Neutrino signatures of the incoming core-collapse supernova

Andrzej Odrzywolek

Department of General Relativity and Astrophysics
Jagiellonian University, Cracov, Poland

Tuesday, 14.07.2009, 17:15
Everybody here would like to know . . .

But no one knows . . .

Why?
Everybody here would like to know . . .
But no one knows . . .
Why?
Everybody here would like to know . . .
But no one knows . . .
Why?
When next supernova in the Galaxy will explode?

Everybody here would like to know . . .
But no one knows . . .
Why?

Why we can’t answer this ”simple” question?
Why we are unable to estimate time remaining to the core-collapse with accuracy better than 100 000 years, even for nearest candidate, Betelgeuse at distance of only 130 parsecs?

1. Core evolution decouples from surface evolution
2. Core size \((R_c \sim 10^4 \text{ km})\) vs surface \((R_s \sim 10^7 \ldots 10^9)\)
3. Evolution is too fast \(\tau \sim 100\) years
4. No C burning star is known
When next supernova in the Galaxy will explode?

- Everybody here would like to know . . .
- But no one knows . . .
- Why?

Why we can’t answer this ”simple” question?

Why we are unable to estimate time remaining to the core-collapse with accuracy better than 100 000 years, even for nearest candidate, Betelgeuse at distance of only 130 parsecs?

1. Core evolution decouples from surface evolution
2. Core size ($R_c \approx 10^4$ km) vs surface $R_s \approx 10^7 \ldots 10^9$
3. Evolution is too fast $\tau \sim 100$ years
4. No C burning star is known

- all the above is due to neutrinos!
- **Solution**: direct and indirect (?) ν detection
Informations on ν emission in the course of pre-SN life

Stellar life for neutrino astronomer

<table>
<thead>
<tr>
<th>Stage</th>
<th>$\langle L_\nu \rangle$ [erg/s]</th>
<th>E_ν^{tot} [erg]</th>
<th>Time [yrs]</th>
<th>$\langle E_\nu \rangle$ [MeV]</th>
<th>Process</th>
<th>Flavors</th>
</tr>
</thead>
<tbody>
<tr>
<td>H burning</td>
<td>10^{36}</td>
<td>10^{52}</td>
<td>10^7</td>
<td>0.5-1.7</td>
<td>CNO</td>
<td>ν_e</td>
</tr>
<tr>
<td>He burning</td>
<td>10^{31}</td>
<td>10^{49}</td>
<td>10^6</td>
<td>0.02</td>
<td>plasma</td>
<td>all</td>
</tr>
<tr>
<td>ν-Cooled</td>
<td>10^{38} - 10^{46}</td>
<td>10^{51}</td>
<td>10^4</td>
<td>0.5-1.5</td>
<td>pair</td>
<td>all</td>
</tr>
<tr>
<td>Neutronization</td>
<td>10^{54}</td>
<td>10^{51}</td>
<td>10^{-2}</td>
<td>10</td>
<td>ϵ^-</td>
<td>ν_e</td>
</tr>
<tr>
<td>SN neutrinos</td>
<td>10^{52} - 10^{48}</td>
<td>10^{53}</td>
<td>10 sec</td>
<td>10-40</td>
<td>ν transport</td>
<td>all</td>
</tr>
<tr>
<td>NS cooling</td>
<td>$< 10^{48}$</td>
<td>$< 10^{51}$</td>
<td>10^4</td>
<td>1</td>
<td>d(m)URCA</td>
<td>ν_e, $\bar{\nu}_e$</td>
</tr>
</tbody>
</table>

1. detection of the ν's from core-collapse within the Galaxy is no longer a challenge now

2. focus should be redirected for shock breakout ν_e pulse, late cooling of neutron stars and Neutrino-Cooled stage of pre-supernova
Before and after core-collapse

Workshop Towards ν Technologies, 13-17 July 2009, Trieste

A. Odrzywolek, ν signatures of the incoming supernova
Final stages of the 15 M_{\odot} pre-supernova star (s15)

Typical sequence of events leading to the core-collapse supernova with important sources of the ν’s.
Neutrino flux 100 years before supernova explosion

Workshop Towards ν Technologies, 13-17 July 2009, Trieste

A. Odrzywolek, ν signatures of the incoming supernova
\(\langle E_\nu \rangle \) 100 years before supernova explosion
Possible detectable signatures of the incoming SN

Prominent neutrino features of the 15 M☉ star

1. core/shell O burning (months before core-collapse)
 - detection limited to Betelgeuse \((d = 100 \ldots 200 \text{ pc}) \)

2. core Si burning (8 - 0.5 days before core-collapse)
 - for stars closer than 1-2 kpc

