Cosmic Ray Extremely Distributed

Cosmic Ray Extremely Distributed Observatory", P. Homola, et al. (CREDO Collab.), Symmetry 2020, 12(11), 1835, 2020.[arXiv:2010.08351, DOI:10.3390/sym12111835].

Opiekun: dr hab. Krzysztof Woźniak IFJ PAN w Krakowie Jerzy Pryga Uniwersytet Jagielloński w Krakowie 13.01.2021

CDED

Weronika Stanek AGH im. Stanisława Staszica w Krakowie

Czego szuka CREDO?

 Grup kaskad promieniowania kosmicznego (EAS) skorelowanych w czasie - (SPS).

Jak to robi?

 Szukanie korelacji we wszystkich możliwych źródłach danych z całego świata: smartphony, małe detektory, profesjonalne obserwatoria itd.

Dlaczego to robi?

 Potwierdzenie istnienia SPS, a następnie ich badanie może potwierdzić istnienie wielu nieznanych zjawisk (np. ciemnej materii) i otworzy zupełnie nowe drzwi w badaniu kosmosu.

Całkowicie globalne obserwacje promieniowania kosmicznego

Nowatorskie rozwiązanie - tzw. Citizen Science

DID YOU KNOW THAT YOU HAVE

AN INTERGALACTIC PARTICLE DETECTOR RIGHT IN YOUR POCKET?

Install CREDO Detector app for Android and hunt for the deeply hidden treasures of the Universe.

CRED@ • Visegrad Fund

Sieć CREDO

CREDO Detector app

Na ten moment:

42 instytucji / 19 krajów/ 5 kontynentów / ~ 11 900 użytkowników / ~ 4400 drużyn / > 10 000 000 detekcji za pomocą smartphonów / > 1100 lat łącznego czasu pomiarów 4

Sieć CREDO

Plany na przyszłość

- Detektory rozmieszczone w różnych miejscach (np. góry, dachy budynków).
- Niezależne energetycznie i zdolne pracować długo bez interwencji człowieka.
- Przesyłające dane do czegoś w rodzaju "bazy" - czyli urządzenia obsługującego pewną liczbę detektorów i wysyłającego dane do bazy danych przez internet.

Cosmic Watch

- Opracowany na MIT.
- Detektor scyntylacyjny.
- Prosty w obsłudze.
- Niedrogi.

S.N. Axani et al 2018 JINST 13 P03019

Aktualnie badany układ

Założenia:

- 1. 4 Cosmic Watch'e połączone w układ koincydencji.
- 2. Okno czasowe koincydencji: 200 ns.
- 3. Powierzchnia detektora: 25 cm².
- 4. Efektywność detektora wynosi: η = 95%

S.N. Axani et al 2018 JINST 13 P03019

Aktualnie badany układ

Założenia:

- 1. Wszystkie detektory są identyczne.
- 2. Szansa na sygnał zależy tylko od, efektywności detektora, jego powierzchni i gęstości cząstek.
- 3. Żaden moment w czasie nie jest wyróżniony.
- 4. Detektor daje sygnał dla cząstek konkretnego typu i w danym zakresie energii.
- 5. Układ wykrywa kaskady nadlatujące ze wszystkich kierunków.

Michał Karbowiak et al 2020 Phys. Educ. 55 055021

Wielkie pęki atmosferyczne - kaskady

Charakteryzacja kaskad:

- 1. Przeprowadzona na podstawie symulacji programu CORSIKA.
- 2. Wszystkie kaskady zachowują się tak samo jak kaskady protonowe (74 %).
- 3. Wszystkie kaskady są <u>symetryczne</u> względem swojego centrum.

Wielkie pęki atmosferyczne - kaskady

Charakteryzacja kaskad:

- Gęstość cząstek pęków jest funkcją: odległości od jej centrum *r*, energii cząstki pierwotnej *E* i całkowitej ilości wyprodukowanych cząstek *N*.
- 2. Rozkład ilości cząstek wyprodukowanych w kaskadzie jest normalny i zależy od energii *E*.
- 3. Rozmycie czasowe kaskad jest zaniedbywalne to znaczy krótsze niż czas koincydencji.

