

sub-pixel

Image Deconvolution

Lucy-Richardson Deconvolution Algorithm (LRDA):

• It is used to remove the effect of the PSF and restore the intrinsic surface brightness distribution of the hotspot.

Image Deconvolution (pixel)

Rameshan Thimmappa (OAUJ)

Astrophysics semina

Multi-Wavelength Images

- The WHS of Pictor A is bright in the radio, optical and X-ray bands.
- There are extended structure in the W Hotspot of Pictor A.
 ⇒ Hotspot
 - \Rightarrow Filament
- The hotspot is 10 times brighter than the filament.

VLA: 3.6 cm radio contours are superimposed

at 0.5 px resolution for ID 3090, averaged over 100 random realizations of the PSF (right panel).

Rameshan Thimmappa (OAUJ)

イロト イボト イヨト イヨト

Chandra: 0.5 px resolution of Pic A for ObsID 3090

HST: optical F606W filter (5918 Å, 90% encircled energy within radius 0.35") ACS/WFC.

Rameshan Thimmappa (OAUJ)

Astrophysics seminar

27 October 2021 30 / 52

イロト イポト イヨト イヨ

Chandra: 1.0 px resolution image of ObsID 3090

Analysis results \Rightarrow Chandra (deconvolved images)

Net count rates of the W hotspot (HS) and sub-regions (N,S)

ObsID	MJD	HS	N	S
		$(10^{-6} \text{ cts s}^{-1})$	$(10^{-6} \text{ cts s}^{-1})$	$(10^{-6} \text{ cts s}^{-1})$
346	51561	291.3 ± 0.4	283.0 ± 0.5	7.0 ± 0.3
3090	52534	260.1 ± 0.2	251.8 ± 0.3	6.4 ± 0.1
4369	52539	260.4 ± 0.2	251.3 ± 0.4	6.8 ± 0.1
12039	55172	235.5 ± 0.5	228.7 ± 0.7	5.7 ± 0.3
12040	55174	248.0 ± 0.4	241.0 ± 0.6	6.1 ± 0.3
11586	55177	243.9 ± 0.4	238.0 ± 1.0	2.6 ± 0.5
14357	56095	216.1 ± 0.2	210.3 ± 0.4	4.7 ± 0.2
14221	56237	223.5 ± 0.4	217.1 ± 0.5	5.2 ± 0.2
15580	56239	233.1 ± 0.4	228.8 ± 0.7	2.2 ± 0.4
14222	56674	210.8 ± 0.3	203.7 ± 0.4	6.0 ± 0.2
16478	57031	182.2 ± 0.3	176.2 ± 0.5	4.4 ± 0.3
17574	57032	189.3 ± 0.3	183.4 ± 0.4	4.6 ± 0.3

Analysis results \Rightarrow Chandra (deconvolved images)

Net count rates of the W hotspot (HS)

Rameshan Thimmappa (OAUJ)

Astrophysics semina

27 October 2021 35 / 52

Projection area of hotspot: sub-pixel

Image: A Image: A

- 2 Data analysis
- Analysis results

4 Conclusion

G Q & A

Rameshan Thimmappa (OAUJ)

E

◆□▶ ◆□▶ ◆□▶ ◆□▶

• The novelty of the analysis is the detailed PSF simulations and image deconvolution to resolve the X-ray structure of the W hotspot.

(i) The jet-like feature located in between the radio/optical filament and the termination shock

(ii) The disk-like feature perpendicular to the jet axis located \sim 1."5 ${\simeq}1 \rm kpc$ upstream the intensity peak of radio hotspot.

- We believe that this disk-like feature resolved in its longitudinal direction to be $\sim 4'' \sim \!\! 3\,kpc$ long.
- Its transverse direction with the corresponding scale upper limit of $\sim 0.''25{<}200$ pc marks the position of the reverse shock front in the system.
- Monotonically decreasing count rate on the deconvoled images, about \sim 30% drop over the 15 years (Thimmappa et al. 2020b, ApJ, 903, 109).

< 回 > < 三 > < 三 >

Data analysis \Rightarrow 2. Extended lobes (E hotspot/lobe)

Chandra Observational Data

ObsID	Date	MJD	Exposure	Detector
	(YYYY-MM-DD)		\mathbf{ks}	
346	2000-01-18	51561	25.8	ACIS-23678
12039	2009-12-07	55172	23.7	ACIS-235678
12040	2009-12-09	55174	17.3	ACIS-235678
11586	2009-12-12	55177	14.3	ACIS-235678
14357	2012-06-17	56095	49.3	ACIS-235678
14222	2014-01-17	56674	45.4	ACIS-235678
16478	2015-01-09	57031	26.8	ACIS-235678
17574	2015-01-10	57032	18.6	ACIS-235678

 $(\sim 221 \, \text{ks})$

8 OBsID are merged within the energy range 0.5-7.0 keV. Point sources are detected with the wavdetect tool.

Data analysis \Rightarrow Pictor A

Exposure-corrected image

Exposure-corrected merged *Chandra* image + point and compact sources.

VLA Polarized flux and rotation measure map

The polarized intensity L-band contours of the source, superimposed on the distribution of RM taken between L- and C- band data, with 10" resolution. (The radio maps provided by R. Perley; radio images and brightness profiles Prepared by Urszula Pajdosz-Smierciak)

Data analysis \Rightarrow E hotspot

E hotspot region of Pictor A

• VLA radio map

A zoomed view of the RM distribution, with the polarized intensity L band contours superimposed at 10'' resolution.

