Quantum Mechanics III, set 8.

Ex. 1. Using Wick's theorem calculate:

a)
$$\langle 0| \left(\int d^4x (J^*(x)\Phi_H(x) + J(x)\Phi_H^{\dagger}(x)) \right)^n |0\rangle$$

where $\Phi_H(x)$ is a complex scalar field in the Heisenberg picture and J(x), $J^*(x)$ are arbitrary functions of space-time.

b)
$$\langle 0| \left(\int d^4 x(j(x)\phi_H(x)) \right)^n |0\rangle$$

where $\phi_H(x)$ is a real scalar field in the Heisenberg picture and j(x) is an arbitrary function of space-time.

Ex. 2. For a real scalar field $\phi(x)$ with a Lagrangian density

$$\mathcal{L} = \frac{\hbar^2 c^2}{2} g^{\mu\nu} \partial_\mu \phi(x) \partial_\nu \phi(x) - \frac{M^2 c^4}{2} \phi^2 - j(x) \phi$$

with a real source j(x) determine a form of the evolution operator $U(t_f, t_i)$ in the interaction picture to terms including $O(j^4)$.

Ex. 3. Consider a complex scalar field interacting with the external real field (not quantum) W(x):

$$H_{int} = g \int d^3x \Phi^{\dagger}(x) W(x) \Phi(x)$$

Using Wick's theorem determine a form of the evolution operator $U(t_f, t_i)$ for $t_i \to -\infty$, $t_f \to \infty$ to the order g^3 (included).

Ex. 4. Consider a self-interacting real scalar field ϕ . Assume that the Lagrangian density has a form

$$\mathcal{L} = \frac{\hbar^2 c^2}{2} g^{\mu\nu} \partial_\mu \phi(x) \partial_\nu \phi(x) - \frac{M^2 c^4}{2} \phi^2 - \frac{g}{3!} \phi^3.$$

Determine a form of H_{int} in the interaction picture. Using Wick's theorem determine a form of the evolution operator $U(t_f, t_i)$ for $t_i \to -\infty$, $t_f \to \infty$ to the order g^2 (included). What would be these terms if $H_{int} \to: H_{int}$:?