FUTURE NEUTRINO OBSERVATIONS

of the **supernova progenitor** prior to the *core-collapse*

ANDRZEJ ODRZYWOŁEK (Dept. of General Rel. and Astrophysics, Jagiellonian University) with M.Misiaszek, M. Kutschera

Detection possibility of the pair-annihilation neutrinos from neutrinocooled pre-supernova star Astroparticle Physics **21** 303-313 (2004)

CAMK Wednesday Colloquium

NEUTRINO-COOLED STARS

CAMK Wednesday Colloquium

PRE-SUPERNOVA versus SUN

Sun – perfectly examined on observational and theoretical grounds *(EM, neutrinos, helioseismology)*.

Pre-Supernova – theoretical models only (no such a star known in Galaxy). Important observational results: SN 1987A *progenitor* and companion of the SN 1993J identified. Nature **427** (2004) 129-131

	Sun	Pre-Supernova
Lifetime	$10^{10} {\rm yrs}$	300 yrs
Luminosity	L_{\odot}	$10^5 \mathrm{L}_{\odot}$
$L_{ u}$	$0.02~\mathrm{L}_{\odot}$	$10^{12}~{ m L}_{\odot}$
Avg. ν energy	0.3 MeV	0.7 - 2 MeV

CAMK Wednesday Colloquium

EVOLUTION OF THE MASSIVE STAR

Burning	$T_c [MeV]$	$ ho_c \left[g/cm^3 ight]$	Duration	L/L_{\odot}	$L_{\nu}[erg/s]$
Н	3.3×10^{-3}	3.8	5.8 mln yrs	40×10^3	$\sim 0.02L$
He	0.01	200	85 000 yrs	115×10^3	3.9×10^{33}
С	0.05	10^{5}	280 yrs	165×10^3	3.4×10^{38}
Ne	0.1	2×10^6	300 days	185×10^3	6.7×10^{41}
Ο	0.15	4×10^6	134 days	185×10^3	7.9×10^{42}
Si	0.24	3.2×10^7	30 hours	185×10^3	3.4×10^{44}
Shell Si	0.29	3.2×10^8	5.5 hour	185×10^3	_
Core- Collapse	0.14	1.6×10^{9}	$0.1 \dots 0.5 \ s$	185×10^3	$> 10^{54}$

CAMK Wednesday Colloquium

ESSENTIAL FACTORS

- Neutrino luminosity (~ $10^{12}L_{\odot} \simeq L_{\odot}$ at 100 light years)
- Stage duration (0.7...14 days)
- Distance (Galaxy: 0.1...30kpc)
- Avg. time between Galaxy events (10...200 years)
- Spectrum ($E_{\nu} = 0.7...2 \text{ MeV}$)
- Detector target mass (1 kiloton ... 16 gigaton)
- Detector threshold (1.8...5 MeV)

NEUTRINO LUMINOSITY

Nuclear burning stages:

- Core mass 1...2 M_{\odot} , close to M_{Ch} =1.44 M_{\odot}
- Hoyle's formula: $E = 0.001 M c^2 \simeq 2 \cdot 10^{51} \text{ erg}$ total energy similar to Ia explosion
- SN Ia \longrightarrow explosion energy (3 sec) Pre-SN \longrightarrow neutrinos (2 days)

CAMK Wednesday Colloquium

PAIR-ANNIHILATION NEUTRINO SPECTRUM

CAMK Wednesday Colloquium

$MONTE\text{-}CARLO\ SIMULATION$

$$\frac{G_F^2}{2} \int \frac{d^3 \mathbf{p}_1}{2E_1} \frac{d^3 \mathbf{p}_2}{2E_2} \frac{d^3 \mathbf{q}_1}{2\mathcal{E}_1} \frac{d^3 \mathbf{q}_2}{2\mathcal{E}_2} \quad \Lambda \ f_{e^-} f_{e^+} \ \delta^4 (P_1 + P_2 - Q_1 - Q_2) \ |M|^2$$

1. Electron (positron) energy sampled according to Lorentz invariant phase space factor and Fermi-Dirac distribution:

$$\left[1 + \exp\left(\frac{E \pm \mu_e}{kT}\right)\right]^{-1} \quad \frac{d^3\mathbf{p}}{2 E}$$

- 2. 3-momentums p_1 , p_2 in random direction
- 3. Lorentz transform to center-mass (CM) frame
- 4. In CM outcoming neutrino directed randomly
- 5. Inverse Lorentz transform back to plasma rest frame
- 6. $\bar{\nu}_e$ energy in plasma rest frame binned and event counted as $|M|^2$

CAMK Wednesday Colloquium

NEUTRINO FLUX FROM 1 KPC

• Pair-annihilation neutrinos are conceptual equivalent of the solar *pp* neutrinos.

