
Chapter 3

Quantum Models

In classical statistical mechanics we did not know the exact microscopic state of
the system (location in the phase space). We made use of the ergodic hypothesis
and replaced the time average of a physical quantity with an ensemble average,
i.e., an average over many equivalent systems.

In quantum statistical mechanics the situation is similar.

3.1 Quantum Statistics

In this Chapter we will first introduce the density matrix and then make an intro-
duction to the Bose condensation.

In quantum mechanics, the energy levels are discrete and the state of the sys-
tem is described by a wavefunction. Let us first assume that we know the dynami-
cal state (wavefunction)|ψ〉 of the whole system and thecompleteset of stationary
states|n〉 which are the eigenstates of the full Hamiltonian of the compound sys-
tem,

H|n〉 = En|n〉. (3.1)

(We assume that the states|n〉 are normalized.)n denotes the quantum states (e.g.,
momenta) of all particles in the system.En is the total energy of all particles of
the system in the compound staten. Any dynamical state of the system can be
expressed as a linear combination of these eigenstates,

|ψ(t)〉 =
∑
n

cn(t)|n〉, (3.2)
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The coefficientscn(t) define a point in the (Hilbert) space of wavefunctions|n〉.
The (time-dependent) wavefunction|ψ(t)〉 which obeys the Schrödinger equation

ih̄
d|ψ〉
dt

= H|ψ〉 (3.3)

is thus the quantum-mechanical analogue of the point in phase space of classical
statistical mechanics. The expectation value of a physical quantityA (which does
not necessarily commute withH) is:

〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉 =
∑
m,n

c∗ncm〈n|A|m〉

(3.4)

The last expression holds for any complete set of states|n〉, also if they are not
the eigenstates of the full Hamiltonian.

3.1.1 The Density Matrix

As the number of particles in the system increases, the separation between the
energy levels decreases rapidly, and, in the thermodynamic limit, it becomes ex-
tremely high. On the other hand, the energy levels are never completely sharp.
They are broadened for many reasons, including the uncertainty principle. In a
macroscopic system (with extremely dense energy levels), the levels will thus al-
ways overlap. Consequently, a macroscopic system will never be in a strictly sta-
tionary quantum state, it will always be in adynamicalstate, in a time-dependent
mixtureof stationary states.

It is neither feasible nor possible to find a complete description of such a sys-
tem. Like in classical statistical mechanics, we first assume that the system is
ergodic, we replace the time average by an ensemble average over many quantum
systems at the same instance. We talk about probabilities of finding the system
in the states|n〉. The dynamical state is no longer a unique quantum state but
is astatistical mixture of quantum states. We introduce thedensity matrixas the
ensemble average ofc∗mcn:

ρ = |m〉ρm,n〈n|

ρm,n ≡ 〈m|ρ|n〉 =
1

Ω

Ω∑
i=1

cin
∗
cim. (3.5)

The sum overi runs overΩ configurations of the system,|ψi〉, all being part of
the same ensemble, andcim = 〈m|ψi〉. We do an ensemble average because our
information on the system is not complete.
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The density matrix is a statistical operator with the following important prop-
erties:

• The density matrix completely defines an ensemble of quantum systems
and it carries all the information that is available for a quantum statistical
ensemble.

• Its diagonal elementsρn,n tell the probability that the system is in the state
|n〉 whereas its non-diagonal elementsρm,n tell the probability of a transi-
tion from the state|n〉 to the state|m〉. For stationary states, thus,ρ has to
be diagonal, it commutes with the Hamiltonian.

• The density matrix is normalized,

Tr(ρ) = 1. (3.6)

The trace runs over any complete set of states|n〉 and is independent of the
choice of the basis set.

• The (ensemble and quantum-mechanical) average value〈A〉 of any physical
quantityA is equal to:

〈A〉 = 〈ψ|A|ψ〉 =
∑
n,m

ρm,n〈n|A|m〉 = Tr(ρA) = Tr(Aρ). (3.7)

The trace in quantum statistical mechanics plays the role of integration over
the whole available phase space in classical statistical mechanics.

• The dynamics of the system is completely described by:

ih̄
∂ρ

∂t
= [H, ρ]. (3.8)

This is the “Schr̈odinger equation” of the density matrix.

3.1.2 Ensembles in Quantum Statistical Mechanics

Now, we shall specify the density matrix and its relation to thermodynamic quan-
tities.
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• Quantum Microcanonical ensemble.

