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The energy of a finite system thermally connected to a thermal reservoir may fluctuate, while the
temperature is a constant representing a thermodynamic property of the reservoir. The finite system
can also be used as a thermometer for the reservoir. From such a perspective, the temperature has
an uncertainty, which can be treated within the framework of estimation theory. We review the main
results of this theory and clarify some controversial issues regarding temperature fluctuations. We
also offer a simple example of a thermometer with a small number of particles. We discuss the
relevance of the total observation time, which must be much longer than the decorrelation time.
© 2011 American Association of Physics Teachers.
�DOI: 10.1119/1.3563046�
I. INTRODUCTION

In equilibrium thermodynamics, there is a one-to-one re-
lation between the energy of a macroscopic system, which is
not at a phase transition, and its temperature. The role of the
temperature is to control the transfer of energy between the
system and other systems thermally coupled to it. Thermal
�heat� reservoirs are assumed to have infinite energy and are
characterized only by their temperature. A finite system in
thermal contact with a thermal reservoir will attain the tem-
perature of the reservoir, which is a device designed to bring
a body to a well defined temperature.

If we know the energy U of a thermodynamic system A in
equilibrium, we can adopt two perspectives.

�1� A plays the role of a thermometer and can be used to
determine the temperature T�U� of a thermal reservoir
RT with which the system is, or had been, in contact.

�2� A performs the role of a thermal reservoir and can be
used to assign the same temperature T�U� to all its sub-
systems. We may assume that A has been brought into
contact with an appropriate reservoir to acquire the given
U and T and then isolated, thus keeping its subsystems in
equilibrium at the temperature T.

The microscopic aspects of statistical mechanics alter
these perspectives by introducing fluctuations of physical
quantities in equilibrium so that a finite system in equilib-
rium with a thermal reservoir at temperature T does not have
a well defined energy, but a well definite distribution of en-
ergy P�E ,T� and a well defined average energy �E�=U�T�.
The temperature of the reservoir becomes the parameter that
controls the distribution of the energy of the finite system.

Energy fluctuations are practically unobservable for mac-
roscopic bodies. However, if systems of all sizes are consid-
ered, there is a conceptual problem with respect to these
perspectives. If contact with the reservoir at temperature T
does not guarantee a unique energy of a system, but can
determine only a distribution of energies for system, then if
the isolated system A has a given energy, how can we be
sure that A was in contact with reservoir RT and not with
reservoir RT�, with T��T? To what extent can we assume
that A and its subsystems are in equilibrium at temperature T

and not at temperature T�?
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In statistical mechanics the �almost� one-to-one relation
between U and T is recovered for macroscopic bodies be-
cause of the relative smallness of the energy fluctuations.
However, the problem of assigning a temperature to a given
energy is relevant for nonmacroscopic bodies.

Our understanding of temperature fluctuations has a long
history. Einstein showed that the statistical properties of
macroscopic variables can be determined in terms of quanti-
ties computed in thermodynamic equilibrium. In Sec. II we
review the basic concepts of the Einstein approach. Tempera-
ture fluctuations have a special status in fluctuation theory.
The Einstein theory yields formal expressions for ���T�2�.
Some authors suggest that temperature and energy are
complementary, similar to position and momentum in quan-
tum mechanics.1 In contrast, others have stressed the contra-
dictory nature of the concept of temperature fluctuations:2 in
the canonical ensemble, which describes contact with a ther-
mal reservoir, the temperature is a parameter, so it cannot
fluctuate. For a discussion of temperature fluctuations, see
Refs. 3 and 4.

Mandelbrot5 has shown that the problem of assigning the
temperature of the thermal reservoir, to which a system had
been in thermal contact, can receive a satisfactory answer
within the framework of estimation theory. This analysis
shows that as a system becomes smaller, the second perspec-
tive gradually loses its meaning �a small system cannot be
considered as a thermal reservoir�, and the first perspective
maintains its validity, because a small system can be used as
a thermometer by repeating the measurement of its energy a
suitable number of times.

In the usual course on statistical physics, the theory of
fluctuations is explained using the energy or number of par-
ticles. Students might gain the impression that the same ap-
proach can be applied to other quantities such as the tem-
perature. This issue is controversial because temperature is
usually a parameter and not a fluctuating quantity. With the
advent of small systems such as nanosystems and biomol-
ecules, a fluctuating temperature is often discussed in re-
search.

Our paper is an effort to explain the possible pitfalls of
generalizing fluctuation theory to the wrong quantities, as
well as to illustrate a meaningful way of introducing tem-

perature fluctuations. We first briefly review the contribution
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by Mandelbrot5 to understanding temperature fluctuations.
We will also discuss a model thermometer, which allows for
a detailed understanding of the problem. We will see that,
even in a system with few degrees of freedom, the tempera-
ture due to contact with a thermal reservoir is a well defined
quantity that can be determined to arbitrary accuracy if
enough measurements are made. However, the observation
time must be much longer than the decorrelation time of the
underlying dynamics so that the number of independent mea-
surements is sufficient.