• We expect neutrino spectrum of the presupernova to be much more complicated than Solar.

• Significant fraction (\sim 1/3) of the **electron antineutrinos** ($\bar{\nu}_e$) emitted.

CAMK Wednesday Colloquium

SCALABLE ANTINEUTRINO DETECTION METHOD

Reines-Cowan reaction (inverse β -decay):

$$\bar{\nu}_e + p \to n + e^+$$

- KAMLAND (1 kt)
- BOREXINO (0.3 kt)
- SNO (1+1.7 kt)
- SUPER KAMIOKANDE (32 kt)

1 event/kt H₂O z 1 kpc

- HYPERK (540 kt)
- UNO (440 kt)
- GADZOOKS! (32 kt)
- *"Gigaton Array"* (10⁶ kt)

GADZOOKS!

Inverse β -decay threshold $E_{th} = 1.8$ MeV while for water Cherenkov detectors $E_{th} \simeq 4$ MeV.

SOLUTION: (M. Vagins, Neutrino 2004)

Dissolving in pure H_2O efficient neutron absorber (chloride): $GdCl_3$ (NaCl, KCl) cause reaction:

$$n + \mathrm{Gd}(\mathrm{Cl}) \to \mathrm{Gd}^*(\mathrm{Cl}^*) \to \mathrm{Gd}(\mathrm{Cl}) + \gamma_i$$

 $E_{tot} = \sum_{i} E_{\gamma_i} \simeq 8 \,\mathrm{MeV}$ Gamma-rays scatter off electrons \Rightarrow Light detected by photomultipliers

CAMK Wednesday Colloquium

GADZOOKS! SCHEDULE

- 2004: U.S. DoE ADRP grant (M. Vagins, UCI)
- 2005: **K2K** testing 1kt: Gd - filtration, salt chemistry, corrosion, attenuation, ...
- 2008: Full-scale GADZOOKS! 32kt

GADZOOKS! SCHEDULE

- 2004: U.S. DoE ADRP grant (M. Vagins, UCI)
- 2005: **K2K** testing 1kt: Gd - filtration, salt chemistry, corrosion, attenuation, ...
- 2008: Full-scale GADZOOKS! 32kt

Neutrinos from pre-supernova: 3σ at 500 pc !

If GAZDOOKS! will start in 2008 we are able to **predict supernova explosion** for few nearby stars: β Ori, α Her, α Sco...

Unfortunately, explosion of the nearby star is highly unlikely ($\sim 10^{-4} \rm /year)$

CAMK Wednesday Colloquium

CAN STAR EXPLODE BEFORE 2008?

CAMK Wednesday Colloquium

MILITARY IMPORTANCE OF THE NEUTRINO ASTROPHYSICS

Neutrinos and Arms Control Workshop 5-7 February 2004, University of Hawaii

MILITARY IMPORTANCE OF THE NEUTRINO ASTROPHYSICS

Neutrinos and Arms Control Workshop 5-7 February 2004, University of Hawaii

- Monitoring nuclear plants
- Search for clandestine reactors
- Hidden nuclear tests watch
- Tracking nuclear powered submarines
- Georeactor and Earth "tomography"
- Supernova prediction
- Neutrino SETI

15/20

GIGATON ARRAY

- Balloons (R=134 meters, 10 Mt) covered with photomultipliers
- At the bottom of the ocean, 4 km depth
- Dissolved ultra-low-⁴⁰KCl salt: reduce buoyancy, neutron capture
- Anchored on lines for maintenance

J. G. Learned, Neutrino 2004

GLOBAL DETECTOR NETWORK

2005.04.13

CAMK Wednesday Colloquium

GALAXY COVERAGE

Observation range:

- Red GADZOOKS! [32 kt]
- Yellow Hyper-Kamiokande [0.5 kt]
- Green H-K (very optimistic)
- Blue Single ocean balloon [10 Mt]
- Purple *Gigaton Array* [1 Gt]

CAMK Wednesday Colloquium

PRE-SUPERNOVA MONITORING

Assuming only $\bar{\nu}_e$ from e^+e^- annihilation are detectable

	Target mass	Maximum distance	Galaxy coverage
GADZOOKS!	32 kt	0.5 kpc	0.1%
Hyper-Kamiokande	0.5 Mt	2 kpc	2%
Single Oceanic Balloon	10 Mt	10 kpc	50%
GIGATON ARRAY	1 Gt	100 kpc	100%

Expected observation range at 3σ (99%) confidence level

20/20

NEUTRINO ASTRONOMY IN THE "GIGATON ERA"