• P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

Wielkie pęki atmosferyczne - kaskady Charakteryzacja kaskad:

1. Częstotliwość kaskad jest funkcją energii *E* postaci*:

$$j(E) \cong j_0 \left(\frac{E}{1 \ GeV}\right)^{-\gamma},$$

* - Aartsen, M. G., et al. "Measurement of the cosmic ray energy spectrum with IceTop-73." *Physical Review D* 88.4 (2013): 042004 • P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

Niepożądane tło

Założenia odnośnie tła:

- Źródłem tła są pojedyncze cząstki pochodzenia kosmicznego (niepochodzące z kaskad), radioaktywność otoczenia oraz przypadkowe sygnały pochodzące z elektroniki samego urządzenia lub innych zakłóceń.
 - 2. Poziom tła jest stały w czasie.

Sygnały od tła

Prawdopodobieństwo sygnału:

 $P_{bg}(\delta T, \eta, A, I_{bg}, f_{bg}) = 1 - exp[-\delta T \cdot \eta \cdot (A \cdot I_{bg} + f_{bg})]$

 δT - Czas koincydencji [s].

- η Wydajność detektora [%].
- A Powierzchnia detektora [cm²].

 I_{bg} - Strumień cząstek tła [1/s cm²].

f_{bg} - częstotliwość fałszywych sygnałów
(innego pochodzenia niż cząstki tła np. od elektroniki) [1/s].

Sygnały od tła

Prawdopodobieństwo koincydencji:

$$Q_{bg}(n,k,P_{bg}) = \binom{n}{k} P_{bg}^k (1-P_{bg})^{n-k}$$

*P*_{bg} - Prawdopodobieństwo sygnału od tła.
n - Ilość detektorów w układzie.

k - Ilość detektorów dających sygnał.

 $\langle N_{bg}(k) \rangle = Q_{bg}(n,k,P_{bg}) \cdot \frac{T}{\delta T}$

Q_{bg}(n, k, P_{bg}) - Prawdopodobieństwo koincydencji.

T - Czas pomiaru [s].

 δT - Czas koincydencji [s].

Funkcja gęstości kaskady*:

 $\rho(\theta, N_{part}(E), r) = F_{\theta}(\theta) \cdot \frac{1.25N_{part}(E)}{2\pi\Gamma(1.25)} (\frac{1}{320})^{1.25} r^{-0.75} (1 + \frac{r}{320})^{-2.5}$

- r Odległość od centrum kaskady [m].
- $F_{\theta}(\theta)$ Czynnik zależności od kąta.
- N_{part} Liczba cząstek kaskady.
- E Energia cząstki pierwotnej [TeV].

θ [^0]

^{* -} P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

Funkcja gęstości kaskady*:

 $\rho(\theta, N_{part}(E), r) = F_{\theta}(\theta) \cdot \frac{1.25N_{part}(E)}{2\pi\Gamma(1.25)} (\frac{1}{320})^{1.25} r^{-0.75} (1 + \frac{r}{320})^{-2.5}$

- r Odległość od centrum kaskady [m].
- $F_{\theta}(\theta)$ Czynnik zależności od kąta.
- N_{part} Liczba cząstek kaskady.
- *E* Energia cząstki pierwotnej [TeV].

^{* -} P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

Funkcja gęstości kaskady*:

 $\rho(\theta, N_{part}(E), r) = F_{\theta}(\theta) \cdot \frac{1.25N_{part}(E)}{2\pi\Gamma(1.25)} (\frac{1}{320})^{1.25} r^{-0.75} (1 + \frac{r}{320})^{-2.5}$

- r Odległość od centrum kaskady [m].
- $F_{\theta}(\theta)$ Czynnik zależności od kąta.
- N_{part} Liczba cząstek kaskady.
- *E* Energia cząstki pierwotnej [TeV].

^{* -} P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

Funkcja gęstości kaskady*:

 $\rho(\theta, N_{part}(E), r) = F_{\theta}(\theta) \cdot \frac{1.25N_{part}(E)}{2\pi\Gamma(1.25)} (\frac{1}{320})^{1.25} r^{-0.75} (1 + \frac{r}{320})^{-2.5}$

- r Odległość od centrum kaskady [m].
- $F_{\theta}(\theta)$ Czynnik zależności od kąta.
- N_{part} Liczba cząstek kaskady.
- *E* Energia cząstki pierwotnej [TeV].