The paper is organized as follows. In Sec. II we review the
Einstein theory of fluctuations and discuss the origin of the
problem. Section III is devoted to a discussion on the relation
between statistics and fluctuations �uncertainty� of the tem-
perature. In Sec. IV we present a model for a thermometer
and illustrate a practical way to determine the temperature. In
such a model, as well as for any thermometer, we have an
indirect measurement of T, which is a statistical estimator,
obtained by successive measurements of an observable.

II. REVIEW OF THE EINSTEIN THEORY
OF FLUCTUATIONS

For consistency we briefly recall the Einstein theory of
fluctuations,6 focusing on the issue of temperature fluctua-
tions.

Assume that the macroscopic state of a system is de-
scribed by n variables, �1 , . . . ,�n, which depend on the mi-
croscopic state X :� j =gj�X�, j=1, . . . ,n. Denote by P the
parameters that determine the probability distribution func-
tion of the microscopic state X. For example, in the canoni-
cal ensemble Pc= �T ,V ,N�, and in the microcanonical en-
semble Pm= �E ,V ,N�. The probability distribution function
of �� j� is given by

P��1, . . . ,�n� =	 ��X,P�

j=1

n

��� j − gj�X��dX , �1�

where ��X ,P� is the probability distribution function of X in
the ensemble with parameters P. In the canonical ensemble
we have

P��1, . . . ,�n� = e−��F��1,. . .,�n�Pc�−F�Pc��, �2�

where �=1 /kBT, kB is Boltzmann’s constant, F�Pc� is the
free energy of the system with parameters Pc, and
F��1 , . . . ,�n �Pc� is the free energy of the system with pa-
rameters Pc and macroscopic variables �1 , . . . ,�n:

F��1,�2, . . . ,�n�Pc�

= − kBT ln	 

j=1

n

��� j − gj�X��e−�H�X�dX . �3�

In the microcanonical ensemble we have

P��1, . . . ,�n� = e�S��1,. . .,�n�Pm�−S�Pm��/kB � e�S��1,. . .,�n�/kB,

�4�

which is the Boltzmann–Einstein principle, where S is the
entropy.6

For macroscopic systems it is natural to assume that the
fluctuations with respect to thermodynamic equilibrium are

small. Therefore, we can expand �S��1 ,�2 , . . . ,�n� in a Tay-
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lor series about the mean values �� j�, which coincide with
their values in thermodynamic equilibrium �� j

��,

�S��1, . . . ,�n�  −
1

2�
i,j

��iAij�� j , �5�

where �� j =� j −� j
�, and

Aij = − � �2S

�� j � �i
�

��

. �6�

Therefore, small fluctuations are described by a multivariate
Gaussian probability distribution function,

P��1, . . . ,�n� � det A

�2�kB�nexp�−
1

2kB
�
i,j

��iAij�� j�
�7�

and

���i�� j� = kB�A−1�ij . �8�

The entries of the matrix Aij are calculated at equilibrium.
The matrix A must be positive �that is, all its eigenvalues
must be strictly positive�, which means that the difference of
the entropy with respect to equilibrium must be negative.
The well known expression for the energy fluctuations,

��E − �E��2� = kBT2CV, �9�

where CV=��E� /�T is the heat capacity at constant volume,
is a special case of Eq. �8�.

The Einstein theory of fluctuations holds for large sys-
tems. If the number of particles is not very large, we must
take into account suitable corrections and a more careful
analysis is necessary.7

The Aij are functions of quantities evaluated at thermody-
namic equilibrium, so that we can write �S as a function of
different variables. For instance, we can express S as func-
tion of T and V,6

�S = −
CV

2T2 ��T�2 +
1

2T
� �P

�V
�

T

��V�2. �10�

By using Eqs. �4� or �8�, we obtain

���T�2� =
kBT2

CV
. �11�

Equation �10� is correct if we consider S as a state function.
In contrast, Eq. �11� follows from Eq. �4� with �S related to
the probability distribution function of fluctuating quantities,
and hence the derivation of Eq. �11� is formal �in the sense of
the mere manipulation of symbols� and its meaning is not
clear. Note that in Eq. �10�, �T=���E /�S�.

For a system whose energy fluctuates about the value �E�
�such that, �E /�S �E=�E�=T, where T is the temperature of the

thermal reservoir�, we can think of T̂��E /�S �E as the tem-

perature T̂�T of this system, if it has been found with en-

ergy E� �E�. However, we can also think of T̂ as the best
guess for T if the energy E has been measured. It is tempting
to say that because temperature is proportional to the mean
kinetic energy, its fluctuations are proportional to fluctuations
of the kinetic energy. This point is a delicate one, which will

be considered in Sec. V.
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If we assume Eq. �11� and use Eq. �9�, we have

���T�2����E�2� = kB
2T4 or �����2����E�2� = 1. �12�

Equation �12� can be interpreted as a “thermodynamic uncer-
tainty relation” formally similar to the Heisenberg principle.
Some authors discuss a “thermodynamic complementarity”
where energy and � play the role of conjugate variables1 �see
Sec. III D�.

Other authors, such as Kittel,2,8 claim that the concept of
temperature fluctuations is misleading. The argument is
simple: temperature is just a parameter of the canonical en-
semble, which describes the statistics of the system, and,
therefore, it is fixed by definition.