- Solar neutrino flux variations $\left(\frac{0.13\%}{\sqrt{\text{days}}}\right)$
- Supernova every 20 days from the Virgo Supercluster
- Cosmological supernova background
- Si burning 1-14 days before core-collapse from the Galaxy
- O/Ne burning *a year before supernova* up to few kpc
- Supernova shock front tracking ,,pre-supernova" tomography
- Protoneutron star cooling neutrinos
- UHE neutrinos
- ... possibly much more than we can imagine now

WEAK NUCLEAR NEUTRINOS

Neutrino spectrum: electron capture during Si shell burning

Langanke et. al. Phys.Rev. C64 (2001) 055801

CAMK Wednesday Colloquium

NEUTRINO LUMINOSITY

Burning Stage	Central Temperature (K)	Central Density (g cm ⁻³)	Neutrino Luminosity [†] (erg s ⁻¹)	Optical Luminosity (erg s ⁻¹)	Effective Temperature (K)	Photospheric Radius (cm)	Time Scale (s)
Hydrogen	3.4 (7) 3.7 (7)	5.9 (0) 3.8 (0)		8.1 (37) 3.1 (38)	3.26 (4) 3.98 (4)	3.2 (11) 4.2 (11)	3.9 (14) 2.3 (14)
Helium	1.6 (8)	1.3 (3)	3.9 (33)	2.3 (38)	1.59 (4)	2.2 (12)	4.2 (13)
	1.8 (8)	6.2 (2)	7.3 (34)	9.5 (38)	1.58 (4)	4.7 (12)	2.1 (13)
Carbon	6.2 (8)	1.7 (5)	3.4 (38)	3.3 (38)	4.26 (3)	3.7 (13)	2.0 (11)
	7.2 (8)	6.4 (5)	1.0 (40)	1.2 (39)	4.36 (3)	6.7 (13)	5.2 (9)
Neon	1.3 (9)	1.6 (7)	6.7 (41)	3.7 (38)	4.28 (3)	3.9 (13)	2.2 (8)
	1.4 (9)	3.7 (6)	7.8 (42)	1.2 (39)	4.36 (3)	6.7 (13)	3.9 (7)
Oxygen	1.9 (9)	9.7 (6)	7.9 (42)	3.7 (38)	4.28 (3)	3.9 (13)	5.5 (7)
	1.8 (9)	1.3 (7)	2.3 (43)	1.2 (39)	4.36 (3)	6.7 (13)	1.6 (7)
Silicon	3.1 (9)	2.3 (8)	3.4 (44)	3.7 (38)	4.28 (3)	3.9 (13)	5.2 (5)
	3.4 (9)	1.1 (8)	3.8 (45)	1.2 (39)	4.36 (3)	6.7 (13)	1.2 (5)
Collapse	8.3 (9)	6.0 (9)	6.8 (48)	3.7 (38)	4.28 (3)	3.9 (13)	3.0 (-1)
	8.3 (9)	3.5 (9)	8.1 (48)	1.2 (39)	4.36 (3)	6.7 (13)	3.5 (-1)

*All physical parameters refer to conditions just after the core ignition of each fuel, except the time scale which is the period between successive ignitions. The value for the 15 $M_{\rm a}$ star is listed first in each case.

[†]Excluding neutrino losses during hydrogen burning.

Weaver, Zimmermann and Woosley 1978

CAMK Wednesday Colloquium

SN1987A review, Table 1. Bahcall, Arnett, Kirshner, Woosley, ARA&A.

Fuel	$(g \text{ cm}^{-3})$	$T_{\rm c}$ (10 ⁹ K)	τ (yr)	$L_{\rm phot}$ (erg s ⁻¹)	$(\operatorname{erg} \operatorname{s}^{-1})$
Hydrogen	5.6(0)	0.040	1.0(7)	2.7(38)	
Helium	9.4(2)	0.19	9.5(5)	5.3(38)	<1.0(36)
Carbon	2.7(5)	0.81	3.0(2)	4.3(38)	7.4(39)
Neon	4.0(6)	1.7	3.8(-1)	4.4(38)	1.2(43)
Oxygen	6.0(6)	2.1	5.0(-1)	4.4(38)	7.4(43)
Silicon	4.9(7)	3.7	2 days	4.4(38)	3.1(45)

• C, Ne, O and Si burning belong to neutrino-cooled stage; star itself is referred to as pre-supernova ($v_R(Fe) < -1000 \text{ km/s}$).

• Star surface "frozen":

 $\tau_{\rm K-H} \sim 10\,000\,{\rm yrs}$ for hydrogen envelope $\rm R\,{\sim}\,10\ldots100$ mln km.

• Accelerated evolution in the central region $R \sim 10\,000$ km.

NEUTRINO COOLING

Thermal neutrinos :

- pair-annihilation
- plasmon decay
- photoneutrinos
- bremsstrahlung
- recombination

Itoh et.al, ApJSS, **102** (1996) p. 411

CAMK Wednesday Colloquium

26/20

Burning C: $\log(T_c) = 8.9$, Ne: $\log(T_c) = 9.2$, O: $\log(T_c) = 9.3$, Si: $\log(T_c) = 9.6$. μ_e – mean molecular weight: $1/\mu_e = Y_e$.

