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Abstract The aim of this paper is to present the main

aspects of the life of Lewis Fry Richardson and his most

important scientific contributions. Of particular importance

are the seminal concepts of turbulent diffusion, turbulent

cascade and self-similar processes, which led to a profound

transformation of the way weather forecasts, turbulent

flows and, more generally, complex systems are viewed.
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Lewis Fry Richardson (1881–1953), while undeservedly

little known, had a fundamental (often posthumous) role in

twentieth-century science. Even though his name is linked

to several important results in fluid dynamics, in meteo-

rology, and in numerical analysis (let us just recall his

stability criterion for fluids, his idea of a scale-dependent

diffusion coefficient, and the algorithm that bears his name,

which is still used to integrate differential equations),

physicists and mathematicians themselves often don’t

know who he was. His originality was too often mistaken

for eccentricity, but some of the ideas and methods that he

conceived would be rediscovered only decades later. G.I.

Taylor, a great expert in fluid dynamics, wrote that Rich-

ardson ‘‘seldom thought on the same lines as his contem-

poraries and often was not understood by them’’ [5].

The last of seven children in a thriving English Quaker

family, in 1898 Richardson enrolled in Durham College of

Science, and two years later was awarded a grant to study

at King’s College in Cambridge, where he received a

diverse education: he read physics, mathematics, chemis-

try, meteorology, botany, and psychology. At the beginning

of his career he was quite uncertain about which road to

follow, but he later resolved to work in several areas, just

like the great German scientist Helmholtz, who was a

physician and then a physicist, but following a different

order. In his words, he decided ‘‘to spend the first half of

my life under the strict discipline of physics, and after-

wards to apply that training to researches on living things’’.

In addition to contributing important results to meteo-

rology, numerical analysis and fluid dynamics, Richardson

was the first to attempt a mathematical description of

conflicts, and was a pioneer in the study of self-similar

systems as well as one of the fathers of fractals.

In one of his first jobs, he worked for the Meteorological

Office; during World War I the Office was amalgamated

into the Air Ministry, and Richardson, as a Quaker and a

conscientious objector, lost the job. Nevertheless, he took

part (unarmed) in war operations, in the Friends’ Ambu-

lance Unit, on the French front. Apparently, he was a

mediocre driver but an excellent mechanic.

It was during the war that Richardson conceived his

great, visionary notion for weather forecasting: using the

fundamental equations of fluid dynamics and thermody-

namics to determine the future state of the atmosphere. At

the time, the procedure suggested by Richardson was

nearly impossible to perform, due to the lack of suitable

computing tools. All the same, he managed to outline the

problem in a correct way and also to define numerical

algorithms (still used today) to integrate differential

equations. The manuscript of the book he wrote when off

Translation by Daniele A. Gewurz.

A. Vulpiani (&)

Dipartimento di Fisica, Università degli Studi di Roma ‘‘La
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duty while on the front line, Weather Prediction by

Numerical Process, was lost during the battle of Cham-

pagne in April 1917, to be fortuitously (and fortunately for

the development of meteorology) found, months later,

under a pile of coal.

At the age of 47, Richardson got a Ph.D. in psychology.

In 1939, thanks to a small inheritance, he retired early to

devote himself to his studies in mathematical psychology:

he was one of the first to attempt a study of conflicts in

mathematical terms.

He died in his sleep on 30 September 1953. The year

after, BBC would broadcast the first TV programme of

weather forecast.

Before Richardson, in order to forecast the weather a

semi-empirical method was used, based on the idea that

several phenomena show some regularity, not so different

from what is said in the Bible: ‘‘The thing that hath been, it

is that which shall be; and that which is done is that which

shall be done: and there is no new thing under the sun’’

(Ecclesiastes, 1:9; KJV). Basically, one looks for a past state

of things ‘‘near’’ to that of the present: if it can be found at

day k, then it makes sense to assume that tomorrow the

system will be ‘‘near’’ to day k þ 1. In more formal terms,

given the series ðx1; x2; . . .; xMÞ, where xj ¼ xðjDtÞ is the

vector describing the state of the system at time jDt, we look

in the past for an analogous state, that is a vector xk with

k\M, ‘‘near enough’’ (that, is such that jxk � xM j\�,

where � denotes the desired degree of accuracy). When we

find such a vector, we ‘‘predict’’ the future at times

M þ n [ M, by simply assuming for xMþn the state xkþn.