Some authors wonder about the meaning of the concept of
temperature in small systems.9 For instance, Feshbach10 con-
sidered that for an isolated nucleus consisting of N=O�102�
nucleons �neutrons and protons�, we expect from Eq. �11� a
non-negligible value of �T /T. However, from experimental
data we observe �in Feshbach’s words� that the empirical
parameter to be identified with � “does not have such a large
uncertainty.” McFee11 wrote that “The average temperature
of a small system of constant specific heat connected to a
thermal reservoir turns out to be different from that of the
reservoir,” and considered the fluctuations of ��E�
=�S�E� /�E. Because such a quantity is a function of energy,
its fluctuations are well defined and can be studied. He found

�����2� =
���E�2�
CV

2kB
2T4 , �13�

which is equivalent to Eq. �12�.

III. STATISTICS AND STATISTICAL MECHANICS

In this section we illustrate the approach of Mandelbrot5 to
statistical mechanics and review some basic concepts of sta-
tistics.

A. Thermal reservoirs

A thermal reservoir is a system with very large �practically
infinite� energy, such that a system with finite energy which
is put in thermal contact with the reservoir comes to equilib-
rium at the temperature T of the reservoir. In thermodynam-
ics we consider only macroscopic bodies, which are those
that have a well defined macroscopic energy by being in
thermal equilibrium with a reservoir. Even in a purely phe-
nomenological context, we can discuss the fluctuations of the
energy of a generic system in thermal equilibrium.5,12 How-
ever, in statistical mechanics we can also consider systems
with a few degrees of freedom, and therefore the fluctuations
of the energy can be significant. The distribution of the en-
ergy E of a system that is in equilibrium with a thermal
reservoir of temperature T is given by the Boltzmann–Gibbs
density function,

P�E,T� =
G�E�exp�− E/kBT�

Z�T�
, �14�

where G�E� is the density of states and Z�T� is the partition
function.

When a system is in equilibrium with a thermal reservoir,
we have two mutually exclusive situations: either we know
the temperature of the reservoir and can describe the energy

distribution of the system or we do not know the temperature
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of the reservoir and can determine it from the energy distri-
bution of the system. The latter situation is called the inverse
problem. For the inverse problem we can use the tools of
estimation theory, which makes it possible to use the avail-
able data �in this case a series of energy values� to evaluate
an unknown parameter �in this case T�.

If we assume that the equilibrium properties of an isolated
system, whether it has been isolated from a thermal reservoir
or not, are described by the microcanonical probability den-
sity, an answer to the inverse problem is also an answer to
the question: is it possible to assign a temperature to an
isolated system with a given energy? The origin and the im-
portance of the question reside in the following consider-
ations. For an isolated system composed of N noninteracting
subsystems, we can calculate average values of observables
by means of the probability density,

1

G0�E�
g�u1� ¯ g�uN−1�g�uN = E − �

1

N−1

ui� , �15�

where ui is the energy of subsystem i, E=�1
Nui is the energy

of the system, and g�u� is the energy density of a single
subsystem, so that

G0�E� =	 g�u1� ¯ g�uN����
1

N

ui − E�du1 ¯ duN. �16�

Such calculations are usually very difficult. However, for
systems with a large number of subsystems,13 we can ap-
proximate the probability density by a product of factors
from the canonical ensemble,



i

g�ui�exp�− ui/kT̃�

Zi�T̃�
, �17�

where T̃ is the temperature associated with the variable E.
We have replaced nonindependent variables by independent
ones and have replaced E, the energy of the isolated system
�and the parameter of the original distribution�, by the com-
mon temperature �and the parameter of the approximate dis-
tributions� of its subsystems in thermal equilibrium. Note
that this question must be posed in statistical mechanics,
while in thermodynamics the functional relation between en-
ergy and temperature is an equation of state and does not call
for a microscopic explanation.

B. Estimation theory

We recall here a few basic concepts from estimation
theory.14,15 Consider a probability density function f�x ,�� of
the variable x, which depends on the parameter �, together
with a sample of n independent events �x1 , . . . ,xn�, governed
by the probability density f , so that the probability density of
the sample is

L�x1, . . . ,xn,�� = f�x1,�� ¯ f�xn,�� . �18�

We would like to estimate the unknown parameter � from
the values �xi�. For this purpose we have to define a suitable

function of n variables, �̂�x1 , . . . ,xn�, to obtain the estimate

of � from the available information. The quantity �̂ is, by
construction, a random variable. We can calculate, for in-

ˆ
stance, its expected value and its variance. We assume that �

779Falcioni et al.

icense or copyright; see http://ajp.aapt.org/authors/copyright_permission



is an unbiased estimate of �, that is, ��̂�=�. It is clear that
the usefulness of an estimating function is tightly linked to
its variance.

Once the function �̂�x1 , . . . ,xn� has been introduced, each
sample �x1 , . . . ,xn� can also be specified by giving the value

of �̂ for the particular sample and the values of n−1 other
variables ��� that are necessary to specify the point on a

surface of constant �̂. In other words, a change of variables

�x1 , . . . ,xn�→ ��̂ ,�1 , . . . ,�n−1� can be made, so that the prob-
ability of a sample may be written as

L�x1, . . . ,xn�dx1 ¯ dxn

= F��̂,��h��1, . . . ,�n−1��̂,��d�̂d�1 ¯ d�n−1, �19�

where F��̂ ,�� is the density of the variable �̂ �depending on

�� and h���i� � �̂ ,�� is the density of the variables ��i�, con-

ditioned by the value of �̂ and, in general, depending on the
parameter �.