CAMK Wednesday Colloquium

Neutrino emission
 ballaning nuclear
 reactions.

• Nuclear reaction rate grows faster with T_c than neutrino cooling

Woosley, Heger, Weaver, RMP 74 (2002) p. 1015

CAMK Wednesday Colloquium

CONVECTIVE CORE

Some details of the $e^+ + e^- \rightarrow \nu_x + \bar{\nu}_x$ cooling

- 1. Nuclear burning ignited in the central region
- 2. Neutrinos unable to carry out energy
- 3. Gas expanding due to heating
- 4. Burning bubble moves upward
- 5. Nuclear reactions ceased
- 6. Energy liberated as pair-annihilation neutrinos

SIMPLE NEUTRINO EMISSION MODEL

- 1. Central temperature T_c and density ρ_c from stellar model
- 2. Chemical potential μ_e computed under assumption $Y_e = 0.5$

$$\frac{\rho_c Y_e}{m_p} = \frac{8\pi}{h^3 c^3} \left(10^6 q_e\right)^3 \int_0^\infty \frac{(E+m_e)\sqrt{E^2 + 2m_e E}}{\exp\left(\frac{E-\mu_e}{k_B T_c}\right) + 1} dE$$

3. Electrons and positrons in thermal equilibrium $\mu_{e^-} = \mu_e$, $\mu_{e^+} = -\mu_e - 2m_e c^2$.

ANNIHILATION INTO NEUTRINOS

D. Dicus, Phys. Rev. D, 6 (1972) p. 941

$$M = \frac{i g^2}{8m_W^2} \bar{u_\nu}(q) \gamma^\alpha (1 - \gamma_5) v_\nu(q') \times \bar{v_e}(p') \gamma_\alpha (C_V - C_A \gamma_5) u_e(p)$$

$$\begin{split} |M|^{2} \propto & (C_{A} - C_{V})^{2} (p_{e^{-}} \cdot q_{\nu_{x}}) (p_{e^{+}} \cdot q_{\bar{\nu}_{x}}) + (C_{A} + C_{V})^{2} (p_{e^{+}} \cdot q_{\nu_{x}}) (p_{e^{-}} \cdot q_{\bar{\nu}_{x}}) + \\ & m_{e}^{2} (C_{V}^{2} - C_{A}^{2}) q_{\nu_{x}} \cdot q_{\bar{\nu}_{x}} = \\ & (C_{A}^{2} + C_{V}^{2}) \left[(p_{e^{-}} \cdot q_{\nu_{x}}) (p_{e^{+}} \cdot q_{\bar{\nu}_{x}}) + (p_{e^{+}} \cdot q_{\nu_{x}}) (p_{e^{-}} \cdot q_{\bar{\nu}_{x}}) \right] \\ & -2 C_{V} C_{A} \left[(p_{e^{-}} \cdot q_{\nu_{x}}) (p_{e^{+}} \cdot q_{\bar{\nu}_{x}}) - (p_{e^{+}} \cdot q_{\nu_{x}}) (p_{e^{-}} \cdot q_{\bar{\nu}_{x}}) \right] \\ & + m_{e}^{2} (C_{V}^{2} - C_{A}^{2}) q_{\nu_{x}} \cdot q_{\bar{\nu}_{x}} \\ C_{V} = \frac{1}{2} \pm 2 \sin^{2} \theta_{W} = 0.5 \pm 0.4448, \qquad C_{A} = \frac{1}{2}, \end{split}$$

p, *q* 4-momenta, m_e – electron mass, θ_W Weinberg angle $\sin^2 \theta_W = 0.2224$.

CAMK Wednesday Colloquium

31/20

Spectrum $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu$

CAMK Wednesday Colloquium

REQUIREMENTS FOR PRE-SUPERNOVA OBSERVATION

- ν_e or $\bar{\nu}_e$ detection in 0.5-6 MeV range.
- More than N>>1 events/day.
- Long lasting experiment
- ENHANCED SUPER-KAMIOKANDE

Antineutrinos detected by inverse $\beta\text{-decay:}\quad \bar{\nu}_e+p \rightarrow n+e^+ \quad (\star)$

Spectrum averaged cross-section:

$$\bar{\sigma}_{\rm Si} = \int_{E_{min}}^{\infty} \sigma(E) \lambda_{\rm Si}(E) \, dE = 0.7 \cdot 10^{-43} \, \rm cm^2$$

 $E_{min} = 1.8 \text{ MeV}$. Reaction (*) gives 41 events/day at D=1kpc

CAMK Wednesday Colloquium