It all seems quite easy, but it is not at all obvious that an

analogue can be found. Richardson understood that the

method could not work; there is no particular reason why a

previous analogous state should exist, or at least that we

can find it:

‘‘… the Nautical Almanac, that marvel of accurate

forecasting, is not based on the principle that astro-

nomical history repeats itself in the aggregate. It

would be safe to say that a particular disposition of

stars, planets and satellites never occurs twice. Why

then should we expect a present weather map to be

exactly represented in a catalogue of past weather?’’

[13, p. vii]

The problem of finding an analogue is strictly linked to

the Poincaré recurrence theorem: after a suitable time, a

deterministic system with a bounded phase space returns to

a state near to its initial condition. Thus an analogue is sure

to exist, but how long have we to go back to find it? The

answer, first basically understood by Boltzmann during his

heated debate with Zermelo about irreversibility, was given

by the Polish mathematician Mark Kac: the average return

time in a region A is proportional to the inverse of the

probability PðAÞ that the system is in A:

hTRi ¼
s

PðAÞ ;

where s is a characteristic time. To understand how hard it

is to observe a recurrence, and hence to find an analogue,

consider in a system of dimension D (to be precise, if the

system is dissipative, D is the fractal dimension of the

attractor) the probability PðAÞ of being in a region A that

extends in every direction by a fraction � is proportional to

�D, and so we have hTRi� ��D. If D is large (say, larger

than 10), even for not very high levels of precision (for

instance, 5 %, that is, � ¼ 0:05), the return time is so large

that in practice a recurrence is never observed (or, equiv-

alently, an analogue cannot be found).

In his attempts to forecast weather, Richardson intro-

duced several of the ideas on which modern meteorology is

based. In his book, he suggested the use of the equations

regulating the evolution of the atmosphere: given a certain

initial condition (that is, today’s weather), we can deter-

mine the future state (that is, tomorrow’s or next week’s

weather), by numerically integrating the equations.

By now, his approach looks obvious (and is indeed the

one presently used in weather forecasting): we know that

the atmosphere evolves according to the equations of

hydrodynamics (for the fields describing velocity u, density

q, pressure p, water percentage s, and temperature T) and

the thermodynamics giving the relation (equation of state)

among q, T , s, and p.

So, by knowing the present state of the atmosphere, we

can solve seven partial differential equations (three for

velocity u, and then those for q, p, s, and T) to obtain—at

least in principle—a weather forecast. Of course, these

equations cannot by solved by pen and paper, so a

numerical solution is the only option.

The basic idea is the right one, but the paradox lies in

the fact that the equations proposed by Richardson are too

accurate, and this has adverse consequences (see Appendix

1); moreover, in those times the practical obstacles were to

all intents and purposes unsurmountable. The initial con-

ditions used by Richardson consisted of a record of the

weather conditions observed in Northern Europe at 4 A.M.

on 20 May 1910 during an international balloon day. The

numerical work by Richardson was long, taxing and wea-

risome: it has been estimated that, finding the time around

his other duties, in the course of two years he worked for at

least one thousand hours, computing by hand and with

some rudimentary computing machine. The result, giving a

six-hour forecast, was quite disappointing. Richardson

correctly understood that ‘‘the scheme is complicated
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because the atmosphere is complicated’’ [13, p. xi].

Nevertheless, he was moderately optimistic in his conclu-

sive remarks: ‘‘perhaps some day in the dim future it will

be possible to advance the computations faster than the

weather advances. … But that is a dream’’ [13, p. vii].

In Richardson’s time the term ‘‘computer’’ used to refer

to the person actually doing the computations, by hand and

using the first calculators; anticipating parallel computers,

he had the idea of using several (human) calculators

simultaneously:

‘‘Imagine a large hall like a theatre … A myriad

computers are at work upon the weather of the part of

the map where each sits, but each computer attends

only to one equation or part of an equation. The work

of each region is coordinated by an official of higher

rank’’ [13, p. 219].

The realisation of Richardson’s dream had to wait until

the 1950s, with the development of three ‘‘ingredients’’, all

far from trivial (see Appendix 1):

1. finding effective equations;

2. fast numerical algorithms;

3. computers suitable for numerical calculations.

Another of Richardson’s many contributions to science is

his study of turbulent diffusion: he showed that the distance

between pairs of particles carried by a velocity field (for

instance, the wind) is a non-Gaussian variable with large

deviations from the average value. This is a key problem in

many applications, for instance the spreading of a polluting

agent in the sea, or of a cloud of dust in the atmosphere (see

Appendix 2). As a coherent pacifist, Richardson refused for

his research about diffusion to be used for war purposes.