Given certain general conditions of regularity, we can ob-
tain the Cramér–Rao inequality14 for unbiased estimators,

	 ��̂ − ��2F��̂�d�̂ � �n	 � �

��
ln f�x,���2

f�x,��dx�−1

,

�20�

where the denominator on the right hand side of Eq. �20� is
known as the Fisher information,14 which gives a measure of
the maximum amount of information we can extract from the
data about the parameter to be estimated. This inequality puts
a limit on the ability of making estimates and also suggests
that the estimator should be chosen by minimizing the in-

equality. When the variance of �̂ is the theoretical minimum,

the result �̂ is an “efficient estimate.”14 We have followed the
convention of distinguishing between an efficient estimate,
which has minimum variance for finite n, and an asymptoti-
cally efficient estimate, which has minimum variance in the
limit n→�.

Starting from the probability of a given sample, Eq. �18�,
the method of maximum likelihood estimates the parameter
� as one that maximizes the probability, or is a solution of
the equation

�

��
ln L�x1, . . . ,xn,�� = 0. �21�

Under certain general conditions on some derivatives of
f�x ,�� with respect to �,14 Eq. �21� has a solution that con-
verges to � as n→�. The solution is asymptotically Gauss-
ian and is an asymptotically efficient estimate of �. In other

words, there exists a random variable �̂�x1 , . . . ,xn� which is a
solution of Eq. �21�, such that a maximum likelihood estima-
tor of � is obtained, whose probability density in the limit
n→� approaches a normal probability density centered
about � with variance

n � �
ln f�x,���2

f�x,��dx
−1

. �22�
� 	
��

�
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C. Thermal reservoirs again

We now return to a system in equilibrium with a reservoir
of unknown temperature on which we have performed a
measurement of energy: the system considered in this section
is a gas of N classical particles. For simplicity, we begin by
considering measurements of the energy u of a single par-
ticle, whose probability distribution we write as

P�u,�� =
g�u�exp�− �u�

Z���
, �23�

where the parameter � is 1 /kBT and the density of single
particle states g�u� is assumed to be known. Suppose that we
have measured n independent values of particle energy
�u1 , . . . ,un�. We can write

P�u1, . . . ,un,�� =
g�u1�exp�− �u1�

Z���
¯

g�un�exp�− �un�
Z���

�24�

or

P�u1, . . . ,un,�� =
g�u1� ¯ g�un�

G0�U�
G0�U�exp�− �U�

Zn���
�25�

�h�u1, . . . ,un−1�U�P�U,�� , �26�

where U=�1
nui and G0�U� is defined as in Eq. �16� with N

replaced by n; note that in this section, U has a different
meaning with respect to the introduction. Because P�U ,�� is
the probability density of measuring a total energy U in n
independent single particle energy measurements, we see
that h�u1 , . . . ,un−1 �U�, which is the conditional distribution
of the energy in the sample given the total measured energy,
does not depend on �. We conclude that good estimators of �
can be constructed as a function of the sum of the measured
energies.

One possible choice of an estimator is the maximum like-

lihood estimator for which the value of �̂ is determined by

−
�

��
ln Zn�����̂ = �

1

n

ui. �27�

Equation �27� establishes a one-to-one relation between �̂

and �iui. For large n, the values of �̂ extracted from Eq. �27�
are normally distributed around the true value �, with the
variance

�n	 �u − �u��2P�u,��du�−1

=
1

n	u
2 , �28�

where

�u� =	 uP�u,��du , �29�

and 	u
2 is the variance of the single-particle energy calculated

with the true �.
For instance, if the density of states is g�u�
u�, then from
Eq. �A2� the maximum likelihood estimate is
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�̂MLE =
n�� + 1�

U
, �30�

which is not an unbiased estimate because as shown in Ap-
pendix �see Eqs. �A8� and �A9��,

��̂MLE� = ��1 +
1

n�� + 1� − 1
� � � . �31�

As Eq. �31� shows, the maximum likelihood estimator is
asymptotically unbiased and, from general theorems on
maximum likelihood estimator �see the end of Sec. III B and
Eq. �28��, we know that, because 	u

2= ��+1��−2, we have for
large n

	
�̂MLE

2 �
�2

n�� + 1�
�32�

or

	�̂

�
�

1
�n�� + 1�

. �33�

Therefore, we can obtain an estimate of the parameter � as
accurate as we want by using a sufficiently large sample.

Another estimator for � is given by the random variable

�̂G =
�

�U
ln G0�U� , �34�

where G0�U� is defined in Eq. �16� with N replaced by n.
Unlike the maximum likelihood estimator, the right hand
side of Eq. �34� is an unbiased estimator of � for any n, but
like the maximum likelihood estimator, it is not an efficient
estimator for finite n.

