Quantum Mechanics III, set 8.

Ex. 1. Using Wick’s theorem calculate:
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where @y () is a complex scalar field in the Heisenberg picture and J(x), J*(x)
are arbitrary functions of space-time.
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where ¢y (z) is a real scalar field in the Heisenberg picture and j(z) is an
arbitrary function of space-time.

Ex. 2. For a real scalar field ¢(x) with a Lagrangian density
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with a real source j(z) determine a form of the evolution operator U (ty, ;)
in the interaction picture to terms including O(j%).

Ex. 3. Consider a complex scalar field interacting with the external real
field (not quantum) W(x):
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Using Wick’s theorem determine a form of the evolution operator U(ty,t;)
for t; = —o0, t; — oo to the order ¢g* (included).

Ex. 4. Consider a self-interacting real scalar field ¢. Assume that the
Lagrangian density has a form
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Determine a form of H;,; in the interaction picture. Using Wick’s theorem
determine a form of the evolution operator U(ty,t;) for t; — —o0, t; — o0
to the order ¢g? (included). What would be these terms if Hj,; —: Hip :7