For several years, he left the study of turbulence and is

supposed to have destroyed some of his unpublished works

to prevent military uses.

In his studies on fluid dynamics, Richardson realised

that not all natural phenomena can be described by regular

functions. For instance, he remarked that, in turbulence,

rather than a typical scenario with small variations around a

mean value and some rare fluctuation (within, say, one

standard deviation), we have long intervals of quiescence,

when the signal has a regular behaviour, close to the mean

value, alternating with short, irregular periods of activity

with huge fluctuations. With Gaussian variables, on the

contrary, such large fluctuations are not possible.

From these remarks, Richardson seriously asked himself

the (apparently nonsensical) question ‘‘Does wind have a

speed?’’ Starting from just a few empirical data, he guessed

the self-similar structure of turbulence; here is how he

summarised his insight in a verse (adapted from a satirical

one by Swift):

Big whirls have little whirls

that feed on their velocity,

and little whirls have lesser whirls

and so on to viscosity

– in the molecular sense. [13, p. 66]

The mathematical formalisation of this idea arrived in

the 1940s, thanks to Andrey Nikolaevich Kolmogorov,

who showed how, in the so-called inertial interval, the

velocity field is very ‘‘wrinkled’’, quite different from the

usual functions we are used to: the speed difference dvð‘Þ
between two points at a distance ‘ is not proportional to ‘;

rather, we have a non-analytical behaviour dvð‘Þ� ‘1=3,

with enormous speed gradients (which become infinite

when Reynolds numbers tend to infinity).

The first to ask ‘‘How long is the coast of Britain?’’ was

not Mandelbrot (who is regarded as the father of fractals),

but Richardson himself. Among the papers found after his

death, there are graphs in bilogarithmic coordinates where

he plotted, as a function of the resolution ‘, the length Lð‘Þ
of the coastline of Great Britain, of the land border of

Germany, of the Spain-Portugal border, and of the coast-

lines of Australia and South Africa. Rather than a con-

vergence to a constant value, Richardson observed a

behaviour of the form Lð‘Þ� ‘�a, where a is about zero for

the coastline of South Africa, while in the other cases it is

positive, and increases with the ‘‘wrinkleness’’ of the curve.

In modern terms, a ¼ DF � 1 (where DF is the fractal

dimension).

We are witnessing the beginning of fractal objects and

self-similar structures which, at least in some particular

cases, had already been studied between nineteenth and

twentieth centuries by Cantor, Weierstrass, Hausdorff, and

Julia. For instance, the function

f ðxÞ ¼
X1

n¼1

A�n cosð2pBn�1xÞ 0� x� 1

where A and B are integer and A\B, studied by Weierst-

rass within the theory of Fourier series, is extremely

irregular, is not differentiable, and its graph has an infinite

length, with fractal dimension (see Box C) DF ¼ 2�
ln A= ln B between 1 and 2.

Perrin was among the first to appreciate the importance

for physics of self-similar systems, that is, systems with the

property that an enlarged part looks similar to the whole

system.

‘‘Consider, for instance, one of the white flakes that

are obtained by salting a soap solution. At a distance

its contour may appear sharply defined, but as soon as

we draw nearer its sharpness disappears…. The use of

magnifying glass or microscope leaves us just as
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uncertain, for every time we increase the magnifica-

tion we find fresh irregularities appearing, and we

never succeed in getting a sharp, smooth impression,

such as that given, for example, by a steel ball.’’ [27,

p. ix]

Figure 1 shows an example of a Brownian motion: it is

clear how an enlarged part has the same properties as the

whole.

However, these studies remained on the fringe: within

mathematics, they were regarded as sophisticated con-

structions of curious monsters; within physics, as patho-

logical situations that were not representative of those

phenomena (erroneously) considered to be the important.

The person who recognised the widespread occurrence and

the importance of such behaviours in natural sciences, and

who coined the term ‘‘fractal’’ itself was Benoı̂t Man-

delbrot who, in his books, correctly acknowledges the

credit due to Richardson, who is to be considered as the

grandfather of fractals and self-similarity.

