Neutrino 2006

The XXII International Conference on Neutrino Physics and AstrophysicsSanta Fe, New Mexico, June 13-19, 2006Betelgeuse 130 pcWR 1041.5 kpcEta Carina2.7 kpc

Can we see these stars in neutrinos, accounting for 50 years of progress in theory and experiment?

MASSIVE STAR BEFORE SUPERNOVA

No changes in star appearance hundred years before explosion.

No way to predict supernova!

Source: www.cococubed.com

Confirmed by the analysis of pre-SN1987A supernova photographs back into XIX-th century.

NEUTRINO COOLING

Thermal neutrinos balance thermonuclear and gravitational energy release. All flavors of the ν - $\bar{\nu}$ pairs are produced Three competing processes operate:

- pair-annihilation
- plasmon decay
- photoproduction

Source: Itoh et.al, ApJSS, 102 (1996) p. 411

PAIR-ANNIHILATION

For many astrophysical objects average neutrino energy can be estimated using simple formulae:

 $\langle E_{\nu} \rangle = \begin{cases} 2/5 \ \mu + 2 \ kT + m_e/2 \quad \text{(degenerate)} \\ \frac{2700 \ \zeta(5)}{7 \ \pi^4} \ kT \quad \text{(relativistic, non-deg.)} \\ m_e + 3/2 \ kT \quad \text{(non-deg., non-rel.)} \end{cases}$

NEUTRINO-COOLED STARS

Several hundred years before explosion, however, massive star becomes Neutrino-Cooled star

Burning	$\mid T_{c} \left[MeV ight]$	$ ho_{c}\left[g/cm^{3} ight]$	Duration	L/L_{\odot}	$L_{\nu}[erg/s]$
н	3.3×10^{-3}	3.8	5.8 mln	40×10^{3}	$\sim 0.02L$
**	0.0 × 10	5.0	yrs	10 × 10	
He	0.01	200	85 000 yrs	115×10^3	3.9×10^{33}
С	0.05	10^{5}	280 years	165×10^{3}	3.4×10^{38}
Ne	0.1	2×10^6	300 days	185×10^3	6.7×10^{41}
0	0.15	4×10^6	134 days	185×10^3	7.9×10^{42}
Si	0.24	3.2×10^7	30 hours	185×10^3	3.4×10^{44}
Shell Si	0.29	3.2×10^{8}	5.5 hours	185×10^3	_
Collapse	0.14	1.6×10^{9}	$0.1 \dots 0.5 s$	185×10^3	$> 10^{54}$

Position in the HR diagram fixed (blue), but neutrino luminosity L_{ν} evolves rapidly (red).

PLASMON DECAY

Two modes of collective plasma excitations (γ^*) *can decay into* ν - $\overline{\nu}$ *pairs:*

- Massive in-medium photon (T)
- Longitudal plasmon (L)

Completely different dispersion relations for these 2 modes lead to the following neutrino energies: $\langle E_{\bar{\nu}_e} \rangle = 35 \text{ keV (L)}, \langle E_{\bar{\nu}_e} \rangle = 440 \text{ keV (T)}$

PHOTOPRODUCTION

- Spectrum of the photoneutrinos is computed assuming vacuum dispersion relation for photons.
- Spectrum is expressed in the form of 7-dimensional integral and computed using Monte Carlo method

Average antineutrino energy during Si burning $\langle E_{\bar{\nu}_e} \rangle = 1.05 \text{ MeV}$

Essential data

- Neutrino luminosity (~ $10^{12}L_{\odot}\simeq L_{\odot}$ @100 light years)
- Stage duration (0.7...14 days) for Si burning
- Distance to pre-supernova (0.1...30kpc)
- Avg. time between Galaxy events (10...200 years)
- Detector target mass (1 kiloton ...1 Gigaton)
- Detector threshold (1.8...5 MeV)

The most important: **anti-neutrino spectrum** \rightarrow

If GAZDOOKS! will start in 2008 we could be able to **predict supernova explosion**

for few nearby stars: β Ori, α Her, α Sco...

Unfortunately, the explosion of the nearby star is highly unlikely: $\sim 10^{-4} \times years \ of \ continu-ous\ monitoring$

Source: NASA

Larger devices are required!

GALAXY COVERAGE

Number of massive stars available to observations, according to simple Galaxy model

Observation range:

- Red GADZOOKS! [32 kt]
- Yellow Hyper-Kamiokande [0.5 Mt]
- Green 2 Mt detector (very optimistic)
- Blue Single ocean balloon [10 Mt]
- Purple Gigaton Array [1 Gt]

LOW-ENERGY ANTINEUTRINO DETECTION

Inverse β -decay threshold $E_{th} = 1.8$ MeV, while for water Cherenkov detectors $E_{th} \simeq 4$ MeV.

SOLUTION: (M. Vagins, Neutrino 2004)

Dissolving in pure H₂O efficient neutron absorber (chloride): GdCl₃ (NaCl, KCl) cause reaction:

$$n + \mathrm{Gd}(\mathrm{Cl}) \to \mathrm{Gd}^*(\mathrm{Cl}^*) \to \mathrm{Gd}(\mathrm{Cl}) + \gamma_i$$

 $E_{tot} = \sum_{i} E_{\gamma_i} \simeq 8 \,\text{MeV}$ Gamma-rays scatter off electrons \Rightarrow Electrons emit Cherenkov light \Rightarrow Light detected by photomultipliers

LOW-THRESHOLD ANTINEUTRINO DETECTORS

- KAMLAND (1 kt)
- BOREXINO (0.3 kt)
- SNO (1+1.7 kt)
- SUPER KAMIOKANDE (32 kt)

- HYPERK (540 kt)
- UNO (440 kt)
- GADZOOKS! (32 kt)
- "*Gigaton Array*" (10⁶ kt)

Utilizing Reines-Cowan reaction (inverse β -decay):

$$\bar{\nu}_e + p \to n + e^+$$

 $\simeq 1$ event/kt H₂O from 1 kpc

PRE-SUPERNOVA MONITORING

	Detector	Maximum observation	% of the Galactic <i>pre-supernovae</i>
	111855	range	in the range
GADZOOKS!	32 kt	0.5 kpc	0.1%
HYPER-KAMIOKANDE	0.5 Mt	2 kpc	2%
SINGLE DEEP OCEAN BALLOON	10 Mt	10 kpc	50%
GIGATON ARRAY	1 Gt	100 kpc	100%

Number of massive stars available to monitoring increases rapidly as we reach Galactic center

CONCLUSIONS & FUTURE PLANS

- Pair-annihilation anti-neutrinos are dominant in the thermal neutrino spectrum of the presupernova star
- Other thermal processes do not produce neutrinos with energy above threshold of existing or planned big detectors
- Ability to get supernova warning from Si burning neutrinos will be limited to a few nearby massive stars...
 - ... until new generation of the giant antineutrino detectors

- Computer code computing complete thermal neutrino spectrum
- Improved physical input for photo- and plasmaneutrino spectrum (dispersion relations, squared matrix elements)
- Integration with stellar models [Call for collaboration]
- Neutrinos and antineutrinos produced in weak nuclear reactions