The energy of systems belonging to a microcanonical ensemble is fixed,
therefore it is convenient to use the energy eigenstates as a basis. Then the
density matrix is diagonal. According to the postulate of equal weights,
all the states|n〉 with the energyEn betweenE andE + ∆E are equally
probable and let there be∆Ω such states. For a quantum system,∆Ω is an
integer number. The probability for the system being in one of these states
is p = 1/∆Ω and the entropy is equal to:

S = −kB〈ln p〉. (3.9)

In general, we must use the density matrix instead of simple probabilitiesp
and the entropy of a quantum system is:

S = −kB〈ln ρ〉 = −kB Tr(ρ ln ρ) . (3.10)

Again, the average〈 〉 means ensembleandquantum average – both aver-
ages cannot be separated.

• Canonical ensemble.In the energy representationρ is diagonal and we can
use the same arguments as in the case of classical canonical distributions.
The matrix elements are equal to:

ρm,m =
1

Z
e−βEm , (3.11)

where the normalization constant is (again) the partition function

Z =
∑
m

e−βEm . (3.12)

In an arbitrary basis, the density matrix can be written more generally as

ρ =
1

Z
e−βH with Z = Tr e−βH (3.13)

(ρ andH are operators!). Thus, for a canonical ensemble, the average (ther-
mal and quantum- mechanical) of an operatorA is:

〈A〉 = Tr (ρA) =
1

Z
Tr (e−βHA) (3.14)
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In particular, the internal energy is

E = 〈H〉 =
1

Z
Tr
(
He−βH

)
= − ∂

∂β
ln Tr e−βH

E = − ∂

∂β
lnZ. (3.15)

The free energy is

F = −kBT ln Z. (3.16)

All the thermodynamic relations are the same as before (Tables I - III are
still valid), the only difference is that now we have to calculate the partition
function as the trace of the density matrix.

The entropy in a canonical ensemble,S, is the ensemble average over all
(energy) states of the microcanonical entropyS:

S = −〈kB ln ρ〉 = −kBTr(ρ ln ρ). (3.17)

• Grand canonical ensemble.In the grand canonical ensemble the operatorρ
operates on a generalized Hilbert space which is the direct sum of all Hilbert
spaces with fixed number of particles. The density matrix is:

ρ =
1

Ξ
e−β(H−µN),

where the grand partition function is

Ξ(T, V, µ) = Tr e−β(H−µN).

Notice that nowN is an operator in the generalized Hilbert space. As in the
classical case,Ξ is equal to the canonical partition functionZ, weighted by
the fugacityz = exp(βµ) and summed overN . The ensemble average of
an operatorA in the grand canonical ensemble is

〈A〉 =
1

Ξ
Tr(A e−β(H−µN)).
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3.2 Bose Systems

3.2.1 Ideal Bose Gas

Now we shall consider the properties of an ideal gas of particles with integer spin
and massm > 0. As usually for ideal gases, we neglect the interaction between
the particles. The Hamiltonian of the ideal Bose gas is:

H =
∑
~p

p2

2m
n~p.

n~p is the number of particles in the state with momentum~p. Because we are deal-
ing with Bosons,n~p can also be> 1. We want to study condensation where two
phases come into contact, the number of particles in one phase is not fixed, there-
fore we must work with the grand-canonical distribution. The grand-canonical
partition function of ideal Bose gas is:

Ξ =
∑
{n~p}

e−β
∑

~p
(p2/2m) n~p+βµN , N =

∑
~p

n~p.

(Here we will disregard the(2S + 1) factor which comes from the spin degener-
acy.) In the grand partition function, each sum overn~p is over all non-negative
integers and, since the particles do not interact, we can split the partition function
into a product:

Ξ =
∞∑

n0=0

∞∑
n1=0

· · ·
{[

eβµ
]n0
[
e−β(p2

1/2m−µ)
]n1
[
e−β(p2

2/2m−µ)
]n2 · · ·

}
= (3.18)

=
∏
~p

{∑
n

[
e−β(p2/2m−µ)

]n}
=
∏
~p

1

1− ze−βp2/2m
.