Appendix 1: Weather forecasting: from Richardson

to today

The key idea by Richardson to forecast the weather was

correct, but in order to put it in practice it was necessary to

introduce one further ingredient that he could not possibly

have known. Even using modern computers, integrating

numerically the equations of hydrodynamics is not easily

done, one of the reasons being the so-called numerical

instability, which forces us to use very small integration

steps Dt. Indeed, in the numerical treatment of partial

differential equations it is necessary to introduce a dis-

cretisation of space, by means of a grid whose intervals

measure Dx, and of time (with integration step Dt). For the

numerical algorithm to converge to the solution of the

partial differential equation, Dt and Dx cannot be assigned

arbitrary values, but have to satisfy constraints that depend

on the equation under exam and, in general, on the initial

conditions. Just to give an idea of the problem, consider the

equation (far simpler than the one used by Richardson)

ouðx; tÞ
ot

¼ �v
ouðx; tÞ

ox
ð1Þ

where v is a constant and �1\x\1. A simple, but

efficient, approximation of this equation is

unþ1
j � un

j

Dt
¼ �v

un
jþ1 � un

j�1

2Dx
ð2Þ

where un
j ¼ uðjDx; nDtÞ. In this case, in order to get sta-

bility for algorithm (1.2), ‘‘Courant condition’’ (not yet

known in Richardson’s times) has to hold:

Dt

Dx
�C ¼ 1

jvj ; ð3Þ

since the equation is linear, C does not depend on the initial

condition.

In the problem studied by Richardson the negative result

(the necessity of using a very small Dt) is not just a

mathematical detail, but has a precise physical origin. It is

a consequence of the presence in the atmosphere of phe-

nomena, such as sound waves and gravity waves, that have

very short characteristic times. Directly using the equations

of fluid dynamics and thermodynamics is not a promising

approach; so, hoping for significant progress, it is necessary

to understand which aspects of the problem have to be

taken into account and which ones can be ignored.

We have to remark that fast phenomena are not espe-

cially interesting for weather forecasting, but they influence

the slow variables, so they have to be somehow accounted

for. The way to solve the problem was found by Charney

and colleagues in the 1940s–1950s, within the Meteoro-

logical Project at the Institute for Advanced Study, in

Princeton. The project involved scientists from different

fields: mathematicians (such as the great John von Neu-

mann), experts in meteorology, engineering, and computer

science. We might say that his project marked the begin-

ning of making Richardson’s dream come true.

In this important scientific effort, a fundamental role was

played by the achievement of technological advances (such

as the construction of the first modern computer, ENIAC), of

numerical methods (algorithms for the integration of partial

differential equations), and of modelling (that is, the

development of effective equations for meteorology).

Fig. 1 An example of Brownian motion; in the inset, an enlargement

of a detail
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Charney and his colleagues noticed that the equations

originally proposed by Richardson, even though correct,

are not suitable for weather forecasting. The apparently

paradoxical reason is that they are too accurate: they also

describe high-frequency wave motions that are irrelevant

for meteorology. So it is necessary to construct effective

equations that get rid of the fast variables. The introduction

of a sifting procedure that sets the meteorologically sig-

nificant part apart from the irrelevant one has a clear

practical advantage: the numerical instabilities are less

severe, and so we can use a relatively large integration step

Dt, thus obtaining more efficient numerical computations.

In addition to the computational point of view, it is

important that the effective equations for the slow

dynamics make it possible to detect the most important

factors, which on the contrary remain hidden in the detailed

description given by the original equations. The equations

now used are called quasi-geostrophic; the simplest case is

the barotropic one, where pressure only depends on the

horizontal coordinates.

As an example of a construction of effective equations

for large-scale behaviour, consider the diffusion equation

in a single spatial dimension:

o

ot
h ¼ o

ox
Dðx; x=�Þ oh

ox

� �
ð4Þ

where in the diffusion coefficient Dðx; x=�Þ there are two

spatial scales: a scale Oð�Þ and another Oð1Þ. For instance,

we may interpret Dðx; yÞ as periodic in y with period L. The

system (1.4) describes such physical processes as heat

conduction in composite materials. We aim at finding an

effective equation that holds for longer times on scales

much larger than �, that is, an equation for the function

Hðx; tÞ obtained by ‘‘filtering’’ hðx; tÞ; in practice, we want

a moving average Hðx; tÞ ¼
R L

0
hðxþ z; tÞdz=L. Homoge-

nisation techniques (the term used in physics is multiscale)

show that:

o

ot
H ¼ o

ox
DEðxÞ oH

ox

� �
ð5Þ

where

DEðxÞ ¼ 1

1
Dðx;yÞ

D E ¼ 1

L

Z L

0

dy

Dðx; yÞ

� ��1

Appendix 2: Diffusion is not always Gaussian

In the simplest case of diffusion, where only molecular

diffusion is at work, the probability density Pðx; tÞ evolves

according to the well-known Fick’s equation (for the sake

of simplicity, we consider the one-dimensional case on an

infinite line):

o

ot
Pðx; tÞ ¼ D

o2

ox2
Pðx; tÞ ð6Þ

where D is the diffusion coefficient. If we consider initial

conditions Pðx; 0Þ centred around the origin, the asymptotic

solution is a Gaussuan curve:

Pðx; tÞ ’ 1ffiffiffiffiffiffiffiffiffiffi
4pDt
p exp� x2

4Dt
;

hence hx2ðtÞi ’ 2Dt.