3. max. contraction and shell Si burning (2-0.5 hours b.c.)
 - up to 10 kpc

4. direct pre-collapse stage (30 - 0 minutes b. c.)
 - this should be considered as an initial stage of the core-collapse, as most of \(\nu_e \) come in last minutes with smooth transition to neutronization peak

[cf. previous talk of W. Fulgione]

Both pair annihilation \(\bar{\nu}_e \) and electron capture on nuclei \(\nu_e \) are sources of detectable events.
Pre-supernova $\bar{\nu}_e$ spectra vs geo-neutrinos

Black - geoneutrino $\bar{\nu}_e$ spectrum
(Sanhiro Enomoto PhD)
Red - thermal pre-SN spectrum:
 pair + plasma
Blue - weak pre-SN spectrum:
 e^- capture for α-network nuclei for $kT<0.4$ MeV
 NSE neutrinos for $kT>0.4$ MeV

Workshop Towards ν Technologies, 13-17 July 2009, Trieste
A. Odrzywolek, ν signatures of the incoming supernova
Pre-supernova $\bar{\nu}_e$ spectra vs geo-neutrinos

Black - geoneutrino $\bar{\nu}_e$ spectrum (Sanhiro Enomoto PhD)

Red - thermal pre-SN spectrum:
- pair + plasma

Blue - weak pre-SN spectrum:
- e^- capture for α-network nuclei for $kT<0.4$ MeV
- NSE neutrinos for $kT>0.4$ MeV

Workshop Towards ν Technologies, 13-17 July 2009, Trieste

A. Odrzywolek, ν signatures of the incoming supernova
Pre-supernova $\bar{\nu}_e$ spectra vs geo-neutrinos

Core Si burning, 2.00 days B.C.

Distance = 100 pc

Black: geoneutrino $\bar{\nu}_e$ spectrum (Sanhiro Enomoto PhD)
Red: thermal pre-SN spectrum: pair + plasma
Blue: weak pre-SN spectrum:
 - e^- capture for α-network nuclei for $kT < 0.4$ MeV
 - NSE neutrinos for $kT > 0.4$ MeV

(arXiv:0903.2311v1)
Pre-supernova $\bar{\nu}_e$ spectra vs geo-neutrinos

Shell Si burning, 1.72 hours B.C.

Distance = 10 kpc

Black - geoneutrino $\bar{\nu}_e$ spectrum (Sanhiro Enomoto PhD)
Red - thermal pre-SN spectrum: pair + plasma
Blue - weak pre-SN spectrum:
- e^- capture for α-network nuclei for $kT < 0.4$ MeV
- NSE neutrinos for $kT > 0.4$ MeV
(arXiv:0903.2311v1)
Pre-supernova $\bar{\nu}_e$ spectra vs geo-neutrinos

Black - geoneutrino $\bar{\nu}_e$ spectrum (Sanhiro Enomoto PhD)
Red - thermal pre-SN spectrum: pair + plasma
Blue - weak pre-SN spectrum:
- e^- capture for α-network nuclei for $kT<0.4$ MeV
- NSE neutrinos for $kT>0.4$ MeV

(arXiv:0903.2311v1)
Pre-supernova $\bar{\nu}_e$ spectra vs geo-neutrinos

Black - geoneutrino $\bar{\nu}_e$ spectrum (Sanhiro Enomoto PhD)
Red - thermal pre-SN spectrum:
 - pair + plasma
Blue - weak pre-SN spectrum:
 - e^- capture for α-network nuclei for $kT<0.4$ MeV
 - NSE neutrinos for $kT>0.4$ MeV

(arXiv:0903.2311v1)

Shell Si burning, 1.72 hours B.C.

Distance = 100 pc
Pre-supernova ν_e spectra vs solar neutrinos

Black - solar ν_e spectrum (SSM)
Red - thermal pre-SN spectrum:
 pair + plasma
Blue - weak pre-SN spectrum:
 - e^- capture for α-network nuclei for $kT<0.4$ MeV
 - NSE neutrinos for $kT>0.4$ MeV

(arXiv:0903.2311v1)

Workshop Towards ν Technologies, 13-17 July 2009, Trieste
Pre-supernova ν_e spectra vs solar neutrinos

Workshop Towards ν Technologies, 13-17 July 2009, Trieste

A. Odrzywolek, ν signatures of the incoming supernova
Pre-supernova ν_e spectra vs solar neutrinos

Core Si burning, 2.00 days B.C.

Distance = 100 pc

Black - solar ν_e spectrum (SSM)
Red - thermal pre-SN spectrum: pair + plasma
Blue - weak pre-SN spectrum:
- e^- capture for α-network nuclei for $kT<0.4$ MeV
- NSE neutrinos for $kT>0.4$ MeV

(arXiv:0903.2311v1)
Pre-supernova ν_e spectra vs solar neutrinos

Black - solar ν_e spectrum (SSM)
Red - thermal pre-SN spectrum: pair + plasma
Blue - weak pre-SN spectrum:
- e^- capture for α-network nuclei for $kT < 0.4$ MeV
- NSE neutrinos for $kT > 0.4$ MeV

Workshop Towards ν Technologies, 13-17 July 2009, Trieste
Pre-supernova ν_e spectra vs solar neutrinos

Shell Si burning, 1.72 hours B.C.

