Image credit: NASA/JPL-Caltech

CHANGING PARADIGMS IN PLANET FORMATION THEORY

Seminarium Astrofizyczne UJ 12.10.2022

Joanna Drążkowska

AX PLANCK INSTITUTE FOR SOLAR SYSTEM RESEARCH

MPS

Funded by the European Union

THE SOLAR SYSTEM

Image credit: Eleanor Lutz

THE CLASSICAL THEORY OF PLANET FORM

planetesimal formation

runaway and oligarchic growth

orbit clearing, gas accretion and disk dispersal

THE GAS-RICH PLANETS FORM OUTSIDE OF THE SNOW LINE

see, e.g., the book "Astrophysics of planet formation" by Armitage

THE ALMA REVOLUTION

Kwon et al. 2011

ALMA Partnership 2014

THE EMERGING PARADIGM OF PEBBLE ACCRETION

 \rightarrow gas drag helps the embryo to accrete pebbles

SOURCE: M. LAMBRECHTS & A. JOHANSEN

 \rightarrow the size of the feeding zone increases

L. MODICA / KNOWABLE

PEBBLE ACCRETION GIVES BETTER FIT TO EXOPLANETS

Drążkowska et al. PPVII chapter

pebble population synthesis model by Bertram Bitsch & Michiel Lambrechts

models from Emsenhuber et al. 2020

WHERE DO THE PLANETARY CORES COME FROM?

Drążkowska et al, PPVII review chapter, arXiv:2203.09759

THE DEFINITION OF A PEBBLE

DUST COAGULATION MODELS

Monte Carlo algorithm with representative particle approach allows for following the evolution of individual particles.

made with the 2-D Monte Carlo code by <u>Drążkowska</u> et al. 2013

DUST COAGULATION MODELS

Codes using the fluid approach to dust dynamics and the **Smoluchowski equation solver** allow for long-term integration of a global disk.

made with the DustPy code, Stammler & Birnstiel, in prep.

DUST DOES NOT GROW TO PLANETESIMALS

Dust growth is restricted by radial drift when the drift timescale is shorter than the growth timescale and by **fragmentation** when the dust aggregates collide with velocities exceeding so-called sticking threshold.

direct comparison between the Monte Carlo approach and the Smoluchowski equation solver: Drążkowska et al. 2014

made with the DustPy code, Stammler & Birnstiel, in prep.

PLANETES MAL FORMATION DEPENDS ON ASSUMPTIONS

MOST OF THE MODELS START WITH CLASS II DISKS...

. WHICH DO NOT HAVE ENOUGH MASS

Drążkowska et al, PPVII review chapter, arXiv:2203.09759

STARTING FROM DISK BUILDUP

<u>Drążkowska</u> & Dullemond 2018

DIVERGENT INTERNAL EVOLUTION

Lichtenberg, <u>Drążkowska</u> et al. (2021)

AL-26 INTERNAL HEATING

CONSISTENT WITH THE SOLAR SYSTEM METEORITIC RECORD

Lichtenberg, <u>Drążkowska</u> et al. (2021)

TAKE-AWAY POINTS

- > Planet formation theory is undergoing major changes driven by the System research.
- > Pebble accretion paradigm gives overall better fit to the observed exoplanets demographics than the planetesimal accretion paradigm.
- formation, planetary growth, and the internal evolution of planets.

exoplanets discoveries, protoplanetary disks observations, and the Solar

> Planetesimals do not form by direct growth of dust aggregates but by the gravitational collapse of pebble clumps driven by the streaming instability.

> Planetesimal formation is not a single burst, planetesimals may form for several Myrs. We need models coupling dust evolution, planetesimal

