Quantum Mechanics III, set 8.

Ex. 1. Using Wick's theorem calculate:
a) $\langle 0|\left(\int d^{4} x\left(J^{*}(x) \Phi_{H}(x)+J(x) \Phi_{H}^{\dagger}(x)\right)^{n}|0\rangle\right.$
where $\Phi_{H}(x)$ is a complex scalar field in the Heisenberg picture and $J(x), J^{*}(x)$ are arbitrary functions of space-time.

$$
\text { b) } \quad\langle 0|\left(\int d^{4} x\left(j(x) \phi_{H}(x)\right)^{n}|0\rangle\right.
$$

where $\phi_{H}(x)$ is a real scalar field in the Heisenberg picture and $j(x)$ is an arbitrary function of space-time.

Ex. 2. For a real scalar field $\phi(x)$ with a Lagrangian density

$$
\mathcal{L}=\frac{\hbar^{2} c^{2}}{2} g^{\mu \nu} \partial_{\mu} \phi(x) \partial_{\nu} \phi(x)-\frac{M^{2} c^{4}}{2} \phi^{2}-j(x) \phi
$$

with a real source $j(x)$ determine a form of the evolution operator $U\left(t_{f}, t_{i}\right)$ in the interaction picture to terms including $O\left(j^{4}\right)$.

Ex. 3. Consider a complex scalar field interacting with the external real field (not quantum) $W(x)$:

$$
H_{\text {int }}=g \int d^{3} x \Phi^{\dagger}(x) W(x) \Phi(x)
$$

Using Wick's theorem determine a form of the evolution operator $U\left(t_{f}, t_{i}\right)$ for $t_{i} \rightarrow-\infty, t_{f} \rightarrow \infty$ to the order g^{3} (included).

Ex. 4. Consider a self-interacting real scalar field ϕ. Assume that the Lagrangian density has a form

$$
\mathcal{L}=\frac{\hbar^{2} c^{2}}{2} g^{\mu \nu} \partial_{\mu} \phi(x) \partial_{\nu} \phi(x)-\frac{M^{2} c^{4}}{2} \phi^{2}-\frac{g}{3!} \phi^{3} .
$$

Determine a form of $H_{\text {int }}$ in the interaction picture. Using Wick's theorem determine a form of the evolution operator $U\left(t_{f}, t_{i}\right)$ for $t_{i} \rightarrow-\infty, t_{f} \rightarrow \infty$ to the order g^{2} (included). What would be these terms if $H_{\text {int }} \rightarrow: H_{\text {int }}$??

