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lIya Prigogine 1917-2003
Nagroda Nobla 1977

Tworzenie jest podstawową cechą Wszechświata, a
kreatywność naukowa równoległa do kreatywności 
artystycznej ...
(z wywiadu z E.Lévy, Le Point, 18.01,2002)

„Nasza wizja przyrody ulega gruntownej zmianie 
ewoluując ku wielości, czasowości i złożoności...

Zasada wzrostu entropii opisuje świat jako uklad 
przechodzący stopniowo do chaosu. Tymczasem ewolucja 
systemów biologicznych czy społecznych dowodzi, że to, 
co złożone wyłania się z tego, co proste...

Brak równowagi , którego wyrazem jest przepływ 
materii i energii, może być źródłem porządku...”

I.Prigogine, I. Stengers „Z chaosu ku porządkowi: Nowy 
dialog człowieka z przyrodą”, PIW, 1990
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Samoorganizacja i  uporządkowanie
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• Samoorganizacja jest spontanicznym procesem 
tworzenia się uporządkowanych struktur 
przestrzennych i czasowych

• Układy samoorganizujące się są emergentne
(całość posiada własności odmienne od własności 
układów składowych)

wtorek, 13 marca 2012
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teoria układów 
dynamicznych,

procesy stochastyczne, 

termodynamika 
nierównowagowa
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tial evaporation rates, the air a short distance above the sea
surface must be much drier than would be the case were it in
equilibrium with the sea. 

The figure illustrates the four legs of a hurricane Carnot
cycle. From A to B, air undergoes nearly isothermal expan-
sion as it flows toward the lower pressure of the storm cen-
ter while in contact with the surface of the ocean, a giant heat
reservoir. As air spirals in near the surface, conservation of
angular momentum causes the air to rotate faster about the
storm’s axis. Evaporation of seawater transfers energy from
the sea to the air and increases the air’s entropy.

Once the air reaches the point where the surface wind is
strongest—typically 5–100 km from the center of the hurri-
cane—it turns abruptly (point B in the figure) and flows up-
ward within the sloping ring of cumulonimbus cloud known
as the eyewall. The ascent is nearly adiabatic. In real storms
the air flows out at the top of its trajectory (point C in the fig-
ure) and is incorporated into other weather systems; in ide-
alized models one can close the cycle by allowing the heat ac-
quired from the sea surface to be isothermally radiated to
space as IR radiation from the storm outflow. Finally, the
cycle is completed as air undergoes adiabatic compression
from D to A.

The rate of heat transfer from the ocean to the atmos-
phere varies as vE, where v is the surface wind speed and E
quantifies the thermodynamic disequilibrium between the
ocean and atmosphere. But there is another source of heat;
the dissipation of the kinetic energy of the wind by surface
friction. That can be shown to vary as v3. According to Carnot,
the power generation by the hurricane heat engine is given
by the rate of heat input multiplied by the thermodynamic
efficiency:

If the storm is in a steady condition, then the power gen-
eration must equal the dissipation, which is proportional to
v3. Equating dissipation and generation yields an expression
for the wind speed:

Here Ts is the ocean temperature and To is the temperature
of the outflow. Those temperatures and E may be easily esti-
mated from observations of the tropics, and v as given by the
above equation is found to provide a good quantitative upper
bound on hurricane wind speeds. Several factors, however,
prevent most storms from achieving their maximum sus-
tainable wind speed, or “potential intensity.” Those include
cooling of the sea surface by turbulent mixing that brings
cold ocean water up to the surface and entropy consumption
by dry air finding its way into the hurricane’s core.
The thermodynamic cycle of a hurricane represents only a
glimpse of the fascinating physics of hurricanes; more com-
plete expositions are available in the resources given below.
The transition of the tropical atmosphere from one with or-
dinary convective clouds and mixing-dominated entropy
production to a system with powerful vortices and dissipa-
tion-driven entropy production remains a mysterious and in-
adequately studied phenomenon. This may be of more than
academic interest, as increasing concentrations of green-
house gases increase the thermodynamic disequilibrium of
the tropical ocean–atmosphere system and thereby increase
the intensity of hurricanes.

Additional resources
! K. Emanuel, Annu. Rev. Earth Planet Sci. 31, 75 (2003).
! K. Emanuel, Divine Wind: The History and Science of Hurri-
canes, Oxford U. Press, New York (2005). !

www.physicstoday.org August 2006    Physics Today 3

The hurricane as a
Carnot heat engine.
This two-dimensional
plot of the thermody-
namic cycle shows a
vertical cross section of
the hurricane, whose
storm center lies along
the left edge. Colors
depict the entropy dis-
tribution; cooler colors
indicate lower entropy.
The process mainly
responsible for driving
the storm is the evapo-
ration of seawater,
which transfers energy
from sea to air. As a
result of that transfer,
air spirals inward from
A to B and acquires
entropy at a constant
temperature. It then
undergoes an adiabat-
ic expansion from B to
C as it ascends within

the storm’s eyewall. Far from the storm center, symbolically
between C and D, it exports IR radiation to space and so
loses the entropy it acquired from the sea. The depicted com-
pression is very nearly isothermal. Between D and A the air
undergoes an adiabatic compression. Voilà, the four legs of a
Carnot cycle. 

The online version of this Quick Study provides links to images of
hurricanes. 

projekt Wolfram/Mathematica

A. Bulsara, Physics Today, 1993

K. Emanuel, Physics Today, 2006

Układy złożone: narzędzia opisu
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teoria macierzy przypadkowych

teoria grafów/sieci
Table 1: Examples of basic RNA secondary structure motifs. From top to bottom: a single strand
(PDB 283D [5]), a helical duplex (PDB 405d [6]), a hairpin stem and loop (PDB 1e4p [7]), a bulge
(PDB 1r7w [8]), a multiloop (PDB 1kh6 [9]). From left to right: spacefill view, three-dimensional
structure, secondary structure motif. The pictures are made with MolPov [10], Jmol [11] and PovRay
[12].
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 Bon, Vernizzi,Orland, Zee, Topological classification of RNA structures, Journal 
of Molecular Biology 379 (2008), p 900

In addition to this dynamics, one must specify the initial condi-
tion p(S, I; t ! t0), which is typically assumed to be a small but
fixed number of infecteds I0, i.e., p(S, I; t ! t0) ! !I,I0!S,N"I0.

The relation of the probabilistic master equation 3 to the
deterministic SIR model (1) can be made in the limit of a large but
finite population, i.e., N ## 1. In this limit, one can approximate the
master equation by a Fokker–Planck equation by means of an
expansion in terms of conditional moments [Kramers–Moyal ex-
pansion (13); see supporting information, which is published on the
PNAS web site]. The associated description in terms of stochastic
Langevin equations reads

ds!dt " "#sj $
1

"N
"#sj%1$ t% [4]

dj!dt " #sj & ' j &
1

"N
"#sj%1$ t% $

1
"N

"' j%2$ t% .

[5]

Here, the independent Gaussian white noise forces %1(t) and %2(t)
reflect the fluctuations of transmission and recovery, respectively.
Note that the magnitude of the fluctuations are & 1!'N and
disappear in the limit N3 (, in which case Eqs. 1 are recovered.
However, for large but finite N, a crucial difference is apparent:
Eqs. 4 and 5 contain fluctuating forces, and N is a parameter of the
system. A careful analysis shows that even for very large populations
(i.e., N ## 1), fluctuations play a prominent role in the initial phase
of an epidemic outbreak and cannot be neglected. For instance,
even when (0 # 0, a small initial number of infecteds in a population
may not necessarily lead to an outbreak that cannot be accounted
for by the deterministic model.

Dispersal on the Aviation Network
As individuals travel around the world, the disease may spread
from one place to another. To quantify the traveling behavior of

individuals, we have analyzed all national and international civil
f lights among the 500 largest airports by passenger capacity.‡
This analysis yields the global aviation network shown in Fig. 1;
further details of the data collection are compiled in the
supporting information. The strength of a connection between
two airports is given by passenger capacity, i.e., the number of
passengers that travel a given route per day.