Here we have introduced thefugacityz = eβµ. The equation of state of an ideal
Bose gas is (see Table I):

PV = kBT ln Ξ(T, V, µ)

PV

kBT
= −

∑
~p

ln
[
1− e−β(p2/2m−µ)

]
(3.19)

58



I. Vilfan Statistical Mechanics Chapter 3

The thermal average ofN is determined by the chemical potentialµ (see Tables):

〈N〉 = − 1

β

∂ ln Ξ

∂µ
=
∑
~p

1

eβ(p2/2m−µ) − 1
. (3.20)

We can write〈N〉 =
∑

~p n~p where

n~p =
1

eβ(p2/2m−µ) − 1
(3.21)

is the Bose-Einstein distribution function, which tells the occupation probability
of a given (non-degenerate) state~p. For 〈N〉 to be finite and positive, the second
term in the denominator has to be< 1 for any ~p, in particular forp = 0. This
means thatµ must be< 0 and0 < z < 1.

For largeV we replace the sum by an integral:

∑
~p

→ 4πV

h3

∫ ∞

0
p2 dp (3.22)

and we get:

〈N〉 =
4πV

h3

∫ ∞

0
p2 dp

1

eβ(p2/2m−µ) − 1

= V g3/2(z)

(
mkBT

2πh̄2

)3/2

=
V

λ3
g3/2(z), (3.23)

where

gν(z) =
1

Γ(ν)

∫ ∞

0
dx

xν−1

exz−1 − 1
=

∞∑
l=1

zl

lν
(3.24)

andλ is the thermal wavelength,

λ =

(
2πh̄2

mkBT

)1/2

.

The functionsg3/2(z) andg5/2(z) are shown in Fig 3.1. For later use:g3/2(1) ≈
2.612 andg5/2(1) ≈ 1.342. The pressure is:

P =
(

m

2πh̄2

)
(kBT )5/3g5/2(z) =

kBT

λ3
g5/2(z). (3.25)
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Figure 3.1: The functionsg3/2(z) andg5/2(z).

Now let us start increasing the pressure at fixed (high enough)T . This increases
the chemical potential, the fugacity, and the density of particles,〈N〉/V . How-
ever, we know thatz must be< 1. What happens whenz → 1? Can we further
increase the pressure or the density of particles?

To answer this question we must go back to Eq. (3.20). The term with~p = 0
which was not included in (3.23) (The density of statesn(E) has a

√
E depen-

dence onE and vanishes asE → 0.) becomes singular (divergent) whenµ → 0
and it has to be treated separately. This divergence has very important conse-
quences for a Bose gas, as we shall show now. Instead of Eq. (3.20) we must
write:

〈N〉 =
∑
~p6=0

1

eβ(p2/2m−µ) − 1
+

z

1− z
=
V

λ3
g3/2(z) +

z

1− z
(3.26)

and the equation of state is:

PV

kBT
= −4πV

h3

∫ ∞

0
p2 dp ln

[
1− ze−βp2/2m

]
− ln (1− z)

P

kBT
=

1

λ3
g5/2(z)−

1

V
ln (1− z) , (3.27)
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The last terms in Eqs. (3.26) and (3.27) come from the termp = 0 and correspond
to the particles in the lowest energy, in the ground state. In the thermodynamic
limit the last term in (3.27) vanishes whereas it remains finite in (3.26). We will
denote

〈N〉 = 〈N ′〉+ 〈N0〉, (3.28)

where〈N ′〉 is the average number of bosons in the continuum (excited,p > 0)
states,

〈N ′〉 =
V

λ3
g3/2(z) (3.29)

and〈N0〉 the average number of bosons in the ground state,

〈N0〉 =
z

1− z
. (3.30)

The average density of bosons in the continuum states reaches its maximum value
wheng3/2(z) is maximal, that is forz → 1 (µ→ 0),

〈N ′
max(T )〉
V

= g3/2(1)

(
mkBT

2πh̄2

)3/2

∝ T 3/2. (3.31)

The fact that〈N ′〉 is limited and cannot exceed〈N ′
max〉 has its origin in the

quantum-mechanical and statistical nature of the system. The number of avail-
able states in a box with volumeV is finite and is equal toV

λ3 . Each state, on the
average, accommodatesn~p particles, wheren~p is given by the Bose-Einstein dis-
tribution function, Eq. (3.21). If there are more than〈N ′〉 particles in the system,
they arepushedinto the ground state.

3.2.2 Bose Einstein Condensation

We will now investigate the behaviour ofideal Bose gases, described by Eqs.
(3.26, 3.27). Let us consider a system ofN bosons in a volumeV .