Consider now the problem of relative diffusion, which

involves two particles with positions x1 and x2; in the case

where no mutual interaction is present and the probability

density of each particle evolves according to Fick’s law, it

is easy to see that for the variable ‘ ¼ x2 � x1 the proba-

bility density follows Fick’s law (2.2) with the only dif-

ference that its diffusion coefficient is doubled:

o

ot
Pð‘; tÞ ¼ 2D

o2

o‘2
Pð‘; tÞ ;

so h‘2ðtÞi ’ 4Dt.

Now let us ask a more ambitious question: we have a

patch of some substance, transported by a velocity field, and

to a first approximation let us assume that the substance is

‘‘passive’’, that is, it does not influence the velocity field.

This is not a mere theoretical problem; it has important real-

world applications. Just think of a polluting substance in the

sea or in the atmosphere: it is very important to understand

how the patch gets larger in time. This is exactly the prob-

lem of relative diffusion. Of course, Fick’s law in its simpler

form (2.2) does not hold anymore: indeed, the motion of the

two particles is influenced by the presence of the velocity

field of the fluid (air or water). Richardson, with a deeply

insightful understanding of turbulence-related transport

phenomena, proposed the following equation:

o

ot
Pð‘; tÞ ¼ o

o‘

�
Dð‘Þ o

o‘
Pð‘; tÞ

�
; ð7Þ

that is, a Fick’s law in which the diffusion coefficient

depends on the distance, in order to keep the turbulent

velocity field into account. How do we determine Dð‘Þ?
From data about diffusion in the atmosphere, he guessed

(somewhat daringly) the law Dð‘Þ� ‘4=3, from which

h‘2ðtÞi� t3.

All of this took place in the 1920s, about two decades

before the great Soviet mathematician Andrey Nikolaevich

Kolmogorov devised (in part, following Richardson’s ideas

about a turbulent cascade) the first modern theory of tur-

bulence: in this context it is easy to prove the correctness of

Richardson’s conjecture Dð‘Þ� ‘4=3. Of course, the

importance of his work does not lie in his ‘‘lucky guess’’

Dð‘Þ� ‘4=3, but in his understanding of the physical pro-

cesses leading to a diffusion equation of the form (7).
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It is not hard to find an asymptotic solution to (7):

Pð‘; tÞ� 1

t3=2
exp� CR

j‘j2=3

t
;

a function quite different from a Gaussian.

Is all of this consistent with reality? We might argue, as

suggested for instance by George Batchelor, in a different

way, by considering a Fick’s equation with a diffusion

coefficient that is constant when ‘ varies, but depends on

time; that is,

o

ot
Pð‘; tÞ ¼ DðtÞ o2

o‘2
Pð‘; tÞ

with DðtÞ� t2 (when Kolmogorov’s theory is known, this

become obvious); this way, we get, as in Richardson’s

approach, h‘2ðtÞi� t3, but with a Gaussian probability

density:

Pð‘; tÞ� 1

t3=2
exp� CB

‘2

t3
:

We therefore have two different approaches that yield the

same result regarding h‘2ðtÞi, but predict different proba-

bility densities. Now we know that Richardson’s approach

(just like Kolmogorov’s in the 1940s) cannot be completely

correct, since the velocity field is intermittent (has a mul-

tifractal structure). Only at the beginning of twenty-first

century have accurate numerical simulations shown that

Pð‘; tÞ is substantially in accordance with Richardson’s

conclusions: the presence of intermittence only introduces

small corrections.

Appendix 3: Fractals, self-similarity and large

fluctuations

Systematising the insights by Perrin and Richardson

requires new mathematical objects (fractals), which at first

sight might look like pathological monstrosities, but are on

the contrary extremely common in nature.