We incorporate the global dispersion of individuals into our
model by dividing the population into M local urban populations
labeled i containing Ni individuals. For each i, the number of
susceptible and infected individuals is given by Si and Ii, respec-
tively. In each urban area, the infection dynamics is governed by
master equation 3.

Stochastic dispersal of individuals is defined by a matrix )ij of
transition probability rates among populations

SiO¡
)ij

Sj IiO¡
)ij

Ij, i, j " 1, . . . , M, [6]

where )ii ! 0. Along the same lines as presented above, one can
formulate a master equation for the pair of vectors X ! {S1,
I1, . . . , SM, IM}, which defines the stochastic state of the system.
This master equation is provided explicitly in Eq. 3, supporting
information.

To account for the global spread of an epidemic via the
aviation network, one needs to specify the matrix )ij. Because the

‡Data on flight schedules and airport information are available from OAG Worldwide
Limited, London (www.oag.com), and the International Air Transport Association, Geneva
(www.iata.org).

Fig. 1. Global aviation network. A geographical representation of the civil
aviation traffic among the 500 largest international airports in #100 different
countries is shown. Each line represents a direct connection between airports.
The color encodes the number of passengers per day (see color code at the
bottom) traveling between two airports. The network accounts for #95% of
the international civil aviation traffic. For each pair (i, j) of airports, we checked
all flights departing from airport j and arriving at airport i. The amount of
passengers carried by a specific flight within 1 week can be estimated by the
size of the aircraft (We used manufacturer capacity information on #150
different aircraft types) times the number of days the flight operates in 1
week. The sum of all flights yields the passengers per week, i.e., Mij in Eq. 7. We
computed the total passenger capacity ) Mij of each airport j per week and
found very good agreement with independently obtained airport capacities.

Fig. 2. Global spread of SARS. (A) Geographical representation of the global
spreading of probable SARS cases on May 30, 2003, as reported by the WHO
and Centers for Disease Control and Prevention. The first cases of SARS
emerged in mid-November 2002 in Guangdong Province, China (17). The
disease was then carried to Hong Kong on the February 21, 2003, and began
spreading around the world along international air travel routes, because
tourists and the medical doctors who treated the early cases traveled inter-
nationally. As the disease moved out of southern China, the first hot zones of
SARS were Hong Kong, Singapore, Hanoi (Vietnam), and Toronto (Canada),
but soon cases in Taiwan, Thailand, the U.S., Europe, and elsewhere were
reported. (B) Geographical representation of the results of our simulations 90
days after an initial infection in Hong Kong, The simulation corresponds to the
real SARS infection at the end of May 2003. Because our simulations cannot
describe the infection in China, where the disease started in November 2002,
we used the WHO data for China.

Hufnagel et al. PNAS # October 19, 2004 # vol. 101 # no. 42 # 15125
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Hufnagel, Brockmann, Geisel, Rorcast and control of epidemics, PNAS, 101 
(2004) p. 15

Układy złożone: narzędzia opisu
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BIFURKACJE w teorii układów dynamicznych
W układach nieliniowych zmiana parametru kontrolnego skutkuje pojawieniem się

 nowych rozwiązań stacjonarnych 

Example 3.4.1 ẋ = −x + β tanhx

Arises in statistical mechanical models e.g.
of magnets or neural networks

Plot y = x and y = β tanhx

Fig. 3.4.3

Fig. 3.4.4
13

Example 3.4.1 ẋ = −x + β tanhx

Arises in statistical mechanical models e.g.
of magnets or neural networks

Plot y = x and y = β tanhx

Fig. 3.4.3

Fig. 3.4.4
13

W pobliżu punktów bifurkacji istotną rolę 
zaczynają odgrywać fluktuacje: mogą one 
decydować o wyborze gałęzi stabilnych stanów  
stacjonarnych dostępnych w dynamicznej ewolucji
układu...  

Example 3.4.1 ẋ = −x + β tanhx

Arises in statistical mechanical models e.g.
of magnets or neural networks

Plot y = x and y = β tanhx

Fig. 3.4.3

Fig. 3.4.4
13

Poszukiwanie rozwiązań stacjonarnych: w prostych 
przypadkach wystarczą metody graficzne, 
współcześnie pełne rozwiązania problemów 
wielowymiarowych otrzymujemy numerycznie...  

wtorek, 13 marca 2012



8

!"#"$%&'(%)*+,* %-''.% /0

1% 1,*23*% 45678*9% +*:1*8;9,%1+<=+2:,;>% ?*7:;9,% *3*@*827?8=;>% +: 7679 ;=;>% +, %
87% ;7 =% 4?5;*+(% <5+27 % <74?54585178=% 654,*?5% 1% 3727;>% +,*6*@6<,*+, 2=;>A%
B%?5:C% /&0-% !,*36(% DE?5+% ,% $5=*+(% 4?7;C9 ;=% 87% F8,1*?+=2*;,*% G278C% "?*H58(%
<74?54585173,%+;>*@72%@*;>78,<@C%?*7:;9,%+: 7679 ;=;>%+, %<%5+,*@87+2C%*274I1%
J/KA% G=@C37;97% :5@4C2*?517% 4?<*4?5176<587% 617% 3727% 4I 8,*9% 651,56 7% 4?71L
6<,15 ;,%2*H5%+;>*@72CA%%
%

GMNOPQ#%ROQDM)S%TSO "FG"BQL QT"#U GDSOV"%
%
GCW+2?727@,% + % 2?<=% <1, <:,% 8,*5?H78,;<8*X% 958=% W?5@,7851*% % 958=%K(YJT?"
W?5@:51*%JT?ZK%,%958=%;*?71*%JM*Y[K%5?7<%:17+%@735851=%JMN-JM""NK-KA%
%
%%/A%%%-N[%[%T?Z%[% %% %%N"T?%[%NT?"YT?" -%

%%-A%%%N[%[%NT?"-%[%T?Z%% %%-N"T?%
%%YA%%%MN-JM""NK-%% %%J"NK-%M%\%MNM""N%
%%]A%%%N"T?%[%T?Z%[%N[%% %%T?-%[%N-"%
%%.A%%%TR-%[%J"NK-%M%\%MNM""N%% %%N[%[%T?Z%[%T?MNJM""NK-%
%%^A%%%NT?"-%[% %[%NYT?" [%% %%-T?"-%[%N-"%

%%0A%%%T?"-%[%M*Y[%[N[%% %%M*][%[%NT?"-%
%%_A%%%M*][%[%T?"-%[%N-"%% %% %[%-NYT?" [%[%M*Y[%

%%&A%%%-NT?"-%% %%N"T?%[% %[%NYT?" [%

/'A%%%M*][%[%MN-JM""NK-%% %%MNJM""NK-%[%M*Y[%[%N[%
//A%%%MNJM""NK-%[%T?MNJM""NK-%[%N-"%% %%T?Z%[%MN-JM""NK-%[%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%[%N"MJM""NK-%[%N[%
/-A%%%M*][%[%T?MNJM""NK-%[%N-"% %%T?Z%[%N"MJM""NK-%[%M*Y[%[%-N[%
/YA%%%-N"MJM""NK-%% %%N"MNJM""NK-%[%M%\%MNM"""N%[%M"-%
/]A%%%M*][%[%N"MNJM""NK-%% %%N"MJM""NK-%[%M*Y[%[%N[%
/.A%%%M*][%[%"%\%MNM""N%% %%"%\%MM""N%[%M*Y[%[%N[%
/^A%%%-%"%\%MM""N%[%N-"%% %%"%\%MNM""N%[%NM""N%[%M"-%
/0A%%%T?-%[%NM""N%% %%-T?Z%[%M"-%[%-N[%
/_A%%%-%MNJM""NK-%[%N-"% %MN-JM""NK-%[%N"MNJM""NK-%
%
`?56C:27@,%:5 ;51=@,%+ X%61C23*8*:%1 H37(%:17+%@?I1:51=%JNM""NK%,%:17+%
W?5@5@735851=% JT?MNJM""NK-KA% T7?17% ?5<215?C% 5+;=3C9*% 45@, 6<=% I 2 %
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F. Sagues, I. Epstein Dalton Trans. 1201, (2003) 