Distance = 1 kpc

Black - solar ν_e spectrum (SSM)
Red - thermal pre-SN spectrum: pair + plasma
Blue - weak pre-SN spectrum:
- e^- capture for α-network nuclei for $kT<0.4$ MeV
- NSE neutrinos for $kT>0.4$ MeV

(arXiv:0903.2311v1)

Workshop Towards ν Technologies, 13-17 July 2009, Trieste
A. Odrzywolek, ν signatures of the incoming supernova
Pre-supernova ν_e spectra vs solar neutrinos

Shell Si burning, 1.72 hours B.C.

Distance = 100 pc

- **Black** - solar ν_e spectrum (SSM)
- **Red** - thermal pre-SN spectrum: pair + plasma
- **Blue** - weak pre-SN spectrum:
 - e^- capture for α-network nuclei for $kT < 0.4$ MeV
 - NSE neutrinos for $kT > 0.4$ MeV

(arXiv:0903.2311v1)
Pre-supernova ν_e spectra vs solar neutrinos

Black - solar ν_e spectrum (SSM)
Red - thermal pre-SN spectrum:
 - pair + plasma
Blue - weak pre-SN spectrum:
 - e^- capture for α-network nuclei for $kT < 0.4$ MeV
 - NSE neutrinos for $kT > 0.4$ MeV

(arXiv:0903.2311v1)
Pre-supernova ν_e spectra vs solar neutrinos

- **Black** - solar ν_e spectrum (SSM)
- **Red** - thermal pre-SN spectrum: pair + plasma
- **Blue** - weak pre-SN spectrum:
 - e^- capture for α-network nuclei for $kT<0.4$ MeV
 - NSE neutrinos for $kT>0.4$ MeV

Workshop Towards ν Technologies, 13-17 July 2009, Trieste
A. Odrzywolek, ν signatures of the incoming supernova
Pre-supernova ν_e spectra vs solar neutrinos

Black - solar ν_e spectrum (SSM)
Red - thermal pre-SN spectrum: pair + plasma
Blue - weak pre-SN spectrum:
 - e^- capture for α-network nuclei for $kT<0.4$ MeV
 - NSE neutrinos for $kT>0.4$ MeV

(arXiv:0903.2311v1)
Signal expected in Liquid Scintillator detector

Signal in LS detector with $E_{th}=0.2$ MeV

Distance = 10 kpc

Event rate in H_2O [kiloton$^{-1}$ s$^{-1}$]

Solar $^8B\nu_e$ level

Geo $\bar{\nu}_e$ level

Red – Inv. β ($\bar{\nu}_e$)

Blue – Elastic scattering (ν_e)

Time B.C. [seconds]

Workshop Towards ν Technologies, 13-17 July 2009, Trieste
A. Odrzywolek, ν signatures of the incoming supernova
Signal expected in Liquid Scintillator detector

Signal in LS detector with $E_{th} = 0.2$ MeV

Distance = 1 kpc

- Solar $^8\text{B} \gamma_e$ level
- Geo $\bar{\nu}_e$ level
- Red – Inv. $\beta (\bar{\nu}_e)$
- Blue – Elastic scattering (ν_e)

Event rate in H_2O [kiloton$^{-1}$ s$^{-1}$] vs. Time B.C. [seconds]

Ev. rate [kiloton$^{-1}$ day$^{-1}$] vs. Time B.C. [seconds]

Shell Si
Core Si

Workshop Towards ν Technologies, 13-17 July 2009, Trieste
A. Odrzywole, ν signatures of the incoming supernova
Signal expected in Water Cherenkov detector

Signal in WC detector with $E_{th}=4$ MeV

Distance = 10 kpc

Solar 8B ν_e level
Geo $\bar{\nu}_e$ level

Red – Inv. β ($\bar{\nu}_e$)
Blue – Elastic scattering (ν_e)

Workshop Towards ν Technologies, 13-17 July 2009, Trieste
A. Odrzywolek, ν signatures of the incoming supernova
Signal expected in Water Cherenkov detector

Signal in WC detector with $E_{th}=4$ MeV

Distance = 1 kpc

Event rate in H$_2$O [kiloton$^{-1}$ s$^{-1}$]

Solar 8B ν_e level

Geo $\overline{\nu}_e$ level

Red – Inv. β ($\overline{\nu}_e$)

Blue – Elastic scattering (ν_e)

