Quantum Mechanics III, set 9.

Ex. 1. Consider a complex scalar field interacting with the external potential V(x).

$$\mathcal{H}_{int} = \lambda \Phi^{\dagger}(x) V(x) \Phi(x), \quad H_{int} = \int d^3 x \mathcal{H}_{int}.$$

Determine the generating functional of Green's functions

$$\mathcal{Z}[J,J^*] = \langle \emptyset | T(e^{\int d^4 x (J^*(x)\Phi_H(x) + J(x)\Phi_H^{\dagger}(x))}) | \emptyset \rangle = e^{W[j,j^*]}$$

using relations derived on the lecture. Find the solution for a special case V(x) = C (constant in space-time). **Hint:** Use the derived relation:

$$\mathcal{Z}[J,J^*] = \lim_{T \to \infty} \frac{\langle 0|T\left(U_I(T,-T)e^{\int d^4x(J^*(x)\Phi_I(x)+J(x)\Phi_I^{\dagger}(x))}\right)|0\rangle}{\langle 0|U_I(T,-T)|0\rangle}$$

• Use the property

$$\mathcal{Z}[J, J^*] = \exp(W[J, J^*]),$$

where $W[J, J^*]$ can be expressed as a sum of connected Feynman diagrams.

• In the above $|\emptyset\rangle$ is the true (physical) vacuum and $|0\rangle$ the vacuum of the unperturbed Hamiltonian.

Ex. 2. Consider a self-interacting real scalar field ϕ with mass M. Let the interaction Hamiltonian be given by

$$\mathcal{H}_{int} = \frac{g}{3!}\phi^3(x), \quad H_{int} = \int d^3x \mathcal{H}_{int}.$$

Find all connected diagrams of W[j], following the same procedure as in ex. 1 to terms (including) g^2 .

Ex. 3. Consider a self-interacting real scalar field ϕ with mass M. Let the interaction Hamiltonian be given by

$$\mathcal{H}_{int} = \frac{g}{4!} \phi^4(x), \quad H_{int} = \int d^3x \mathcal{H}_{int}.$$

Find all connected diagrams of W[j], following the same procedure as in ex. 1 to terms (including) g^2 .

Ex. 4. Consider a system containing a complex scalar field $\Psi(x)$, $\Psi^{\dagger}(x)$ with a mass M interacting with a real scalar field $\phi(x)$ with a mass m through the interaction

$$\mathcal{H}_I = g \Psi^{\dagger}(x) \phi(x) \Psi(x).$$

Find all connected diagrams of W[j] to order g^2 . Find all possible amplitudes, which have two-particle states as the in- and out-states.