Cykliczna zmiana stężeń 
reagentów w czasie: przykład 

zegara chemicznego

Reakcja Biełousowa-Żabotyńskiego
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L!! B"1#!2 A2
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Perturbations u are expanded in normal modes u
!$ #k#!kc

u0 exp%&(k)t#ik•r' leading to the eigenvalue equa-
tion &(k)2"(&(k)#)!0 in which ( and ) indicate the
trace and the determinant of the linear operator L, respec-
tively. Depending on the values of the parameters A and D
the system will undergo a Turing "stationary# bifurcation or a
Hopf instability. As a matter of fact, 2D reaction-diffusion
systems that display Turing patterns also present a Hopf bi-
furcation. The latter gives rise to oscillations if *+!1/D
$(!1#A2"1)/A %14'. Otherwise, a Turing instability takes
place, the case we focus on hereafter.
The marginal condition (&!0) leads to a curve B

!B(k) the minimum of which yields the critical point
(Bc ,kc)!%(1#A*)2,!A*' . To describe naturally the sepa-
ration from the critical values the rescaled parameter ,
!(B"Bc)/Bc dubbed supercriticality, replaces B as the con-
trol parameter.
Before going to a perturbative analysis let us show ex-

amples of Turing patterns from direct simulations of the
model in Fig. 1, similar to that obtained by other authors
%8,9'. They correspond to hexagons with different phases and
stripes, for different values of the supercriticality , . These
patterns are shown here just as a guide to the ensuing weakly
nonlinear analysis. "Technical details on the simulations will
be given in Sec. V C.#

III. WEAKLY NONLINEAR THEORY

Amplitude equations are a classical tool to describe ex-
cited states beyond linear analysis %15'. We sketch briefly the
main steps in obtaining them. Just above threshold the eigen-
values of the critical modes are close to zero, so that they are
slowly varying modes, whereas the off-critical modes relax
quickly, so only perturbations with k around kc have to be
considered. The solution of Eq. "2# can be expanded as

u!$
j!1

N

u0"A jeikj•r#c.c.#, "4#

where u0!„1,"*(1#A*)/A…T stands for the eigenvector of
the linear operator. Here we use the standard multiple-scale
analysis %15' in which the control parameter and the deriva-
tives are expanded in terms of a small parameter - and or-

thogonality conditions "Fredholm alternative# are used at
each order. In the neighborhood of the bifurcation point, the
critical amplitudes A j follow the so-called normal forms.
Their general form can be derived from standard techniques
of symmetry-breaking bifurcations %16'. A normal form de-
scribes perfect extended patterns, but slight variations in the
pattern can be included by means of spatial terms with the
suitable symmetries, so one arrives at the so-called amplitude
equations. We discuss in the following the form of these
equations for different planforms.
Stripes are characterized by a single amplitude A that

evolves according to

(0. tA!,A"g#A#2A#/0
2! .x#

1
2ikc

.y
2" 2A , "5#

which is the normal form for a supercritical bifurcation plus
a term that accounts for spatial variations, known as the
Newell–Whitehead–Segel equation %17' in convection phe-
nomena.
Squares are formed by two perpendicular sets of rolls

with equal wave numbers, i.e., "a# k1!k2 and "b# #k1#!#k2#.
They display four peaks with D4 symmetry in Fourier space.
When condition "b# does not hold one obtains rectangular or
bimodal patterns; instead, without the condition "a# rhombs
"rhombic cells# arise. Squares or rhombs should obey
coupled equations of the kind: (0. tA1!,A1"g#A1#2A1
"g0#A2#A1, in which g0 depends on k1•k2 "valid for angles
not around 21/3).
Hexagons are built up by three modes satisfying the reso-

nant condition k1#k2#k3!0 "resonant triad#, with #k1#
!#k2#!#k3#. When the modes break the rotational symmetry
but not reflexions (#k1#2#k2#!#k3#) squeezed hexagons re-
sult. Distortions breaking rotation and reflexion symmetries,
#k1#2#k2#2#k3#, lead to a pattern of sheared hexagons. Let
us stress that what have been called ‘‘rhombs’’ or ‘‘rhombic
cells’’ in many recent papers are actually distorted hexagons,
a distinction far from semantic, because the term ‘‘rhomb’’
used for a three-mode pattern has induced some misleading
interpretations %18'. Squares or true rhombs have never been
observed in experiments, while slightly distorted hexagons
have been reported in chemical systems %6' and in theoretical
models %11,19'.
During the last years several authors have established

that, up to the third order in the amplitudes, the general form
of the amplitude equations for a hexagonal pattern should be
as follows %11,12':

(0. tA1!,A1#/0
2.x1
2 A1#vĀ2Ā3"g#A1#2A1

"h" #A2#2##A3#2#A1#i31% Ā2.x3Ā3#Ā3.x2Ā2'

#i32% Ā2.(3
Ā3"Ā3.(2

Ā2' , "6#

where subindices in the derivatives stand for .xi!n̂i•“ and
.( i

! !̂i•“ , respectively, being n̂i the unitary vectors in the
direction of ki and !̂i orthogonal to n̂i . Companion equations
for A2 and A3 are simply obtained by subindex permutations.

FIG. 1. Turing patterns from direct simulations of Brusselator
model (A!4.5,D!8): "a# ,!0.04 initial hexagons, "b# ,!0.30
striped pattern, and "c# ,!0.98 reentrant hexagons.

B. PEÑA AND C. PÉREZ-GARCÍA PHYSICAL REVIEW E 64 056213

056213-2
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cells’’ in many recent papers are actually distorted hexagons,
a distinction far from semantic, because the term ‘‘rhomb’’
used for a three-mode pattern has induced some misleading
interpretations %18'. Squares or true rhombs have never been
observed in experiments, while slightly distorted hexagons
have been reported in chemical systems %6' and in theoretical
models %11,19'.
During the last years several authors have established

that, up to the third order in the amplitudes, the general form
of the amplitude equations for a hexagonal pattern should be
as follows %11,12':

(0. tA1!,A1#/0
2.x1
2 A1#vĀ2Ā3"g#A1#2A1

"h" #A2#2##A3#2#A1#i31% Ā2.x3Ā3#Ā3.x2Ā2'

#i32% Ā2.(3
Ā3"Ā3.(2

Ā2' , "6#

where subindices in the derivatives stand for .xi!n̂i•“ and
.( i

! !̂i•“ , respectively, being n̂i the unitary vectors in the
direction of ki and !̂i orthogonal to n̂i . Companion equations
for A2 and A3 are simply obtained by subindex permutations.

FIG. 1. Turing patterns from direct simulations of Brusselator
model (A!4.5,D!8): "a# ,!0.04 initial hexagons, "b# ,!0.30
striped pattern, and "c# ,!0.98 reentrant hexagons.
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I. INTRODUCTION

Some chemical systems out of equilibrium undergo a spa-
tial symmetry breaking, leading to stationary pattern forma-
tion on macroscopic scales #1$. The new stationary states
form periodic concentration structures with a wavelength in-
dependent of the reactor geometry, the so-called Turing pat-
terns #1$. Experimental evidence for Turing patterns was first
obtained in 1990 by Castets et al. #2$, in the well-known
chlorite–iodine–malonic acid !CIMA" reaction, and later on
in the chlorine–dioxide iodine–malonic acid !CDIMA" reac-
tion #3,4$, and in the polyacrilamide-methylene blue-oxygen
reaction, althought in the latter the leading mechanism is still
under discussion #5$. Depending on the control parameters
!concentrations of reactants and diffusion coefficients", the
dynamics of the CIMA or CDIMA reaction exhibits several
kinds of steady patterns close to onset: stripes, hexagons, and
‘‘rhombs’’ #6$. !Usually, the so-called ‘‘black eyes’’ seem to
arise from secondary bifurcations." Realistic reactive
schemes are, in general, quite complicated. Consequently
they are replaced by simplified schemes, as the Brusselator
model #7$, reproducing the observed patterns while dealing
with simple calculations #8–10$.
In the present paper we will focus on stationary Turing