Ev. rate [kiloton$^{-1}$ day$^{-1}$]

Time B.C. [seconds]

Shell Si

Core Si
Warning scenario Ia: shell Si burning (0.5 Mt WC detector)

1-Hour moving window signal from 10 kpc

Both ν_e (ES) and $\bar{\nu}_e$ (IBD) signals provide \sim1 hour warning of the CC SN in 0.5 Mt class WC detector from 10 kpc

Simultaneous $\nu_e + \bar{\nu}_e$ positive fluctuation are of low probability
Both ν_e (ES) and $\bar{\nu}_e$ (IBD) signals provide ~ 1 hour warning of the CC SN in 0.5 Mt class WC detector from 10 kpc. Simultaneous $\nu_e + \bar{\nu}_e$ positive fluctuation are of low probability.
Warning scenario Ib: shell Si burning (Super-Kamiokande)

ν_e (ES) and $\bar{\nu}_e$ (IBD) signals provide clear ~ 1 hour warning in Super-Kamiokande from 1 kpc.
\(\nu_e \) (ES) and \(\bar{\nu}_e \) (IBD) signals provide clear \(\sim1 \) hour warning in Super-Kamiokande from 1 kpc
Warning scenario Ic: shell Si burning (LENA)

1-Hour moving window signal from 10 kpc

1. ν_e (ES) signal provide clear \sim1 hour warning in LENA from 10 kpc

2. Inv. β negligible, only 0-2 hits expected
Warning scenario II: core Si/O burning

NOTE: this is limited only to nearby stars at distance $d \ll 10$ kpc.

Daily binned signal from Betelgeuse ($d=130$ pc)
What can be expected from other stellar models?
How generic Si core/shell burning signature is?

Evolutionary sequence for other massive stars

- two full outputs for 15 M\(_\odot\) and 25 M\(_\odot\) pre-supernovae has been thoroughly analysed: both provide core Si/shell Si signals
- presented case should be typical
- known exceptions are:
 - stars in the range of initial mass 8-11 M\(_\odot\) might do not enter O and Si burning stages before collapse
 - some stars might collapse without entering shell Si burning
 - on the other way, two shell Si burning stages are possible

25 M\(_\odot\) versus 15 M\(_\odot\) pre-supernova

- evolution of 25 M\(_\odot\) is much faster, so \(\nu\) flux is therefore higher
- neutrinos are emitted under less degenerate conditions and have smaller energies: detected signals are lower
- more massive stars are less numerous (IMF)
Conclusions

- pre-supernova produces steadily increasing ν_e and $\bar{\nu}_e$ flux with progressively higher energy
- new results now include weak nuclear neutrinos: strong (up to $100 \times$ pair) ν_e flux after core Si ignition has been calculated in addition to previously known thermal $\bar{\nu}_e$ flux
- energy of ν_e is estimated using FFN rates from α-network (~ 4 MeV) and NSE (~ 2.5 MeV)
- evolutionary processes: core/shell O, core Si, shell Si burning and direct pre-collapse contraction provide sequence of events in the neutrino detectors
- detection possibility highly depends on the distance; for nearby Betelgeuse future LS detectors (LENA) are able to detect ν_e flux months before supernova
- 50% of Galactic stars lie within distance of 10 kpc; from this distance we can detect only shell Si burning ~ 1 hour B.C.
- terrestrial $\bar{\nu}_e$ and solar ν_e are main irremovable backgrounds; directional analysis can possibly help
Important References

- **Stellar models s15 and s25:** Woosley, S. E.; Heger, A.; Weaver, T. A., *The evolution and explosion of massive stars*, Reviews of Modern Physics, 2002 74, 1015-1071

- **Neutrino spectra & basic processes:** Misiaszek, M.; Odrzywolek, A.; Kutschera, M., *Neutrino spectrum from the pair-annihilation process in the hot stellar plasma*, Physical Review D, 74, 043006.

- **Protoneutron star neutrino cooling and delayed black hole formation:**
PSNS WWW devoted to post-processing of astrophysical models with focus on detailed state-of-art neutrino spectra:
http://ribes.if.uj.edu.pl/psns
Comparison of the solar ν_e spectrum and pre-supernova from 1 kpc (left) and geoneutrinos at Kamioka with pre-supernova $\bar{\nu}_e$. Animation show last 40,000 years before supernova, after end of the He burning.

Animation link
Definition of **massive star**

- star massive enough to explode as a core-collapse supernova
- lower range end is not precisely known: $8-11 \, M_\odot$
- I will talk about „genuine” massive stars $M > 15 \, M_\odot$
- particularly, analysed stars enter **core** and **shell** Si burning stages
- two complete stellar models: s15 and s25 of A. Heger are used to examine detection scenarios
- *real-world* examples: *Betelgeuse, Eta Carinae*