^{* -} P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

^{* -} P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

Prawdopodobieństwo sygnału:

 $P(A, \eta, \rho) = 1 - exp[-A \cdot \eta \cdot \rho(\theta, N_{part}(E), r)]$

ρ(θ, N_{part}, r) - Funkcja gęstości kaskady [parts/cm²].

- η Wydajność detektora [%].
- A Powierzchnia detektora [cm²].

Prawdopodobieństwo koincydencji:

$$Q(n,k,P) = \binom{n}{k} P^k (1-P)^{n-k}$$

- P Prawdopodobieństwo sygnału od cząstki z kaskady.
- n Ilość detektorów w układzie.
- k Ilość detektorów dających sygnał.

Oczekiwana ilość koincydencji:

$$\langle N(k)\rangle = \int_0^{r_{max}} \int_{E_{min}}^{E_{max}} \int_0^{\frac{\pi}{2}} Q(n,k,P) 2\pi r j(E) T d\Omega dE dr$$

- Q(n, k, P) Prawdopodobieństwo koincydencji.
- *r* Odległość od centrum kaskady [cm].
- *j(E)* Funkcja częstotliwości kaskad [1/s m²].
- E Energia kaskady [TeV].
- T Czas pomiaru [s].
- 🗆 Kąt bryłowy.

Funkcja gęstości kaskady (znaleziona): θ . $N_{\text{mart}}(r) = 0$ (r) E(0) E(0)

 $\rho(E, \theta, N_{part}, r) = \rho_{par}(r) \cdot F_{\theta}(\theta) \cdot F_{E}(E, r) \cdot F_{N}(N_{part}, r)$

r - odległość od centrum kaskady [cm].

 $\rho_{par}(r)$ - Funkcja gęstości, do której parametryzowaliśmy [parts/cm²].

 $F_{\theta}(\theta)$ - Czynnik zależności od kąta.

 $F_{F}(E, r)$ - Czynnik zależności od energii.

 $F_N(N_{part}, r)$ - Czynnik fluktuacji całkowitej ilości cząstek.

Funkcja gęstości kaskady (znaleziona):

 $\rho(E,\theta,N_{part},r) = \rho_{par}(r) \cdot F_{\theta}(\theta) \cdot F_{E}(E,r) \cdot F_{N}(N_{part},r)$

 $\rho_{par}(r)$ - Funkcja gęstości, do której parametryzowaliśmy [parts/cm²]. $F_{\theta}(\theta)$ - Czynnik zależności od kąta.

 $F_{F}(E, r)$ - Czynnik zależności od energii.

 $F_N(N_{part}, r)$ - Czynnik fluktuacji całkowitej ilości cząstek.

Funkcja gęstości kaskady (znaleziona):

 $\rho(E,\theta,N_{part},r) = \rho_{par}(r) \cdot F_{\theta}(\theta) \cdot F_{E}(E,r) \cdot F_{N}(N_{part},r)$

ρ_{par}(r) - Funkcja gęstości, do której parametryzowaliśmy [parts/cm²].

 $F_{\theta}(\theta)$ - Czynnik zależności od kąta.

 $F_{E}(E, r)$ - Czynnik zależności od energii.

 $F_N(N_{part}, r)$ - Czynnik fluktuacji całkowitej ilości cząstek.

Dodatkowy efekt:

 - "clustering" - zwiększa prawdopodobieństwo koincydencji.

Porównanie przybliżenia i analizy:

Kilka uwag

Inne mniej istotne aspekty:

- 1. Szanse na koincydencje sygnału od tła z sygnałem od kaskady zostały oszacowane i okazały się pomijalne.
- 2. Istnieje wiele innych efektów wpływających na wyniki, które jednak wymagają dużo więcej pracy aby zostać uwzględnione.