patterns arising in the Brusselator. We discuss and obtain a
generalized amplitude equation, including spatial modula-
tions, for the planforms appearing in the model. This equa-
tion has been obtained in many chemical models for stripe
patterns only, but the hexagonal case has not been discussed
in detail so far #8–10$. From symmetry arguments, some
authors established that it must include some nonpotential
quadratic terms besides the usual diffusive linear one
#11,12$. By means of a multiple-scale technique we compute
the coefficients of the amplitude equation for the Brusselator.
Stationary solutions of this equation are stripes, hexagons
with two different phases, mixed modes, and distorted hexa-
gons. A linear stability analysis sets the stability of these
stationary solutions in regard to amplitude disturbances.
Another stability limit is obtained from phase perturba-

tions. In fact, amplitude varies much more rapidly in time
than phase does and, therefore, it becomes enslaved by the
slowly varying phases. The slow dynamics of slight spatial

heterogeneities in the pattern can be described with a phase
equation for each stationary solution. The stability regions
computed for the Brusselator can be considered as reminis-
cent of the Busse’s balloon in thermal convection #13$.
The paper is organized as follows. In Sec. II we introduce

the two-dimensional !2D" model and we give a general sur-
vey of the linear analysis. In Sec. III we carry out a weakly
nonlinear analysis using the multiple-scale method to derive
the amplitude equations. The stability of patterns towards
homogeneous perturbations !amplitude instabilities" is dis-
cussed in Sec. IV. The stability regions for roll, perfect hexa-
gons, and squeezed hexagons are explicitly computed. We
derive the linear phase equations for different kind of hexa-
gons in Sec. V and we compare the stability diagrams ob-
tained analytically with direct numerical simulations of the
Brusselator model. Sec. VI summarizes our conclusions.

II. THE REACTION-DIFFUSION MODEL

The Brusselator is considered one of the simplest
reaction-diffusion models exhibiting Turing and Hopf insta-
bilities. The spatiotemporal evolution of the main variables is
given by the following partial differential equations:

% tX"A!!B#1 "X#X2Y#&2X ,
!1"

% tY"BX!X2Y#D&2Y ,

where X and Y denote the concentrations of activator and
substrate, respectively. Here D is a parameter proportional to
the diffusion ratio of the two species DY /DX and, as usual, B
is kept as the control parameter of the problem.
The homogeneous steady state of these equations is sim-

ply us"(Xs ,Y s)"(A ,B/A) #9$. Let us briefly recall here the
results of the linear stability analysis around us . Considering
small perturbations u"(x ,y) in Eqs. !1" one arrives at

% tu"Lu#! BA x2#2Axy#x2y " ! 1
!1 " , !2"

where L is the linearized operator
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I. INTRODUCTION

Some chemical systems out of equilibrium undergo a spa-
tial symmetry breaking, leading to stationary pattern forma-
tion on macroscopic scales #1$. The new stationary states
form periodic concentration structures with a wavelength in-
dependent of the reactor geometry, the so-called Turing pat-
terns #1$. Experimental evidence for Turing patterns was first
obtained in 1990 by Castets et al. #2$, in the well-known
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tion #3,4$, and in the polyacrilamide-methylene blue-oxygen
reaction, althought in the latter the leading mechanism is still
under discussion #5$. Depending on the control parameters
!concentrations of reactants and diffusion coefficients", the
dynamics of the CIMA or CDIMA reaction exhibits several
kinds of steady patterns close to onset: stripes, hexagons, and
‘‘rhombs’’ #6$. !Usually, the so-called ‘‘black eyes’’ seem to
arise from secondary bifurcations." Realistic reactive
schemes are, in general, quite complicated. Consequently
they are replaced by simplified schemes, as the Brusselator
model #7$, reproducing the observed patterns while dealing
with simple calculations #8–10$.
In the present paper we will focus on stationary Turing

patterns arising in the Brusselator. We discuss and obtain a
generalized amplitude equation, including spatial modula-
tions, for the planforms appearing in the model. This equa-
tion has been obtained in many chemical models for stripe
patterns only, but the hexagonal case has not been discussed
in detail so far #8–10$. From symmetry arguments, some
authors established that it must include some nonpotential
quadratic terms besides the usual diffusive linear one
#11,12$. By means of a multiple-scale technique we compute
the coefficients of the amplitude equation for the Brusselator.
Stationary solutions of this equation are stripes, hexagons
with two different phases, mixed modes, and distorted hexa-
gons. A linear stability analysis sets the stability of these
stationary solutions in regard to amplitude disturbances.
Another stability limit is obtained from phase perturba-

tions. In fact, amplitude varies much more rapidly in time
than phase does and, therefore, it becomes enslaved by the
slowly varying phases. The slow dynamics of slight spatial

heterogeneities in the pattern can be described with a phase
equation for each stationary solution. The stability regions
computed for the Brusselator can be considered as reminis-
cent of the Busse’s balloon in thermal convection #13$.
The paper is organized as follows. In Sec. II we introduce

the two-dimensional !2D" model and we give a general sur-
vey of the linear analysis. In Sec. III we carry out a weakly
nonlinear analysis using the multiple-scale method to derive
the amplitude equations. The stability of patterns towards
homogeneous perturbations !amplitude instabilities" is dis-
cussed in Sec. IV. The stability regions for roll, perfect hexa-
gons, and squeezed hexagons are explicitly computed. We
derive the linear phase equations for different kind of hexa-
gons in Sec. V and we compare the stability diagrams ob-
tained analytically with direct numerical simulations of the
Brusselator model. Sec. VI summarizes our conclusions.

II. THE REACTION-DIFFUSION MODEL

The Brusselator is considered one of the simplest
reaction-diffusion models exhibiting Turing and Hopf insta-
bilities. The spatiotemporal evolution of the main variables is
given by the following partial differential equations:

% tX"A!!B#1 "X#X2Y#&2X ,
!1"

% tY"BX!X2Y#D&2Y ,

where X and Y denote the concentrations of activator and
substrate, respectively. Here D is a parameter proportional to
the diffusion ratio of the two species DY /DX and, as usual, B
is kept as the control parameter of the problem.
The homogeneous steady state of these equations is sim-

ply us"(Xs ,Y s)"(A ,B/A) #9$. Let us briefly recall here the
results of the linear stability analysis around us . Considering
small perturbations u"(x ,y) in Eqs. !1" one arrives at
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chines is very deep. Fluctuations of the chemical 
energy affect a molecular motor in the same 
way that a random and variable amount of fuel 
affects the piston of a car motor. Therefore, the 
long tradition of applying thermodynamics to 
large motors can be extended to small ones. Al-
though physicists have other mathematical tools 
for analyzing such systems, those tools can be 
tricky to apply. The equations of fluid flow, for 
example, require researchers to specify the con-
ditions at the boundary of a system precisely—a 
Herculean task when the boundary is extremely 
irregular. Thermodynamics provides a compu-
tational shortcut, and it has already yielded 
fresh insights. Signe Kjelstrup and Dick Be-
deaux, both at the Norwegian University of Sci-
ence and Technology, and I have found that heat 
plays an underappreciated role in the function 
of ion channels.

In short, my colleagues and I have shown 
that the development of order from chaos, far 
from contradicting the second law, fits nicely 
into a broader framework of thermodynamics. 
We are just at the threshold of using this new 
understanding for practical applications. Per-
petual-motion machines remain impossible, 
and we will still ultimately lose the battle against 
degeneration. But the second law does not man-
date a steady degeneration. It quite happily co-
exists with the spontaneous development of or-
der and complexity.  

particles is brought down to an average (if slight-
ly fluctuating) value. Although a few isolated 
events may show completely unpredictable be-
havior, a multitude of events shows a certain reg-
ularity. Therefore, quantities such as density can 
fluctuate but remain predictable overall. For this 
reason, the second law continues to rule over the 
world of the small.