For instance, with the density of states given as before, the
estimate is �see Eq. �A5� and the following discussion�

�̂G =
n�� + 1� − 1

U
, �35�

with the variance

	
�̂G

2
= �2� 1

n�� + 1� − 2
� �

1

n	u
2 . �36�

For this particular density of states, Eq. �36� also shows that

�̂G becomes asymptotically efficient because it attains the
Cramér–Rao lower bound in the limit n→�. This behavior
is more general: we can demonstrate that for certain regular-
ity conditions, these two estimators are asymptotically
equivalent.16,17

An important point of the preceding discussion is that, due
to the exponential form of the canonical ensemble probabil-
ity density, all of the information about � is contained in the
total energy of an isolated sample. We gain nothing by know-
ing the distribution of this energy among the n elements of
the sample. We say that U=�1

nui is sufficient for estimating
�. Therefore, we may also argue as follows.

Instead of n measurements of the molecular energy, we
make one measurement of the energy E on the macroscopic
system with density P�E ,��=G�E�exp�−�E� /ZN���. G�E� is
the density of states of the entire system, which reduces to
G0�E� for systems made of noninteracting components. The

Cramér–Rao inequality becomes
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	 ��̂ − ��2F��̂�d�̂ �
1

	E
2 , �37�

where 	E
2 is the variance of the canonical energy of the mac-

roscopic body.
For an ideal gas of N identical particles, 	E

2 =N	u
2, and Eq.

�37� becomes 	
�̂

2
�1 /N	u

2. With regard to the determination

of �, a single value of the macroscopic energy contains the
same information as N microscopic measurements.

We know that a nonideal gas of N identical particles with
short-range interparticle interactions behaves �if not at a
phase transition� as if it were composed of a large number,
Neff
N, of �almost� independent components, and 	E

2

�Neff	c
2, where 	c

2 is the variance of one component. For
instance, consider a system of N particles in a volume V with
a correlation length �= �cV /N�1/3, where c1 indicates
strong correlations. We have Neff�V /�3=c−1N. Thus, even if
n=1 in Eq. �37�, that is, we perform a single measurement of
energy, the variance of E, which is the energy of a macro-

scopic system, is extensive and the variance of �̂ may be
small. We have 	

�̂

2
�1 /Neff	c

2, with Neff
N1. By looking

at E as the result of Neff elementary energy observations, our
preceding considerations can be applied here with Neff play-
ing the role of n. In particular, the asymptotic properties for
large Neff of the two estimators are preserved, and the esti-
mates of � obtained by the two expressions

−
�

��
ln ZN�����̂MLE

= E �38a�

and

�̂G =
�

�E
ln G�E� �38b�

approach the same value for Neff1, a condition that is veri-
fied for macroscopic bodies. Therefore, for a macroscopic
system, we can obtain a good estimate of � even with a
single measurement of its energy, and we can assign a reli-
able value of � to an isolated macroscopic system.

We have given an estimation theory justification of the
standard definition of the temperature in statistical mechanics
either in the canonical or microcanonical ensemble by means
of Eqs. �38�.

D. Uncertainty relations in statistical mechanics?

From our discussion we see that the fluctuations of the

random variables �̂MLE and �̂G when n1 are approximately
Gaussian with a variance 1 / �n	u

2�. The fluctuations of the
total energy of the sample U=�1

nui also become Gaussian
�by the central limit theorem� with variance n	u

2. Therefore,
in this limit, we have 	

�̂

2
	U

2 =1. Is there a deeper meaning?

As can be seen, for instance, for g�u�
u�, from Eqs. �30�
and �35�, �̂MLE and �̂G are functions of U /n, and therefore,
from 	U

2 
n, 	
�̂

2

	U

2 /n2�1 /n.
Although the Cramér–Rao inequality, Eq. �37�, is formally

similar to Eq. �12�, which was obtained in the framework of

Einstein’s theory, the analogy is inexact and misleading. In
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mathematical statistics the quantity 	
�̂

2
measures the uncer-

tainty in the determination of the value of � and not the
fluctuations of its values.

IV. MODEL THERMOMETER

To illustrate the ideas we have discussed, we introduce the
following mechanical model for a thermometer. A box is
filled with N noninteracting particles of mass m. On the top
of the box there is a piston of mass M which can move
without friction in the x̂ direction. Although the box is three-
dimensional, only the motion in the x̂ direction is relevant
because we assume that the particles interact only with the
piston. The other directions are decoupled from x̂, indepen-
dently of their boundary conditions. The one-dimensional
Hamiltonian of the system is

H = �
i=1

N
pi

2

2m
+

PM
2

2M
+ FX , �39�

where X is the position along the x̂ axis of the piston, and the
positions of the particles xi along the same axis are con-

0 0.5 1 1.5 2

X
0

1

2

3

4
P(

X
)

N=30 M=60 (a)

N=5 M=10

0 2 4 6 8

X
0

0.5

1

P(
X

)

N=5 M=2.5

(b)
N=30 M=15

Fig. 1. �Color online� The probability distribution function of the position X
of the piston obtained by numerical simulations with F=10 and T=1 �dots�
for different values of N and M. �a� N=30 and N=5 with M =2N. �b� N
=30 with M =N /2. The black lines show the analytical result from Eq. �42�.
Each simulation has been performed up to a time such that each particle
collided with the piston at least 105 times.
strained to be between 0 and X. A force F acts on the piston,
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and in addition, there are elastic collisions of the gas par-
ticles with the piston. The particles exchange energy with a
thermostat at temperature T placed on the bottom of the box
at x=0. When a particle collides with the ground, it acquires
a speed v with probability density,18

P�v� =
m

kBT
ve−mv2/2kBT. �40�

In the following we set kB=1, which is equivalent to mea-
suring the temperature in units of 1 /kB.