Otrzymane wyniki

Tabela podsumowująca całą dotychczasową pracę:

Koincydencja	Oczekiwane sygnały od kaskad (przybliżenie)	Oczekiwane sygnały od kaskad (analiza)	Oczekiwane sygnały od tła	Wyniki pomiarów
1	133500	184300	1.168 × 10 ⁶	_
2	0.448	0.437	0.169	94
3	0.00387	0.00281	1.01 × 10 ⁻⁸	2
4	0.000228	0.000223	<< 1	1

Otrzymane wyniki

Tabela podsumowująca całą dotychczasową pracę:

Koincydencja	Oczekiwane sygnały od kaskad (przybliżenie)	Oczekiwane sygnały od kaskad (analiza)	Oczekiwane sygnały od tła	Wyniki pomiarów
1	13,2 na 1 min	18,3 na 1 min	1.93 na 1 s	-
2	1 na 15,5 dni	1 na 16 dni	1 na 41 dni	1 na 2 h
3	< 1 na rok	< 1 na rok	<< 1 na rok	1 na 3,5 dnia
4	<< 1 na rok	<< 1 na rok	<< 1 na rok	1 na tydzień

Otrzymane wyniki

Podsumowanie

Czy rozbieżność z pomiarem jest duża?

- Tak, ale chyba wiemy dlaczego.

Dlaczego rozbieżność z pomiarem jest tak duża?

- Istnieje szereg innych efektów wpływających na wyniki, które trudno uwzględnić, albo jest to wręcz niemożliwe:
 - Wysokość nad poziomem morza.
 - Trudność w oszacowaniu co dokładnie daje sygnał w detektorze.
 - Błędy w oszacowaniu poziomu tła.
- Mógł zostać wybrany zły model formowania się kaskad podczas symulacji.
 - Nie uwzględniono kaskad tworzonych przez cięższe pierwiastki.
 - Inne uproszczenia w założeniach.
 - Czas pomiaru był niedługi.

Podsumowanie

Jakie są najważniejsze wnioski z tej pracy?

- Szansa, że sygnały koincydencyjne o k = 2, 3 i 4 pochodzą od tła jest znikoma, zatem można założyć, że pochodzą od kaskad.
- Ilość koincydencji może pozwolić oszacować zakres energii kaskady, która je wywołała.

Jakie są dalsze plany rozwoju?

- Dokładne przetestowanie detektora w celu lepszego zrozumienia dla jakich zjawisk daje on sygnał.
 - Rozbudowa analizy i poszerzenie zakresu jej stosowalności.
 - Więcej pomiarów w różnych warunkach.
 - Publikacja :)

Bibliografia:

• P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

(https://pdg.lbl.gov/2020/reviews/rpp2020-rev-cosmic-rays.pdf)

- Michał Karbowiak *et al* 2020 *Phys. Educ.* 55 055021
- Cosmic Ray Extremely Distributed Observatory", P. Homola, et al. (CREDO Collab.), Symmetry 2020, 12(11), 1835, 2020.[arXiv:2010.08351, DOI:10.3390/sym12111835].

(https://doi.org/10.3390/sym12111835)

 CORSIKA: a Monte Carlo code to simulate extensive air showers., by Heck, D.; Knapp, J.; Capdevielle, J. N.; Schatz, G.; Thouw, T.: Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany)., Feb 1998, V + 90 p., TIB Hannover, D-30167 Hannover (Germany).

(https://web.ikp.kit.edu/corsika/physics_description/corsika_phys.pdf)

Aartsen, M. G., et al. "Measurement of the cosmic ray energy spectrum with IceTop-73." *Physical Review D* 88.4 (2013): 042004

(https://arxiv.org/pdf/1307.3795.pdf)

• S.N. Axani *et al* 2018 *JINST* 13 P03019

(https://arxiv.org/pdf/1801.03029.pdf?)

Cena i rozmieszczanie detektorów

- **1 detektor** = 4 Cosmic Watch'e (2500 zł)
 - + Baterie słoneczne, obudowa, tracker GPS, urządzenia do przesyłu i zbierania danych, koszty administracyjne itd. (≈ 2000 zł)

Żądana gęstość detektorów = $1/km^2$

Obszar = 15 108 km²

Koszty =

= Cena detektora * Gęstość * Obszar = = 4500 zł * 1/km² * 15 108 km²

Koszty = 67 986 000 zł ≈ 0,971 Sasina