Consider a regular curve and let us ask how to measure

its length L. We might approximate the curve with a broken

line consisting of line segments of length ‘, and then take ‘

smaller and smaller, denoting by Nð‘Þ the number of seg-

ments. If ‘ is small enough, the length L is about Nð‘Þ‘,
hence Nð‘Þ is proportional to 1=‘. In the case of a surface,

we can ‘‘tile’’ it with Nð‘Þ small squares with side ‘; the

area A can be estimated by Nð‘Þ‘2, hence Nð‘Þ is propor-

tional to 1=‘2. Analogously, in order to fill a three-

dimensional object, we will need a number of small cubes

of side ‘ proportional to 1=‘3.

From these remarks, the idea of generalising the notion

of dimension arises: an object has a fractal dimension DF if

the number of ‘‘cubes’’ with side ‘ that are necessary to

cover the object behaves like

Nð‘Þ� 1

‘DF
:

Clearly, for a regular object the fractal dimension is just the

usual dimension. Are there objects for which the DF is not

an integer? The answer is in the affirmative. An example is

given by Koch snowflake, whose construction is outlined in

Fig. 2: take a line segment of length 1 and divide it into

three equal parts. The middle part is taken out and

substituted with two segments with the same length. Repeat

the procedure on each of the four elements we have now

obtained, then on the sixteen elements of the next gener-

ation, and so on, an infinite number of times. We get a

‘‘very angular’’ curve having fractal dimension

ln 4= ln 3 ’ 1:2618.

This is indeed a self-similar structure: looking at such a

figure under any given resolution we are not able to say the

scale we are at. The truly important fact is that this kind of

behaviour is not a mere artefact of pathological mathemat-

ical models. For instance, if we try to measure the length

Lð‘Þ of a jagged coastline (as first suggested by Richardson),

we find that it gets longer and longer the more the resolution

‘ gets smaller: we have a fractal object with DF between 1

and 2; for Koch snowflake, Lð‘Þ� ‘�ðln 4= ln 3�1Þ.
This kind of ‘‘wrinkledness’’ is very common: it appears

in the attractors of chaotic dissipative dynamic systems and

in many natural phenomena; for instance, in turbulence (as

described by Richardson in his verse about whirls con-

taining smaller whirls that in turn contain even smaller

ones and so on) and in the large-scale structure of galaxies.

Fig. 2 Scheme for the construction of Koch snowflake
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Two of the most important results in probability theory

are the law of large numbers and the central limit theorem,

which hold for independent (or weakly dependent) vari-

ables having finite variance. What happens in the case of

strongly dependent variables or with infinite variance? As

an example, consider a sequence of independent random

variables fxng, n ¼ 1; 2; . . .;N, each of which has Cauchy

probability density

pðxÞ ¼ 1

pð1þ x2Þ ;

for these variables (with infinite variance) it is possible to

prove the following property: the ‘‘average’’

YN ¼
x1 þ x2 þ � � � þ xN

N

for each N (even an arbitrarily large one) has the same

probability distribution as the single variable. We are

witnessing here a situation which is very different from that

in which the variance is finite, where by the law of large

numbers, for N !1, ðx1 þ . . .þ xNÞ=N converges,

besides zero-probability cases, to the mean value.

In the case when the central limit theorem holds, we

have that for large values of N the variable

zN ¼
x1 þ � � � þ xN � mN

r
ffiffiffiffi
N
p

has a limit distribution (the Gaussian one). If the variance

is infinite, in order to have a limit distribution we have to

consider the variable

qN ¼
x1 þ � � � þ xN � mN

CaNa

for suitable values of a and Ca, which depend on the dis-

tribution of the variables (and especially on the behaviour

of the tails); for large values of N the probability distri-

bution of qN converges to a limit function (different from

the Gaussian). For instance, in the case when for large

values of jxj the probability density is of the form

pxðxÞ�
1

x2
;

then a ¼ 1 and the limit distribution is Cauchy; clearly, if

the variance is finite we have a ¼ 1=2 and the limit dis-

tribution is Gaussian.

Nowadays, the probability distributions with power-law

tails and infinite variance are accepted as non-pathological,

and widely used in modelling several physical and financial

phenomena. It was not at all so in Richardson’s time; he

was one of the first, in his studies about armed conflicts, to

notice the non-pathological presence of this kind of prob-

ability density.

Even in the cases with a finite variance, when strong

correlation between variables at different times is present,

it is possible to get ‘‘wild fluctuations’’; an example given

by turbulence is shown in Fig. 3. We have there a non-

Gaussian probability distribution; looking at the evolution

of the variable over time, we note an alternation of long

intervals with small fluctuations around its mean value with

short, strong, intermittent departures.

Translated from the Italian by Daniele A. Gewurz.
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