The statistical mechanics of the system can be obtained in
the canonical ensemble. The probability distribution function
for the positions of the particles is

P�x1, . . . ,xN,X� = cN

i=1

N

��X − xi�e−�FX, �41�

where cN= ��F�N+1 /��N+1�= ��F�N+1 /N!. We integrate over
the positions of the particles and obtain

P�X� =
1

N!
��F�N+1XNe−�FX. �42�

The mean value �X� is

�X� =
�N + 1�T

F
. �43�

The probability distribution function for X obtained by nu-
merical simulations of the system is in agreement with Eq.
�42� even for small values of N, as can be seen in Fig. 1.

In the following we will estimate the temperature from a
single �long� time series of the simulations of the piston po-
sition. This procedure is common both in numerical and in
real experiments. Therefore, it is necessary to consider the
dynamical statistical properties of our system. For N1 and
M /m1, we expect that the variable �X�X− �X� is de-
scribed by a stochastic process.19 Figure 2 shows the typical
behavior of �X�t� for different values of N. For our purposes
�in particular, for N not too large� it is not necessary to per-

0 20 40 60 80 100

t
-3

-2

-1

0

1

2

3

δX
(t

)

N=5
N=50
N=200

Fig. 2. �Color online� Time series of the displacement of the piston from its
mean value for different values of N. The other parameters are M =10, F
=10, T=1, and m=1. One can see that, although the qualitative behavior
does not change with N, the amplitude of fluctuations decreases with N.
form an accurate analysis.
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We now discuss a measurement of the temperature with its
uncertainty, regardless of the number of degrees of freedom.
We assume that only the macroscopic degree of freedom, the
position of the piston, is experimentally accessible. We want
to determine the temperature and its uncertainty by a series
of measurements. From Eq. �43� the temperature can be es-
timated as

T̂ =
FX̂

N + 1
, �44�

where X̂ is an estimate of the average piston position. As-
sume that we have N independent measurements
X�1� , . . . ,X�N�. Because of the peculiar shape of probability
distribution function �42� �it is an infinitely divisible

distribution20�, we have that the variable X̂N= �X�1�+ . . .
+X�N�� /N has a probability distribution function of the same
shape, where N is replaced by NN in Eq. �42�. The variance

of X̂N is 	
X̂

2 /N because the values of X are independent.

From Eq. �42� we have 	
X̂

2
= �N+1� /�2F2 �see Appendix for

the calculation of moments of distribution �42��, and, there-
fore,

	
X̂N

2
=

1

N
N + 1

�2F2 . �45�

An analysis of distribution �42� shows that the Cramér–
Rao lower bound for the estimators of T is

T2

N�N + 1�
, �46�

so that we can verify that the random variable,

T̂ =
F

N + 1� 1

N�
i

Xi� , �47�

is an unbiased and efficient estimator for every N.
We now discuss how to determine the temperature and its

uncertainty from a time series �Xi�i=1
N , where Xi=X�i�t� and

�t is the sampling time interval; N�t is the total observation
time. The procedure we will describe is also valid for non-
independent data �Xi� and depends only on the validity of Eq.
�43� and not on Eq. �42�.

The variance 	
T̂

2
of the estimator T̂, given by Eq. �46�, is of

order �1 /N, which can be non-negligible for single mea-
surements on small systems. As described in Sec. III, it can
be arbitrarily reduced by increasing the number N of mea-
surements. To clarify this point, we numerically computed
the variance 	

T̂

2
for several values of N as a function of N. In

general, the data are correlated, and a correlation time � must
be estimated numerically. The simplest way is to look at the
shape of the correlation functions of the observables of in-
terest. If �t��, the effective number of independent mea-
surements is approximately Neff=N�t /�. By plotting N	

T̂

2

versus Neff, we expect that the dependence on N disappears,
resulting in a collapse of the curves �see Fig. 3�. Note that for
large times, the uncertainty goes to zero as 1 /Neff, in agree-
ment with Eq. �46�. We will see that it is sufficient to know
the typical time scales of the process. Namely, we need to

determine the correlation functions ��X�t��X�0�� or
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��V�t��V�0��, where �V=�Ẋ. We can define a characteristic
time for X, �X, as the minimum time t, such that �CX�t��
�0.05, where

CX�t� =
��X�t��X�0��

��X2�0��
. �48�

In the same way we can introduce the characteristic time for
the velocity autocorrelation �V �see Fig. 4�.

The previous estimate of the temperature is well-posed
once we know that Eq. �43� holds. However, there are other
possibilities. For instance, we can choose to monitor the ve-
locity of the piston instead of the position and repeat the
same analysis. It is straightforward to see that the velocity is
Gaussian distributed, with variance �V2�=T /M, and only the
mass of the piston is needed for the estimate. The choice of
which estimator is more suitable is a matter of convenience.