From Steam Engines  
to Molecular Motors
The original development of thermodynamics 
found its inspiration in the steam engine. Nowa-
days the field is driven by the tiny molecular 
engines within living cells. Though of vastly dif-
fering scales, these engines share a common 
function: they transform energy into motion. 
For instance, ATP molecules provide the fuel for 
myosin molecules in muscle tissue to move along 
actin filaments, pulling the muscle fibers to 
which they are attached. Other motors are pow-
ered by light, by differences in proton concentra-
tions or by differences in temperature [see “Mak-
ing Molecules into Motors,” by R. Dean Astumi-
an; Scientific American, July 2001]. Chemical 
energy can drive ions through channels in a cell 
membrane from a region of low concentration to 
one of high concentration—precisely the oppo-
site direction that they would move in the 
absence of an active transport mechanism.

The analogy between large and small ma-

ORDER FROM DISORDER
Although the molecules in a system out of equilibrium may be hopelessly jumbled, the system can become ordered in other ways. 
Classical thermodynamics, based as it is on equilibrium, cannot account for that, but the newly developed nonequilibrium theory can. 

EXTREME 
DEPARTURE
As the heating increases 
still further, the chaos be-
comes equally distributed
and the fluid recovers the 
lost isotropy.

MORE TO 
EXPLORE

Non-equilibrium Thermodynam-
ics. S. R. de Groot and P. Mazur.  
Dover, 1984.

Thermodynamics “beyond”  
Local Equilibrium. José M. G. Vilar 
and J. Miguel Rubí in Proceedings of 
the National Academy of Sciences 
USA, Vol. 98, No. 20, pages 
11081–11084; September 25, 2001.  
http://arxiv.org/abs/ 
cond-mat/0110614

Active Transport: A Kinetic  
Description Based on Thermody-
namic Grounds. Signe Kjelstrup, 
 J. Miguel Rubí and Dick Bedeaux in 
Journal of Theoretical Biology, Vol. 
234, No. 1, pages 7–12; May 7, 2005. 
http://arxiv.org/abs/ 
cond-mat/0412493

The Mesoscopic Dynamics  
of Thermodynamic Systems.  
David Reguera, J. Miguel Rubí and 
José M. G. Vilar in Journal of Physical 
Chemistry B, Vol. 109, No. 46, pages 
21502–21515; November 24, 2005. 
http://arxiv.org/abs/ 
cond-mat/0511651

EQUILIBRIUM
An unheated glass of 
water at room tempera-
ture looks the same in 
every direction, a sym-
metry known as 
isotropy. 

INCREASING 
DEPARTURE
If the temperature gradi-
ent is larger, the water 
begins to overturn, set-
ting up an orderly pattern 
of convection cells.

SEVERE 
DEPARTURE
As the heating increases, the 
pattern of convection cells 
eventually breaks down into 
turbulent chaos.

MODEST 
DEPARTURE
A glass of water heated 
from below develops a 
temperature gradient. If 
the gradient is too slight 
to overcome viscous resis-
tance to motion, the fluid 
remains static.

[WHY A NONEQUILIBRIUM THEORY IS NEEDED]

© 2008 SCIENTIFIC AMERICAN, INC.
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namics is limited to equilibrium situations may 
come as a surprise. In introductory physics class-
es, students apply thermodynamics to dynamic 
systems such as car engines to calculate quanti-
ties such as efficiency. But these applications 
make an implicit assumption: that we can ap-
proximate a dynamic process as an idealized 
succession of equilibrium states. That is, we 
imagine that the system is always in equilibrium, 
even if the equilibrium shifts from moment to 
moment. Consequently, the efficiency we calcu-
late is only an upper limit. The value that engines 
reach in practice is somewhat lower because they 
operate under nonequilibrium conditions.

The second law describes how a succession 
of equilibrium states can be irreversible, so that 
the system cannot return to its original state 
without exacting a price from its surroundings. 
A melted ice cube does not spontaneously re-
form; you need to put it in the freezer, at a cost 
in energy. To quantify this irreversibility, the 

the two are in thermal equilibrium. From that 
point on, nothing changes.

A common example is when you put ice in a 
glass of water. The ice melts, and the water in the 
glass reaches a uniformly lower temperature. If 
you zoom in to the molecular level, you find an 
intense activity of molecules frantically moving 
about and endlessly bumping into one another. 
In equilibrium, the molecular activity organizes 
itself so that, statistically, the system is at rest; if 
some molecules speed up, others slow down, 
maintaining the overall distribution of veloci-
ties. Temperature describes this distribution; in 
fact, the very concept of temperature is meaning-
ful only when the system is in equilibrium or suf-
ficiently near it.

Thermodynamics therefore deals only with 
situations of stillness. Time plays no role in it. In 
reality, of course, nature never stands still, and 
time does matter. Everything is in a constant 
state of flux. The fact that classical thermody-

[WHERE THERMODYNAMICS FAILS]

CAUTION: CONTENTS MAY BE BOTH HOT AND COLD

THE SECOND LAW
The second law is the best known 
of the four laws of thermodynam-
ics, the study of heat and energy. 
Whereas the first law states that 
you cannot get something for noth-
ing, the second law states that you 
cannot even get something for 
something. Almost all processes 
lose some energy as heat, so to get 
something, you have to give some-
thing more. Such processes are 
irreversible; to undo them exacts a 
toll in energy. Consequently:

 Engines are inherently limited in 
their energy efficiency.

 Heat pumps tend to be more 
efficient than furnaces, because they 
move rather than generate heat.

 Erasing computer memory is an 
irreversible act, so it produces heat.

EQUILIBRIUM
A glass of water, left undisturbed, comes to room 
temperature. The water molecules collide with one 
another and reapportion their energy so that their 
overall pattern of velocities stabilizes. Although the 
glass contains billions on billions of molecules, it 
takes only one number—the temperature—to de-
scribe this pattern. Classical thermodynamics applies.

MODEST DISEQUILIBRIUM
Heating the water from below disturbs the equilibri-
um. But if the heating is modest, individual layers of 
water remain approximately in equilibrium—so-
called local equilibrium—and the water can be de-
scribed by a temperature value that increases from 
top to bottom. The theory of nonequilibrium thermo-
dynamics developed in the 20th century applies.

SEVERE DISEQUILIBRIUM
If you crank up the heat, individual layers may no longer 
be even approximately in equilibrium. The molecules be-
come a chaotic jumble in which the concept of tempera-
ture ceases to apply. To describe the system, you would 
have to introduce a raft of new variables and, in the 
most extreme case, specify the molecular velocities one 
by one. This situation demands a new theory.

Temperature seems like such a simple, universal concept. Things may be hot or cold, but they always have a temperature, right?  
Not quite. It is possible to assign a temperature only to systems (such as the molecules in a glass of water) that are in, or almost in, a stable 
condition known as equilibrium. As systems deviate from equilibrium, the temperature becomes progressively more ambiguous.

MOLECULAR VELOCITIES
Some textbooks define temperature  
as the average random velocity of mol-
ecules. In fact, temperature is the mea-
sure of an entire pattern of velocities. 
In modest departures from equilibrium, 
this pattern is merely shifted, but in  
severe departures, it is dis torted,  
rendering temperature meaningless. Molecular velocity (arbitrary units)

Fraction of 
molecules

© 2008 SCIENTIFIC AMERICAN, INC.

Gdzie zawodzi tradycyjna 
termodynamika?