At high enough temperature,〈N ′
max〉 is so large thatN < 〈N ′

max〉 and the
chemical potential is determined from

N = 〈N ′〉 = V

(
mkBT

2πh̄2

)3/2

g3/2(z). (3.32)
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This means thatz < 1 andµ < 0. The density of particles in the ground state is

〈N0〉/V = z/(1− z)/V → 0 as V →∞. (3.33)

Almost all the particles are in the|~p| > 0 states and the ground state is macro-
scopically empty. The equation of state simplifies to

P

kBT
=
g5/2(z)

λ3
(3.34)

At very highT , g3/2(z) andg5/2(z) are� 1 and we approximate [see the series
for gn, Eq. (3.24)]:

g5/2(z) ≈ g3/2 ≈ z (3.35)

and the equation of state becomes:

P

kBT
= g5/2(z)

(
mkBT

2πh̄2

)3/2

≈ z

(
mkBT

2πh̄2

)3/2

=
z

λ3
. (3.36)

z is determined by the density of particles:

N

V
= g3/2(z)

(
mkBT

2πh̄2

)3/2

≈ z

(
mkBT

2πh̄2

)3/2

=
z

λ3
. (3.37)

The fugacityz = 〈N〉λ3/V vanishes asT−3/2 at highT and for fixed density.
This justifies the approximation (3.35). Eliminatingz from the last two equations
yields the equation of state of the ideal Bose gas at highT :

PV =< N > kBT (3.38)

which is identical to the equation of state of a classical ideal gas (as it should be
at highT !).

Now we lower the temperature by keepingN andV fixed. Eq. (3.32) tells
us thatg3/2(z) must increase. This means thatz andµ also increase. Eventually,
a temperature is reached, wherez reaches its maximum value (z → 1, N =
〈N ′

max〉). This is the transition temperatureTC and is determined by the condition

N

V
= g3/2(1)

(
mkBTC

2πh̄2

)3/2

(3.39)
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from which we find:

TC =
2πh̄2

kBm [g3/2(1)]2/3

(
N

V

)2/3

. (3.40)

If we insert this expression into the equation of state, Eq. (3.34), we obtain the
pressure at which the transition takes place:

PC = kBT
5/2
C g5/2(1)

(
mkB

2πh̄2

)3/2

∝ T
5/2
C . (3.41)

At TC , the ensemble average of the density of particles in the continuum states
reaches its maximum value whereas the ground state is still empty,〈N0〉/V = 0.

Below TC , 〈N ′
max〉 further decreases and becomes< N (we keepN fixed).

The chemical potential further approaches zero (µ cannot be exactly= 0, because
that would mean thatN = ∞) andz → 1 in such a way that the total number of
particles is kept constant.z is very close to1, we can putgn(z) ≈ gn(1) and the
number of particles in the continuum states is

〈N ′〉 = V

(
mkBT

2πh̄2

)3/2

g3/2(1). (3.42)

When〈N ′〉 < N , the ground state starts to fill,〈N0〉 increases. BelowTC , thus,
only a part of the particles can be accommodated in the continuum states. The rest
must go into the ground state! The number of bosons in the ground state is:

〈N0〉 = N − 〈N ′〉 = N − V

(
mkBT

2πh̄2

)3/2

g3/2(1)

from which we get:

〈N0〉
N

= 1−
(
T

TC

)3/2

. (3.43)

〈N0〉/N is finite, the state with~p = 0 is occupied with amacroscopicnumber of
particles, the particlescondensein themomentumspace into the zero-momentum
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Figure 3.2: Isotherms of the ideal Bose gas.
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Figure 3.3: Temperature dependence of the relative number of bosons in the
ground (〈N0〉/N ) and excited (〈N ′〉/N ) states.

state. This is theBose-Einstein condensation. The fugacity is, from Eq. (3.30):
z = 〈N0〉/(〈N0〉 + 1). In the thermodynamic limit, whenV and 〈N0〉 → ∞,
z = 1 andµ = 0 belowTC . The equation of state is:

P = g5/2(1)

(
mkBT

2πh̄2

)3/2

kBT =
g5/2(1)

g3/2(1)

〈N ′〉
V

kBT. (3.44)

Only the particles in the continuum states (in the gas phase) contribute to pres-
sure. The particles in the ground state (condensate) are at rest, they cannot exert
any pressure. If the density is increased, the extra particles fall into the ground
state and the pressure does not increase. At fixedT < TC the density of particles
in the gas phase is constant andP is independent ofV , see Fig. 3.2. The temper-
ature dependence of〈N0〉 is shown in Fig. 3.3. In the limitT → 0, 〈N ′

max〉 → 0
and all the particles are in the ground state,N = 〈N0〉.
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Figure 3.4: Phase diagram of an ideal Bose gas.