• Chandra X-ray map

tours.

A zoomed view of the 0.5–7.0 keV Chandra image is smoothed with 3σ Gaussian radius. Selected regions for the Chandra data analysis are labeled and indicated by red con-

Analysis results \Rightarrow ObsID 14357

Power-Law model fitting results for the selected regions within the E hotspot

Regions	PhoIndex (Γ)	$F_{0.5-7.0keV}$	$\operatorname{Counts}^\dagger$
		$(10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1})$	
src A	$1.70^{+0.23}_{-0.21}$	$21.19^{+3.25}_{-5.33}$	219
src B	$1.89\substack{+0.55\\-0.46}$	$4.86^{+2.84}_{-1.34}$	68
$\operatorname{src}\mathcal{C}$	$2.17\substack{+0.62\\-0.53}$	$5.59\substack{+1.94 \\ -2.22}$	66
$\operatorname{src}\operatorname{P1}$	$2.27\substack{+0.37 \\ -0.34}$	$5.07\substack{+1.94 \\ -0.13}$	41
src $P2$	$2.15\substack{+0.42 \\ -0.39}$	$3.56\substack{+0.19\\-1.70}$	27
src P3	$0.43\substack{+0.71 \\ -0.74}$	$4.55\substack{+0.06\\-2.99}$	12
src P4	$1.13\substack{+0.31 \\ -0.30}$	$7.85^{+1.11}_{-1.41}$	38
$\operatorname{src} P5$	$1.02\substack{+0.58\\-0.57}$	$3.11\substack{+0.17\\-1.53}$	12
Background	$0.27\substack{+0.03\\-0.03}$	_	_

Analysis results \Rightarrow ObsID 14357

Power-Law+APEC model fitting results for the source region A

Model^\dagger	Parameter	Value with 1σ errors	C-stat./DOF
Power-law+APEC	Photon index Γ	$1.27^{+0.27}_{-0.41}$	1074.3/886
	PL normalization	$3.12^{+0.78}_{-0.92} \times 10^{-6}$	
	Temperature kT	$0.27^{+0.14}_{-0.07}$	
	APEC normalization	$5.04^{+4.54}_{-2.63} \times 10^{-6}$	
	Background photon index $\Gamma_{\rm bck}$	$0.27^{+0.08}_{-0.08}$	
	Background normalization	$6.52^{+0.61}_{-0.56} \times 10^{-6}$	

The implied mass of a thermal gas: $3 \times 10^8 M_{\odot}$

Analysis results \Rightarrow Confidence contours

The two-component power-law+APEC model.

Analysis results \Rightarrow The Surface Brightness Profile

The exposure-corrected 0.5–7.0 keV merged Chandra image of the Pictor A and 1.45 GHz VLA polarized intensity (3σ) contours superimposed (black).

Analysis results \Rightarrow The Surface Brightness Profile

Pictor A – Profile 1

- The Profile1 region, rotated by θ =335° using dmregrid2 tool and is divided into 16 vertical boxes. Energy = 0.5–7.0keV and binsize = 1
- The total and polarized radio flux densities were calculated for the profile1 based on the 1.45 GHz VLA maps.

Analysis results \Rightarrow The Surface Brightness Profile

Pictor A - Profile 2

- The Profile1 region, rotated by θ =360° using dmregrid2 tool and is divided into 8 vertical boxes. Energy = 0.5–7.0keV and binsize = 1
- The total and polarized radio flux densities were calculated for the profile2 based on the 1.45 GHz VLA maps.

• Anderson et al. 2018: "We argue that the low-polarization patches, along with associated reversals in the line-of-sight magnetic field and other related phenomena, are best explained by the presence of ${\sim}1{\times}10^9 M_{\odot}$ of magnetized thermal plasma in the lobes, structured in shells or filaments, and likely advected from the surrounding ICM."

- The elongated X-ray filament A detected located upstream of the jet termination region, extending for at least 30 kpc (projected).
- Its radiative output within 0.5–7.0 keV is consistent with a pure PL emission with $\Gamma \simeq \! 1.7 \pm \! 0.2$, or alternative a combination model of a flat PL model with $\Gamma \simeq \! 1.3 \! + \! 0.3/$ -0.4 and a thermal kT $\simeq \! 0.3$ keV.
- The observed characteristics of the X-ray filament A in the E lobe of Pictor A, is that the degree of the radio linear polarization does increase from about 25% at the filament's axis, up to about 45% at the filament's edges.
- This could indeed be due to the internal depolarization related to the thermal (X-ray emitting) gas present within the filament.
- We observe a clear anti-correlation between the X-ray surface brightness and the polarized radio intensity, as well as a decrease in the radio rotation measure with respect to the surroundings (Thimmappa et al. 2021, accepted in ApJ).

(4 回 ト 4 ヨ ト 4 ヨ ト

Thank You For Your Attention

Rameshan Thimmappa (OAUJ)

< 17 b

- Introduction
- 2 Data analysis
- Analysis results
- Onclusion
- **G** Q & A

Rameshan Thimmappa (OAUJ)

E

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