J.M. Rubi, Scientific American, 2008

•Aksjomatyczna, „tradycyjna” termodynamika jest 
elegancką, samozgodną teorią matematyczną.
•Kluczowe pojęcia: stan, funkcja stanu, równanie stanu
(wiąże ze sobą parametry stanu).
•Infnitezymalne, adiabatyczne zmiany stanu są 
odwracalne w czasie

W stanach odległych od równowagi, traci 
sens „zwykła” definicja/interpretacja 
temperatury
Tradycyjna termodynamika nie opisuje 
przejść pomiędzy metastabilnymi stanami 
pośrednimi
Teoria nie opisuje uporządkowania w 
stanach nierównowagowych
 

DYSSYPACJA NIE MUSI PROWADZIĆ DO 
CHAOSU!
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Warunki równowagi i teoria liniowej 
odpowiedzi układu  

izolowaneU1 U2 U1 ⊕ U2

Ej = E1j + E2j = const

Sν(Eν1, Eν2, ...) Stotal =
�

ν

Sν(Eν1, Eν2...)

przy warunkach δS1(E1j) + δS2(E2j) = 0 δE1j + δE2j = 0

⇒
�

∂S1

∂E1j
− ∂S2

∂E2j

�
δE1j = I1j − I2j ≡ 0 ∀δE1j
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siły termodynamiczne generują przepływy

„siły termodynamiczne” Xj ≡
�

∂S1

∂E1j
− ∂S2

∂E2j

�
δE1j = I1j − I2j �= 0

dE1,j

dt
= Φj

dS

dt
=

�

j

∂S

∂A1,j

dE1j

dt
=

�

j

XjΦj

POZA STANEM RÓWNOWAGI

W konsekwencji, produkcja entropii 
wyraża się prostym iloczynem sił i 
strumieni termodynamicznych

Rozwinięta przez Onsagera (~1932) teoria liniowej 
odpowiedzi (słuszna dla słabych sił X) przewidywała

Φj =
�

k

LkjXk ⇒ dS

dt
≈

�

k

LkjXkXj

dS

dt
≥ 0

IIga zasada narzuca 
warunek
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Termodynamiczna analiza stabilności: Kryterium 
stabilności   Glansdorffa - Prigogine’a nierównowagowych 

stanów stacjonarnych w oparciu o „nadmiarową 
produkcję entropii”

kryterium lokalne, wystarczający (ale nie konieczny) 
warunek lokalnej stabilności stanu stacjonarnego

(δ2S)NSS < 0

∂

∂t
(δ2S)NSS =

�

k

δJkδXk > 0

I. Prigogine, Science 201, 777 (1978) Nobel Lecture
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envelope can be illustrated by tracing a line from peak to
peak along a given waveform (i.e. the convex hull). Inter-
estingly, the temporal scaling of amplitude fluctuations in
ongoing oscillations has recently been associated with
cognitive impairments such as depression [66] and demen-
tia [67]. Also, criticality has been supported bymultifractal
patterns in the same data previously supporting 1/f scaling
[44]. Multifractal patterns occur when scaling relations
(i.e. their exponents) vary over time or space, thereby
adding a further dimension of complexity to data.

1/f scaling characterizes the central tendency of multi-
fractal human performance, and thus the intrinsic fluctu-
ations in neural and behavioral activity, be they from ion
channels or brain images or text sequences [55]. 1/f scaling
suggests that criticality underlies cognitive function at
multiple scales and levels of analysis. Although obser-
vations of 1/f scaling in isolation do not constitute conclus-
ive evidence for criticality (for other explanations, see Refs
[3,68–70]), multifractal 1/f scaling greatly strengthens the
case [44]. Additionally, criticality predicts power-law
distributions and pervasive temporal and spatial long-

range correlations in collective measures of component
activities. These predictions are supported by the evidence
reviewed here for neural avalanches [62], power-law distri-
butions in word frequencies [33] and reaction times [28],
and analyses showing pervasive 1/f scaling in neural [54]
and behavioral activity [5] fluctuations. Adding multifrac-
tality to the mounting evidence means that metastability
near critical points is the only candidate hypothesis that
could explain the existing data.

Concluding remarks
In this brief review, a variety of scaling laws in cognitive
science were discussed that plausibly express adaptive
properties of perception, action, memory, language and
computation. The working hypothesis of criticality can
provide a general framework for understanding scaling
laws and has motivated the application of new analytical
tools to understand variability in cognitive systems. Much
work lies ahead, however, to further test these new
hypotheses and also to bring more scientists into the
debate (Box 3).

Box 2. Short-range versus long-range correlations

In physical systems, events occurring nearby in time or space are
often similar to each other, and such similarities typically fall off as
distance increases. Physicists use the correlation function to express
the effect of distance on similarity, and the observed shape of this
function constitutes evidence about the type of system being
observed.

To illustrate we use a characterization of the Ising model [77].
Imagine a 2D grid of lights of varying brightness (from off to
maximum), where brightness is a function of two variables. One is a
random noise factor (individual to each light) and the other is a
neighbor conformity factor whereby each light tends towards the
brightness of its four nearest neighbors on the grid. These two
variables are weighted together to determine the brightness of each
light. In this illustration, the correlation function measures the degree
to which lights have equal brightness levels as a function of their
distance apart on the grid. If noise is heavily weighted, then

brightness levels are independent across lights and the correlation
function will be near zero for all distances >0. If instead neighbor
conformity is heavily weighted, then brightness levels will be
interdependent and approach uniformity, with a correlation function
near one across a wide range of distances.
Neither extreme is typical of physical systems. Instead, component

interactions are somewhere between independent and interdepen-
dent. Weak interactions can result in short-range correlations (Figure I
green) that decay exponentially with distance. Stronger interactions
can result in long-range correlations that decay more slowly (Figure I
pink) (i.e. as an inverse power of distance). The correlation function
can also be defined for distances in time, with an analogous
comparison between weak (short-range) versus strong (long-range)
interactions. No interactions can result in uncorrelated noise (Figure I
grey), and integrating over uncorrelated noise results in a random
walk (Figure I brown).

Figure I. Four example time series are plotted in the left-hand panel: random samples from a normal distribution with zero mean and unit variance (i.e. white
noise, in grey), a running sum of white noise (i.e. brown noise, also known as a random walk, in brown), 1/f noise (i.e. pink noise, in pink) and an autoregressive
moving average (ARMA, in green), where each sampled value is a weighted sum of a noise sample, plus the previous noise value, plus the previous sampled
value. Idealized autocorrelation functions are shown in the middle panel for each of the time series, where k is distance in time. Note that white noise (i.e. pure
independence) has no correlations, ARMA has short-range correlations that decay exponentially with k, 1/f noise has long-range correlations that decay as an
inverse power of k and brown noise has correlations that decrease linearly with k. Idealized spectral density functions (where f is frequency and S( f) is spectral
power) are shown in the right-hand panel in log–log coordinates. White, pink and brown noises correspond to straight lines with slopes of 0, !1 and !2, whereas
ARMA plateaus in the lower frequencies.
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szereg czasowy                         funkcja korelacji                           widmo mocy

Kello et al, Trends in Cognitive 
Sciences, 14, p.223-232 (2010)

Szum różowy: S(f) = const× f−α

Rozkłady potęgowe 
obserwowane są dla wielu 
różnych zjawisk (rozkład 

długości czasów trwania trzęsień 
ziemi, energii wybuchu, masy 

lawin, etc...)

wtorek, 13 marca 2012
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Układy samoorganizujące się są dyssypatywne 
- charakteryzuje je pobór i straty energii

Uporządkowanie obejmuje całość układu, a 
dynamiczna zmienność jest zdeterminowana 
fluktuacjami parametrów kontrolnych

Układy  samoorganizujące się cechuje wysoki 
stopień adaptacji do warunków zewnętrznych 
i wysoka odporność na zniszczenia

wtorek, 13 marca 2012



[...]Im głębiej analizujemy naturę czasu, tym lepiej 
rozumiemy, że trwanie oznacza inwencję, tworzenie 
form, stałe doskonalenie absolutnie „nowego”...
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Czas jest iluzją...
A. Einstein

Henri Bergson 1859-1941
Nagroda Nobla 1927

Czas rzeczywisty (fizyczny) i czas 
subiektywny (durée)

[...]W naturze istnieje wielkość, która zmienia się w tym samym sensie
we wszystkich procesach naturalnych...
Byłoby absurdem twierdzić, że zasada wzrostu entropii jest wynikiem
naukowej obserwacji, niedoskonałości eksperymentalnego pomiaru...

Max Planck 1858-1947
Nagroda Nobla 1918

Niespójność? Determinizm mikroskopowych praw natury 
i kierunkowość zjawisk ewolucyjnych w przyrodzie

wtorek, 13 marca 2012



Dlaczego nie obserwujemy ewolucji 
odwróconej w czasie?

Jakie są przyczyny łamania symetrii 
odwrócenia w czasie?