The correspondingphase diagramis shown in Fig. 3.4. The normal, gas phase
exists forT > TC , i.e., to the right of the transition line. On the line, given by
(3.41), condensation takes place and since the particles in the ground state don’t
contribute to pressure, the condensate lies on the transition line itself. Notice that
the ”critical points” in Bose systems form aline in theP vs. T or in theP vs. V
planes and are not in a single point like in van der Waals gases.

We now invert Eq. (3.44),

V =
g5/2(1)

g3/2(1)

〈N ′〉
P

kBT. (3.45)

As T → 0, also〈N ′〉 → 0 and thereforeV → 0 at any finite pressure. The
condensed phase does not occupy any volume. This means that the ideal Bose gas
can be compressed to zero volume without any increase in pressure.

Some comments:The condensate (ground state) contributes neither toE, nor
to CV , P , or V ! At low T , CV vanishes likeT 3/2 in contrast to the photon gas,
whereCV ∝ T 3. They differ because the density of states is different in both
cases. There are more excited states available for particles than for photons and
the specific heat is greater.

Of course, this, and infinite compressibility are the artifacts of the ideal gas
model. In reality, because of atomic repulsion, the volume of the condensed phase
does not vanish and the compressibility does not diverge. The equation of state of
a non-ideal Bose gas is shown in Fig. 3.5.
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Figure 3.5: An isotherm of a non-ideal Bose gas.
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Figure 3.6: Phase diagram of4He. He I is the normal, and He II the superfluid
phase.
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Figure 3.7: Dispersion curve of elementary excitations in liquid4He. The excita-
tions around the minimum atp0 are called rotons.
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3.3 Liquid 4He

A candidate for the Bose-Einstein condensation at lowT is liquid 4He. The phase
diagram is shown in Fig. 3.6. He I is the normal liquid and He II exhibits super-
fluid behaviour. From the fact that the line separating the solid and the fluid phases
is horizontal atT → 0, we conclude with the help of the Clausius-Clapeyron
equation,

dp
dT

= 0 =
Sfluid − Ssolid

Vfluid − Vsolid

(3.46)

that liquid He II atT → 0 has no more entropy than solid helium, which is highly
ordered, of course. We conclude that the particles in the ground state (T → 0)
have already the highest possible degree of order although they are in the fluid
and not in the solid phase. We interpret the He II phase as a mixture of two fluids,
a normal fluid with final viscosity and a super-fluid (formed of particles in the
ground state) with zero viscosity. Characteristic for the superfluid state is also a
very large heat conductivity (as a consequence, He II does not boil, the atoms only
evaporate from the surface). What is the ground state of He II and what are the
excitations?

We shall first discuss possible excitations above the ground state of liquid4He
and only then the properties of the ground state. In the liquid, the atoms are
close together, they are strongly interacting (exchanging momenta). A state of
an atom with fixed momentum is not an eigenstate of the Hamiltonian, the atoms
are subject to acollective motion. The elementary excitations in the system are
collective excitations,quasiparticles, phonons(longitudinal because it is a liquid)
and rotons (see Fig. 3.7). At low momenta, the excitations are phonons with a
linear dispersion relation,

εp = cp. (3.47)

At high momenta (short wavelengths), the interaction between the atoms causes
a minimum in the dispersion curve. Elementary excitations around this minimum
are (for historical reasons) called rotons. Their energy is written in the form:

εp = ∆ +
(p− p0)

2

2m∗ , (3.48)

where∆ is the energy gap,∆/kB = 8.6K, andm∗ = 1.0 × 10−27kg is the
effective mass of rotons.p0 = 2.0× 10−24kg m/s. At lowT , the density of these
quasiparticles is low and they don’t interact.
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The grand canonical partition function for phonons (µ = 0) is, in analogy
with (3.18):

ln Ξph = −4πV

h3

∫ ∞

0
p2dp ln(1− e−βcp)

=
4πV

3(hβc)3

∫ ∞

0

x3dx

ex − 1

=
4π5V

45(hc)3
(kBT )3 (3.49)