For systems exhibiting aging and ergodicity breaking,
there are model thermometers that are very different from the

0.001 0.01 0.1 1 10 100

N
eff

0.001

0.01
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1

N
σ T2

N=5
N=30
N=70
N=200

^ ~N
eff

-1

Fig. 3. �Color online� The quantity N	
T̂

2
for different values of N is numeri-

cally calculated and plotted as function of Neff=N�t /�. For large times, the
uncertainty goes to zero as 1 /Neff. The parameters are �t=0.01, M =10, m
=1, F=10, T=1, N=5, 30, 70, and 200. It is clear that for the uncertainty of
T, the relevant quantity is Neff which depends both on N and �.
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Fig. 4. �Color online� The autocorrelation function of the position X and
velocity V of the piston for N=30, M =10, F=10, T=1, and m=1. The
estimates of the correlation times �X and �V are shown. Although the two
correlation functions CX�t� and CV�t� are different, the corresponding char-

acteristic times are of the same order.
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one proposed here and are based on the linear response of the
system and its comparison with unperturbed correlators.21,22

In this case we may have access to “effective” temperatures
related to slow, nonequilibrated, degrees of freedom, and the
problem of uncertainty becomes more complicated because
the effective temperatures may be time-dependent.21

V. CONCLUSIONS

We have considered the concept of temperature fluctua-
tions and showed that it makes sense only when associated
with uncertainties of measurement. In a molecular dynamics
computation at fixed energy, it is common practice to look at
the fluctuations of the kinetic energy that can be used to
determine the specific heat.7 Because the mean value of the
kinetic energy per particle, K, is proportional to the tempera-
ture, it might be concluded that the fluctuations of K are
related to the fluctuations of the temperature, ���K�2�

 ���T�2�. However, it is the random variable K that fluctu-
ates from sample to sample, not its mean value. Hence, in the

preceding relation we should properly write ���T̂�2� instead
of ���T�2� because we are using the random variable K as an
estimator of the temperature, which, as stressed by Kittel,2,8

is an unknown but fixed parameter. If the conceptual differ-
ence between parameters and fluctuating variables is ig-
nored, we may obtain suggestive but deceiving interpreta-
tions of results such as Eq. �12�. Estimation theory gives a
precise role to uncertainties in temperature measurements
and establishes which properties make a temperature estima-
tor better than others and leads to meaningful results such as
Eq. �20�. In this framework we can appreciate the different
uses we can make of a system, either as a reservoir or as a
thermometer. For the model system of Sec. IV, the relative
uncertainty in the temperature estimation is

�T̂

T
=
�	

T̂

2

T
=

1

�N�N + 1�
. �49�

If N1, even a single estimate, N=1, leads to a precise
value for T. The system is not only an efficient thermometer
but also can be thought of as a reservoir with a definite
temperature. In contrast, if N is small, a single measurement
can lead to a large uncertainty in the estimate of temperature,
but the uncertainty can be arbitrarily reduced by increasing
the number of measurements. The small system can be used
as a thermometer, in this case the dynamics plays a non-
negligible role, and the characteristic decorrelation time of
the relevant variables dictates the effective number of inde-
pendent measurements.

For systems with a few degrees of freedom, the uncer-
tainty in the temperature can be reduced by an adequate
amount of data, which is an answer to the problem concern-
ing � pointed out by Feshbach in Ref. 10.
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APPENDIX A: SOME USEFUL FORMULAS

To obtain Eq. �30� with g�u�=�u� �� independent of u�,
we have

Z��� = 	
0

�

g�u�exp�− �u�du = 	
0

�

�u� exp�− �u�du

�A1�

=�� 1

�
��+1

��� + 1� , �A2�

where ��z� �with z�0� is the gamma function. From Eq.
�27� we immediately find Eq. �30�.

We now derive Eqs. �31�, �35�, and �36� starting from the
power-law density of states g�u�. First, we show that for the
density

P�U,�� =
G0�U�exp�− �U�

Zn���
=

G0�U�exp�− �U�

	
0

�

G0�U�exp�− �U�dU

,

�A3�

we have G0�U�
Un��+1�−1. If we make the change of vari-
ables ui=xiU in Eq. �16�, we obtain

G0�U� = �nUn��+1�	
0

�

¯	
0

�

x1
�x2

�
¯ xn

�

�
���1

n
xi − 1�

U
dx1dx2 ¯ dxn, �A4�

where we have used the relation ��aw�=��w� /a. We make
the U dependence explicit and write

G0�U� = �nUn��+1�−1I�n,�� . �A5�

We can calculate the averages,

� 1

Uk� =
	 Un��+1�−1�1/Uk�exp�− �U�dU

	 Un��+1�−1 exp�− �U�dU

, �A6�

by means of the integrals,

	
0

�

U� exp�− �U�dU = �−��+1���� + 1� . �A7�

From Eqs. �30�, �A6�, and �A7� and the property z��z�
=��z+1�, we obtain

��̂MLE� = n�� + 1�� 1

U
� = n�� + 1��

��n�� + 1� − 1�
��n�� + 1��

�A8�

=n�� + 1��
1

n�� + 1� − 1
, �A9�

which is Eq. �31�.
From Eqs. �34� and �A5� we obtain Eq. �35� and ��̂G�
=�. From Eq. �A6� with k=2, we obtain
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� 1