•istotne różnice skal mikro i makro
•ewolucja układów dynamicznych determinowana jest nie tylko 
przez prawa mikroskopowe, ale także przez warunki 
początkowe
•nie każdy mikroskopowy stan układu będzie ewoluował 
zgodnie z zasadą wzrostu entropii, a jedynie większość spośród 
takich stanów
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Macroscopic Irreversibility: Problem and 
Resolution 

In the world about us the past is distinctly different 
from the future. Milk spills but doesn’t unspill, eggs 
splatter but do not unsplatter, waves break but do not 
unbreak, we always grow older, never younger. These 
processes all move in one direction in time − they 
are called „time-irreversible“ and define the arrow of 
time. It is therefore very surprising that the relevant 
fundamental laws of nature make no such distinction 
between the past and future. These laws permit all pro-
cesses to be run backwards in time. This leads to a great 
puzzle − if the laws of nature permit it why don‘t we 
observe the above mentioned processes run backwards? 
Why does a video of an egg splattering run backwards 
look ridiculous? Put another way: how can time-rever-
sible motions of atoms and molecules, the microscopic 
components of material systems, give rise to observed 
time-irreversible behavior of our everyday world?

In the context of Newtonian theory, the „theory 
of everything“ at the time of Thomson, Maxwell and 
Boltzmann, the problem can be formally presented as 
follows: the complete microscopic (or micro) state of a 
classical system of N particles is represented by a point 
X in its phase space Γ, 

X = (r, p, r, p, ..., rN, pN), 

ri and pi being the position and momentum (or velo-
city) of the ith particle. When the system is isolated, 
say in a box V with reflecting walls, its evolution is go-

verned by Hamiltonian dynamics with some specified 
Hamiltonian H(X) which we will assume for simplicity 
to be an even function of the momenta: no magnetic 
fields. Given H(X), the microstate X(t), at time t, 
determines the microstate X(t) at all future and past 
times t during which the system will be or was isolated: 
X(t)  = Tt–tX(t). Let X(t) and X(t + τ), with τ posi-
tive, be two such microstates. Reversing (physically or 
mathematically) all velocities at time t + τ, we obtain 
a new microstate. If we now follow the evolution for 
another interval τ we find that the new microstate at 
time t + 2τ is just RX(t), the microstate X(t) with all 
velocities reversed: 

RX  =  (r,–p, r, – p, ..., rN, – pN). 

Hence if there is an evolution, i. e. a trajectory X(t), 
in which some property of the system, specified by a 
function f (X(t)), behaves in a certain way as t increa-
ses, then if f (X) =  f (RX) there is also a trajectory in 
which the property evolves in the time reversed direc-
tion.

Thus, for example, if the energy density or tem-
perature inside the box V gets more uniform as time 
increases, e. g. in a way described by the diffusion 
equation, then, since the energy density profile is the 
same for X and RX, there is also an evolution in which 
the density gets more nonuniform. So why is one type 
of evolution, the one consistent with an entropy in-
crease in accord with the „second law“, common and 
the other never seen? The difficulty is illustrated by the 
impossibility of time ordering of the snapshots in Fig. 1 
using solely the microscopic dynamical laws: the above 
time symmetry implies that if (a, b, c, d) is a possible 
ordering so is (d, c, b, a).

The explanation of this apparent paradox, due to 
Thomson, Maxwell and Boltzmann, as described in 
references [1−13], shows that not only is there no conflict 
between reversible microscopic laws and irreversible 
macroscopic behavior, but, as clearly pointed out by 
Boltzmann in his later writings1), there are extremely 
strong reasons to expect the latter from the former. 
These reasons involve several interrelated ingredients 
which together provide the required distinction bet-
ween microscopic and macroscopic variables and 
explain the emergence of definite time asymmetric 
behavior in the evolution of the latter despite the total 
absence of such asymmetry in the dynamics of the 
former. They are:
! the great disparity between microscopic and 
macroscopic scales,
! the fact that the events we observe in our world are 
determined not only by the microscopic dynamics, 
but also by the initial conditions of our system, which, 
if taken back far enough, inevitably lead to the initial 
conditions of our universe, and
! the fact that it is not every microscopic state of a ma-
croscopic system that will evolve in accordance with 
the entropy increase predicted by the second law, but 
only the „majority“ of such states − a majority which 
however becomes so overwhelming when the number 

1) Boltzmann‘s early 
writings on the subject 
are sometimes unclear, 
wrong, and even contra-
dictory. His later wri-
tings, however, are gene-
rally very clear and right 
on the money (even if a 
bit verbose for Maxwell‘s 
taste. [7]) The presenta-
tion here is not intended 
to be historical.

Fig. 1 How would you order this se-
quence of „snapshots“ in time? Each 
 represents a macroscopic state of a sys-
tem containing, for example a fluid with 

two „differently colored“ atoms or a solid 
in which the shading indicates the local 
temperature.

a                                                                                                b

c                                                                                                d

J. Lebowitz,  Physik Journal  6, (2007) 
41-46  (M.Planck Medaille)
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verned by Hamiltonian dynamics with some specified 
Hamiltonian H(X) which we will assume for simplicity 
to be an even function of the momenta: no magnetic 
fields. Given H(X), the microstate X(t), at time t, 
determines the microstate X(t) at all future and past 
times t during which the system will be or was isolated: 
X(t)  = Tt–tX(t). Let X(t) and X(t + τ), with τ posi-
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mathematically) all velocities at time t + τ, we obtain 
a new microstate. If we now follow the evolution for 
another interval τ we find that the new microstate at 
time t + 2τ is just RX(t), the microstate X(t) with all 
velocities reversed: 

RX  =  (r,–p, r, – p, ..., rN, – pN). 

Hence if there is an evolution, i. e. a trajectory X(t), 
in which some property of the system, specified by a 
function f (X(t)), behaves in a certain way as t increa-
ses, then if f (X) =  f (RX) there is also a trajectory in 
which the property evolves in the time reversed direc-
tion.

Thus, for example, if the energy density or tem-
perature inside the box V gets more uniform as time 
increases, e. g. in a way described by the diffusion 
equation, then, since the energy density profile is the 
same for X and RX, there is also an evolution in which 
the density gets more nonuniform. So why is one type 
of evolution, the one consistent with an entropy in-
crease in accord with the „second law“, common and 
the other never seen? The difficulty is illustrated by the 
impossibility of time ordering of the snapshots in Fig. 1 
using solely the microscopic dynamical laws: the above 
time symmetry implies that if (a, b, c, d) is a possible 
ordering so is (d, c, b, a).

The explanation of this apparent paradox, due to 
Thomson, Maxwell and Boltzmann, as described in 
references [1−13], shows that not only is there no conflict 
between reversible microscopic laws and irreversible 
macroscopic behavior, but, as clearly pointed out by 
Boltzmann in his later writings1), there are extremely 
strong reasons to expect the latter from the former. 
These reasons involve several interrelated ingredients 
which together provide the required distinction bet-
ween microscopic and macroscopic variables and 
explain the emergence of definite time asymmetric 
behavior in the evolution of the latter despite the total 
absence of such asymmetry in the dynamics of the 
former. They are:
! the great disparity between microscopic and 
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! the fact that the events we observe in our world are 
determined not only by the microscopic dynamics, 
but also by the initial conditions of our system, which, 
if taken back far enough, inevitably lead to the initial 
conditions of our universe, and
! the fact that it is not every microscopic state of a ma-
croscopic system that will evolve in accordance with 
the entropy increase predicted by the second law, but 
only the „majority“ of such states − a majority which 
however becomes so overwhelming when the number 

1) Boltzmann‘s early 
writings on the subject 
are sometimes unclear, 
wrong, and even contra-
dictory. His later wri-
tings, however, are gene-
rally very clear and right 
on the money (even if a 
bit verbose for Maxwell‘s 
taste. [7]) The presenta-
tion here is not intended 
to be historical.
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are called „time-irreversible“ and define the arrow of 
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X in its phase space Γ, 
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same for X and RX, there is also an evolution in which 
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of evolution, the one consistent with an entropy in-
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the other never seen? The difficulty is illustrated by the 
impossibility of time ordering of the snapshots in Fig. 1 
using solely the microscopic dynamical laws: the above 
time symmetry implies that if (a, b, c, d) is a possible 
ordering so is (d, c, b, a).