The grand canonical partition function for rotons(alsoµ = 0) is:

ln Ξrot = −4πV

h3

∫ ∞

0
p2dp ln(1− e−β∆−β(p−p0)2/2m∗

)

At low T (largeβ), e−β∆−β(p−p0)2/2m∗
is small and we approximateln(1 − x) ≈

−x. (This is equivalent to using the Maxwell-Boltzmann distribution.)

ln Ξrot =
4πV

h3
e−β∆

∫ ∞

0
p2dp e−β(p−p0)2/2m∗

≈ 4πV

h3
e−β∆

∫ ∞

−∞
p2dp e−β(p−p0)2/2m∗

=
4πV

h3

√
2πm∗

β

(
p2

0 +
m∗

β

)
e−β∆ (3.50)

From these equations, one can calculate the specific heat (and other thermody-
namic quantities) at low temperatures.

3.3.1 Superfluidity

Consider an isolated system (in which energy and momentum are conserved) com-
posed of a long cylindrical capillary filled with liquid4He atT = 0. Initially, let
the capillary tube rotate along the symmetry axis with the tangential velocityv0

and let the fluid be at rest. We would expect that - because of friction - energy
would be transferred from the tube to the fluid and that the fluid will gradually be
excited out of the ground state. Let us check under which conditions the energy
and momentum can be transferred to the fluid. Immediately after the tube started
to rotate, the tube had the kinetic energyMv2

0/2 (M is the mass of the tube) and
the fluid was at rest and had the ground-state energyE0. At a later time, we expect
the tube velocity to decrease by∆v (because we consider an isolated system) and
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that in the fluid an (at least one) elementary excitation with energyεp and momen-
tum ~p is created. The conservation laws demand that the energy at a later time
is:

1

2
M(v0 −∆v)2 + εp + E0 =

1

2
Mv2

0 + E0

(3.51)

and that the momentum is:

M(v0 −∆v) + pt = Mv0 ⇒ M∆v = pt (3.52)

wherept is the excitation momentum in the tangential direction. For∆v 6= 0, the
first equation gives the inequality

εp = Mv0∆v −
1

2
M(∆v)2 < Mv0∆v. (3.53)

After eliminatingM∆v, the conservation laws tell us that

~v · ~p > εp. (3.54)

Inspection of Fig. 3.7 shows that this is only possible ifv is larger than a threshold
velocity vc. At small relative velocity between the tube and the fluid, the rotons
are not excited, the momentum is not transferred to the fluid, the fluid will stay at
rest. This means that there is no friction, no viscosity - this is the superfluid phase.
(As we will see later, roton excitations are not responsible for the excitation out
of the ground state. Vortices have higher energy, but lowerε/p ratio.)

3.3.2 Vortex Excitations

There are other collective excitations in liquid4He that have higher energies than
phonons or rotons, but which nonetheless have much lower energy to momentum
ratio than rotons. The creation of these excitations allows energy and momentum
to be transferred to the fluid at a much lower critical velocity than in the case of
rotons.

Let us now discuss such excitations of the condensate. The wave function of
an excited collective state is

Ψ = ψeiφ(r), (3.55)

the (mass) current density is

~j =
ih̄

2

[
Ψ~∇Ψ∗ −Ψ∗~∇Ψ

]
= h̄ψ2~∇φ(~r). (3.56)

69



I. Vilfan Statistical Mechanics Chapter 3

On the other hand,
~j =

N

V
m~v (3.57)

whereN/V = ρ = ψ2. From the two equations we get for the particle velocity

~v =
h̄

m
~∇φ(~r). (3.58)

The wavefunction must be single-valued and the phaseφ is determined modulo
2π, therefore the closed-path integral of the momentum is

m
∮
~v · d~l = h̄

∮
~∇φd~l = nh, (3.59)

whereh is the Planck’s constant andn an arbitrary integer.
To understand the nature of these excited states it is best to consider liquid4He

within a small rotating bucket. If the bucket is slowly brought into rotation, the
liquid will behave in the following way. At small angular velocities of the bucket,
the liquid will remain at rest. If the angular velocity is increased beyond some
threshold angular velocity, the energy is transferred to the fluid, and the fluid will
make an abrupt transition to a state in which there is avortex linerunning from
top to bottom, parallel to the axis of rotation. The vortex line looks like a small
whirlpool, the fluid flows around the line with the velocity that decreases with
distance from the line. Thevorticity, defined as the line integral of the momentum
along any path encircling the vortex line, Eq. (3.59), is quantized. As the angular
velocity is increased, more and more quantized vortex lines are created. Once a
vortex line is created, the macroscopically occupied single-particle ground state
is no longer a zero-momentum eigenstate. It is a quantum state with a flow pat-
tern that includes the vortex lines. When there are many vortex lines, they will
distribute themselves in a pattern so that the average fluid velocity (averaged over
many vortices) is the same as in the case of rigid-body rotation.