U2� =
�2

�n�� + 1� − 1��n�� + 1� − 2�
. �A10�

By recalling the definition of �̂G in Eq. �35�, the fact that

	
�̂G

2
= ��̂G

2 �− ��̂G�2, and ��̂G�=�, we arrive at Eq. �36�.
With similar calculations involving the gamma function,

we arrive at Eq. �45� for the variance of the variable X̂N
= �X�1�+ ¯+X�N�� /N, that is, 	X

2 /N. If Eq. �42� gives the
distribution of X, its moments are

�Xk� =
��F�N+1

N!
	

0

�

XN+ke−�FXdX . �A11�

In terms of the variable z=�FX, we obtain

�Xk� =
1

N ! ��F�k	
0

�

zN+ke−zdz =
��N + k + 1�

N ! ��F�k

=
�N + k� . . . �N + 1�

��F�k . �A12�

Therefore, 	X
2 = �X2�− �X�2= �N+1� / ��F�2.

1J. Uffink and J. van Lith, “Thermodynamic uncertainty relations,” Found.
Phys. 29, 655–692 �1999�.

2C. Kittel, “Temperature fluctuation: An oxymoron,” Phys. Today 41�5�,
93 �1988�.

3T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A.
Lipa, “Temperature fluctuations in the canonical ensemble,” Phys. Rev.
Lett. 69, 3005–3008 �1992�.

4K. W. Kratky, “Fluctuation of thermodynamic parameters in different
ensembles,” Phys. Rev. A 31, 945–950 �1985�.

5B. B. Mandelbrot, “Temperature fluctuations: A well-defined and un-
avoidable notion,” Phys. Today 42�1�, 71–73 �1989�.

6L. D. Landau and E. M. Lifshitz, Statistical Physics: Part 1 �Butterworth-
785 Am. J. Phys., Vol. 79, No. 7, July 2011

Downloaded 08 Aug 2013 to 149.156.74.186. Redistribution subject to AAPT l
Heinemann, Oxford, 1980�.
7J. L. Lebowitz, J. K. Percus, and L. Verlet, “Ensemble dependence of
fluctuations with application to machine computations,” Phys. Rev. 153,
250–254 �1967�.

8C. Kittel, “On the nonexistence of temperature fluctuations in small sys-
tems,” Am. J. Phys. 41, 1211–1212 �1973�.

9L. Stodolsky, “Temperature fluctuations in multiparticle production,”
Phys. Rev. Lett. 75, 1044–1045 �1995�.

10H. Feshbach, “Small systems: When does thermodynamics apply?” IEEE
J. Quantum Electron. 24, 1320–1322 �1988�.

11 R. McFee, “On fluctuations of temperature in small systems,” Am. J.
Phys. 41, 230–234 �1973�.

12L. Szilard, “Über die ausdehnung der phänomenologischen thermody-
namik auf die schwankungserscheinungen,” Z. Phys. 32, 753–788 �1925�
�The Collected Works of Leo Szilard-Scientific Papers, edited by B. T.
Feld and G. W. Szilard �MIT Press, Cambridge, MA, 1972�.

13A. I. Khinchin, Mathematical Foundations of Statistical Mechanics �Do-
ver, New York, 1949�.

14H. Cramér, Mathematical Methods of Statistics �Princeton University
Press, Princeton, NJ, 1999�.

15S. M. Kay, Fundamentals of Statistical Signal Processing �Prentice Hall,
Upper Saddle River, NJ, 1993�, Vol. I.

16D. Sharma, “Asymptotic equivalence of two estimators for an exponential
family,” Ann. Stat. 1, 973–980 �1973�.

17S. Portnoy, “Asymptotic efficiency of minimum variance unbiased esti-
mators,” Ann. Stat. 5, 522–529 �1977�.

18R. Tehver, F. Toigo, J. Koplik, and J. Banavar, “Thermal walls in com-
puter simulations,” Phys. Rev. E 57, R17–R20 �1998�.

19G. William, Hoover, Time Reversibility, Computer Simulation, and Chaos
�World Scientific, Singapore, 1999�.

20B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of
Independent Random Variables, 2nd ed. �Addison-Wesley, Cambridge,
MA, 1968�.

21L. F. Cugliandolo, J. Kurchan, and L. Peliti, “Energy flow, partial equili-
bration, and effective temperatures in systems with slow dynamics,”
Phys. Rev. E 55, 3898–3914 �1997�.

22M. B. M. Umberto, A. Puglisi, L. Rondoni, and A. Vulpiani,
“Fluctuation-dissipation: Response theory in statistical physics,” Phys.
Rep. 461, 111–195 �2008�.
A simulation related to this article is available. For further information click here.
785Falcioni et al.

icense or copyright; see http://ajp.aapt.org/authors/copyright_permission

http://ftp.aip.org/epaps/am_j_phys/E-AJPIAS-79-002105/002105ajpSimulation.doc