The explanation of this apparent paradox, due to 
Thomson, Maxwell and Boltzmann, as described in 
references [1−13], shows that not only is there no conflict 
between reversible microscopic laws and irreversible 
macroscopic behavior, but, as clearly pointed out by 
Boltzmann in his later writings1), there are extremely 
strong reasons to expect the latter from the former. 
These reasons involve several interrelated ingredients 
which together provide the required distinction bet-
ween microscopic and macroscopic variables and 
explain the emergence of definite time asymmetric 
behavior in the evolution of the latter despite the total 
absence of such asymmetry in the dynamics of the 
former. They are:
! the great disparity between microscopic and 
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! the fact that the events we observe in our world are 
determined not only by the microscopic dynamics, 
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if taken back far enough, inevitably lead to the initial 
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1) Boltzmann‘s early 
writings on the subject 
are sometimes unclear, 
wrong, and even contra-
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rally very clear and right 
on the money (even if a 
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Fig. 1 How would you order this se-
quence of „snapshots“ in time? Each 
 represents a macroscopic state of a sys-
tem containing, for example a fluid with 

two „differently colored“ atoms or a solid 
in which the shading indicates the local 
temperature.

a                                                                                                b

c                                                                                                d

wtorek, 13 marca 2012



Termodynamiczna strzałka czasu 
wyznaczana procesami dyfuzji, 
wzrastającymi korelacjami i 
pojawieniem się zachowań 
kolektywnych  w układach 
wielociałowych

Rozszerzenie teorii Poincaré: 
układy równań dynamicznych są 
niecałkowalne jeśli zawierają 
rezonanse pomiędzy rozmaitymi 
stopniami swobody

Rezonans: przejściowy stan 
metastabilny układu stwarzający 
możliwość efektywnego przekazu 
energii 

18

The persistence of memory, S. Dali (1931)

W podejściu (filozofii) Szkoły 
Brukselskiej,  kierunkowość czasu 

jest podstawowym zjawiskiem 
wynikającym z dynamiki złożonych  

układów fizycznych

wtorek, 13 marca 2012



Nurty współczesnej teorii układów złożonych (podejście 
synergetyczne) w naukach biologicznych (biologia systemów)

19
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Is the arrangement always the same, 
then?
First of all, the patterns are probabilistic, rather 
than absolute; so although a chromosome 
may have a preferred average position in a cell 
population, the location of the chromosome 
in individual cells within that population can 
vary greatly. Even the two copies of the same 
chromosome within the same nucleus often 
occupy distinct positions and have different 
immediate neighbours. 

Chromosome arrangements are also 
specific to the cell and tissue type, and can 
change during processes such as differentia-
tion and development. For example, during 

differentiation of immune T cells, mouse chro-
mosome 6 moves from an internal position to 
the nuclear periphery. 

The precise physiological relevance of 
chromosome positioning is currently unclear. 
However, its significance is hinted at by the 
fact that there is similarity in chromosome-
position patterns among cell types that share 
common developmental pathways and by 
the observation that chromosome positions 
in a given cell type are evolutionarily con-
served. For example, in human lymphocyte 
cells, chromosomes 18 and 19 tend to 
occupy a peripheral and an internal position, 
respectively — as does the corresponding 

genetic material in Old World monkeys.

Why have all this organization?
The nonrandom organization of the genome 
allows functional compartmentalization of 
the nuclear space. At the simplest level, active 
and inactive genome regions can be sepa-
rated from each other, possibly to enhance 
the efficiency of gene expression or repres-
sion. Such compartmentalization might also 
act in more subtle ways to bring co-regulated 
genes into physical proximity to coordinate 
their activities. For instance, in eukaryotes, 
the genes encoding ribosomal RNAs tend 
to cluster together in an organelle inside the 
nucleus known as the nucleolus. In addition, 
observations made in blood cells suggest that 
during differentiation co-regulated genes are 
recruited to shared regions of gene expression 
upon activation.

So, how do chromosomes find their 
place in the nucleus?
We don’t know. Chromosomes are physically 
separated during cell division, but they tend 
to settle back into similar relative positions 
in the daughter cells, and then they remain 
stable throughout most of the cell cycle. So 
there must be some molecular mechanism 
that establishes and maintains the chromo-
somes’ positions. The radial positioning of 
chromosomes has been related to either the 
chromosome gene density or the amount of 
DNA they contain, depending on cell type and 
proliferation status. But these cannot be the 
only factors involved, because the arrangement 
changes during differentiation and prolifera-
tion, when gene density and chromosome size 
remain constant.

What are the mechanisms
of chromosome positioning?
There are two fundamentally different possi-
bilities. It may be that chromosome positions 
are determined through their association 
with immobile nuclear elements — possibly 
a nuclear scaffold similar to the molecular 
structures that support and organize the cell’s 
cytoplasm. Although such anchoring may 
explain chromosome immobility and stabil-
ity during the cell cycle, it cannot account for 
nonrandom positioning unless there is some 
sort of tethering mechanism that is specific to 
each chromosome and also encodes position-
ing information.

An attractive alternative is a self-organiza-
tion model in which the position of each chro-
mosome is largely determined by the overall 
activity of all of its genes; that is, the number 
and pattern of active and silent genes on a given 
chromosome. The idea here is that the expres-
sion status of a genome region affects local 
chromatin structure, with inactive regions 
being more condensed (heterochromatin) 
and highly active ones decondensed (euchro-
matin). Depending on the degree of genome 
activity and the linear distribution of active and 

At the turn of the twentieth century, 
Carl Rabl and Theodor Boveri proposed 
that each chromosome maintains its 
individuality during the cell cycle, and 
Boveri explained this behaviour in terms 
of ‘chromosome territories’. 

The existence of chromosome territories 
was demonstrated experimentally during 
the early 1980s in pioneering microlaser 
experiments by the brothers Thomas and 
Christoph Cremer. They used a microlaser 
to induce local genome damage, and 
predicted that inflicting DNA damage 
within a small volume of the nucleus would 
yield different results depending on how 
chromosomes were arranged. If chromosomes 

occupied distinct territories (a, left panel), 
localized damage would affect only a 
small subset of chromosomes, whereas if 
the chromatin fibres of each chromosome 
were randomly distributed throughout the 
nucleus (a, right panel), many chromosomes 
would be damaged. b, Three sets (I–III) 
of hamster chromosomes after laser 
damage. Only a subset of the chromosomes 
was damaged, as indicated by the black 
grains of radioactivity most prominently 
seen on chromosomes 1 and 2. This 
demonstrates the existence of chromosome 
territories. (Panel b was reprinted with 
permission from C. Zorn et al. Exp. Cell Res. 
124, 111–119; 1979.) K.J.M. & T.M.

Box 1 | The discovery of chromosome territories
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Podsumowanie i „luźne” wątki...

20

Powszechność układów złożonych  i zjawisk samoorganizacji czasowo-
przestrzennej w różnych skalach obserwacji przyrody (od biologii po 

kosmologię..) sugeruje, że zrozumienie charakteru „praw” , mechanizmów 
odpowiedzialnych za „samoporządkowanie” i spontaniczne powstawanie 

struktur może być kluczem do spójnego opisu materii.

Czy  (nieliniowa) dynamika, przyczynowość i przypadek (fluktuacje) są 
wystarczającymi elementami tego opisu?
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[...] Przesłanie Jacquesa Monoda mówi: życie, a w szczególności człowiek jest niereligijnym cudem.
Wedlug mnie jest inaczej . Materia posiada potencjał związany z samoorganizacją, z którego właściwie nie 

zdawano sobie sprawy w czasach Monoda. Z drugiej strony, przesłanie Sartre’a i Camusa mówi, że 
wszechświat jest absurdalny. To poczucie absurdu jest naturalne we wszechświecie, w którym człowiek jest 

oderwany od otaczającej go przyrody. Walczyłem z tymi poglądami wykazując, że istnieje pewna 
racjonalność, ale że zawiera ona niepewność i strzałkę czasu...

                                                                                       I. Prigogine
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(wywiad z E.Lévy, Le Point, 18.01,2002)
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Dziękuję za uwagę

Plus ratio quam vis
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