To summarize, the quantization of vortices is related to the phase factor of the
condensate wave function, defined in Eq. (3.60). In the lowest-energy state,ψ and
φ do not depend on~r, they are constant. The state in whichφ varies with~r is an
excited state which describes the fluid with one or several vortices.

3.3.3 Order Parameter

A superfluid can be considered as a mixture of two coexisting fluids, of a normal
component and of a superfluid component. At a first glance, one would choose
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the density of particles in the ground (superfluid) state as the order parameter,
because it is6= 0 in the low-temperature phase and vanishes atTC . However, in an
interacting system, theoperatorN0 doesn’t commute withH, the single-particle
momenta are not good quantum numbers. On the other hand we already know
that the ground state is a state with zero momentum~p = 0 = −ih̄~∇ ⇒ ~∇ = 0.
This means that thewavefunctionis a constant in the ground state. Therefore we
choose for the order parameter thestatistical average of the ground-state wave
functionwhich commutes withH and which can be written in the form:

〈Ψ〉 =
1

Ξ
Tr
[
Ψe−β(H−µN)

]
= ψeiφ (3.60)

(ψ is the amplitude andφ the phase of the wavefunction). The density of the
superfluid component is〈N0〉/V = ψ2 = constant. In the superfluid phase, a
macroscopically occupied single-particle quantum-mechanical ground state with
zero momentum extends through the whole volume available to the fluid. Each
atom is not at any particular place, it is simultaneously everywhere in the macro-
scopic volume!This is the meaning of the order parameter defined in (3.60).

Symmetry breaking. There is a strong parallel between〈Ψ〉 and the sponta-
neous magnetization〈 ~M〉 in ferromagnets,

〈 ~M〉 =
1

Z
Tr
(
~Me−βH

)
, (3.61)

where ~M is the (operator for the) total magnetic moment and

H = −J
∑
〈i,j〉

~Si · ~Sj.

In the absence of an external magnetic field, thus,H is invariant under rotations,
~M and− ~M occur with equal probability and therefore〈 ~M〉 is always zero. But

we know that the ferromagnets do have spontaneous magnetization at lowT . The
resolution lies in ”spontaneous symmetry breaking” - the ground state of a Hamil-
tonian doesnot possess the full symmetry of the Hamiltonian. The ground state
wavefunction is not rotationally invariant, because〈 ~M〉 points along a definite di-
rection in space whereasH is rotationally invariant. In the case of ferromagnets,
thus, the transition corresponds to spontaneous breaking of the rotational symme-
try. One must therefore redefine〈 ~M〉 in such a way that+ ~M and− ~M are not
both included in the partition function with equal weights. This is most easily
done by imposing an infinitesimal external fieldH:

〈 ~M〉 = lim
H→0

lim
V →∞

1

Z
TrMe−β(H− ~M · ~H). (3.62)
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Returning to Bose systems, the Hamiltonian has aglobal gauge invariance,
the wave functions are invariant with respect to the phase shift,

Ψ(~r) → eiφ(~r)Ψ(~r) (3.63)

whereφ is an arbitrary phase factor (real number). Bose condensation corresponds
to aspontaneous breaking of global gauge invariance. When calculating the order
parameter, we imagine, like in magnetic systems that the system is subjected to an
(infinitesimal) external fieldη which couples linearly to the order parameter. We
calculate the statistical average ofΨ(~r) in the thermodynamic limit:

〈Ψ(~r)〉 = lim
η→0

lim
V →∞

1

Ξ
TrΨ(~r)e−βE , (3.64)

where

E = H− µN −
∫
d3r[Ψ(~r)η(~r) + Ψ†(~r)η†(~r)]. (3.65)

The only essential difference with the ferromagnetic case is that the external field
here is fictitious, it cannot be realized experimentally.
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