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Quantum random number generators (QRNGs) can significantly improve the security of cryptographic
protocols by ensuring that generated keys cannot be predicted. However, the cost, size, and power
requirements of current Quantum random number generators have prevented them from becoming
widespread. In the meantime, the quality of the cameras integrated in mobile telephones has improved
significantly so that now they are sensitive to light at the few-photon level. We demonstrate how these can
be used to generate random numbers of a quantum origin.
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I. INTRODUCTION

The security of cryptographic protocols, both classical
and quantum, relies on the generation of high-quality
random numbers. For example, classical asymmetric key
protocols such as digital signature algorithm (DSA) [1],
RSA [2,3], and Diffie-Hellman [4], use random numbers,
tested for primality, to generate their keys. Another
example is the unconditionally secure one-time pad pro-
tocol, which needs a string of perfectly random numbers of
a length equal to that of the data to be encrypted. The main
limitation of this protocol is the requirement for key
exchange. Quantum key distribution offers a way to
generate two secure keys at distant locations, but its
implementation also requires a vast quantity of random
numbers [5].
Famously, Kerckhoffs’s principle [6] states that the

security of a cypher must reside entirely in the key. It is
therefore of particular importance that the key is secure,
which in practice requires it to be chosen at random. In the
past, weaknesses in random number generation [7] have
resulted in the breaking of a number of systems and
protocols, such as operating system security [8], commu-
nication protocols [9], digital rights management [10], and
financial systems [11].
High-quality random numbers are hard to produce; in

particular, they cannot be generated by a deterministic
algorithm such as a computer program. To ensure the
randomness and, importantly, the uniqueness of the gen-
erated bit string, a physical random number generator is
required [12,13]. Of particular interest are quantum random
number generators (QRNGs)[14], which by their nature,

produce a string that cannot be predicted, even if an attacker
has complete information on the device. QRNGs have
typically been based on specialized hardware, such as
single-photon sources and detectors [15–17] or homodyne
detection [18,19], photon-number resolving detectors
[20,21], parametric oscillators [22], or Raman scattering
[23,24]. Although not explicitly quantum, very fast
random number generators have been made using high-
performance telecom equipment [25,26]. Image sensors
have been used to generate random numbers of classical
origin by extracting information from a moving scene, e.g.,
a lava lamp, or using sensor readout noise [27], but their
performance both in terms of randomness and throughput
has been low. Here, we show how random numbers of a
quantum origin can be extracted from an illuminated image
sensor. Nowadays, cameras are integrated in many common
devices such as cell phones, tablets, and laptops.
In the first part of this paper, we describe the concept of

our system, including its various entropy sources and how
the entropy of quantum origin can be extracted. In the
second part, we characterize two different cameras for
random number generation. Finally, we present our results
and test the generated random numbers.

II. CONCEPT

Most light sources emit photons at random times. Thus,
it is impossible to perfectly define the number of photons
emitted per unit time. This quantum effect is usually called
“quantum noise” or “shot noise” and has been shown to be
a property of the light field rather than the detector [28].
Only some particular light sources, namely, amplitude-
squeezed light [29], can overcome this fundamental noise.
Besides these very specific sources, the number of photons
emitted per unit of time is governed by a Poisson
distribution. In particular, this is true for both coherent
(laser) and thermal [light-emitting diode (LED)] sources.
For a mean number of photons n̄, we obtain a standard
deviation of

ffiffiffī
n

p
. We can exploit this quantum effect to
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realize a QRNG by using a detector capable of resolving
this distribution.
As shown in Fig. 1, a detector can be modeled as a lossy

channel with a transmission probability η followed by a
photon-to-electron converter with unit efficiency. In this
model, η contains all the losses due to the optical elements
and the detector’s quantum efficiency. An analog-to-digital
converter (ADC) encodes the electron numbers into digital
values. We can define an electron-to-digital conversion
factor ζ. If ζ ≥ 1, for each possible number of electrons,
there is at last one unique corresponding digital code.
Under these conditions, we access the shot-noise statistics
of the light and can use this to generate quantum random
numbers. To complete the model of the detector, noise
needs to be added. This noise has different origins, e.g.,
thermal noise, leakage current, or readout noise. Generally,
this noise follows a normal distribution and adds linearly to
the signal, as show in Fig. 2.
At the output of the detector, we obtain a random

variable X ¼ Xq þ Xt, where Xt and Xq are independent
random variables taken from the technical noise distribu-
tion Dt and the quantum uncertainty distribution Dq,
respectively. We assume that the technical noise is com-
pletely known to an adversary (Eve). We can thus rely only
on the quantum entropy generated.
The amount of quantum entropy will correspond to the

entropy of a Poisson distribution with a mean equal to the
average number of photons absorbed, n̄, which is expressed
in bits as

HminðXqÞ ¼ −log2½max ðPqðnÞÞ� ð1Þ

¼ −log2
�
max

�
e−n̄n̄n
n!

��
ð2Þ

¼ −log2
�
e−n̄n̄⌊n̄⌋
⌊n̄⌋!

�
: ð3Þ

To collect this entropy entirely, the detector must have
ζ ≥ 1. The measured value X is encoded over b bits. The
entropy HminðXqÞ of quantum origin per bit of output will

be, on average, HminðXqÞ=b < 1. To obtain a string of
perfectly random bits, i.e., with unit quantum entropy per
bit, an extractor is required.
As detailed in Refs. [30–32], an extractor computes a

number k of high-entropy output bits yj from a number
l > k of lower-entropy input bits ri, in a similar way to
what is done in privacy amplification [33]. This can be done
by performing a vector-matrix multiplication between the
vector formed by the raw bit values ri and a random l × k
matrix M (performed modulo 2):

yj ¼
Xl

i¼1

Mjiri: ð4Þ

Note that although the elements of M are randomly
distributed, M is a pregenerated constant. For raw input
bits with entropy s per bit, the probability that the output
vector yj deviates from a perfectly random bit string is
bounded by

ϵ ¼ 2−ðsl−kÞ=2: ð5Þ

III. EXPERIMENT

Detectors able to resolve shot noise have traditionally
been complicated and bulky, e.g., homodyne detectors. In
recent years, however, image sensors such as the ones
found in digital cameras and smartphones have improved
immensely. Their readout noise is of the order of a few
electrons, and their quantum efficiencies can achieve 80%.
Besides their ability to resolve quantum noise with high

FIG. 1. A detector, or indeed each pixel of an image sensor, can
be modeled as having 100% efficiency but are preceded by a
lossy element (beam splitter) with transmission η. For each
absorbed photon, the detector generates an electron. This charge
is then converted into a voltage and amplified before being
digitized and sent to further processing, i.e., a randomness
extraction stage.

FIG. 2. Working principle and assumptions. (a) We measure a
number n of photoelectrons on an image sensor’s pixel with a
probability PðnÞ. Assuming that the detector is operating in a
linear regime, this measured distribution will be the combination
of quantum uncertainty (b) and technical noise (c). From a single
shot measurement, we cannot distinguish these two noise
components; however, we assume that, to our adversary, the
technical noise is fully deterministic.
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accuracy, image sensors are intrinsically parallel and offer
high data rates. Here, we generate quantum random
numbers, both with a commercial astronomy monochrome
CCD camera (ATIK 383L) and with a complementary
metal-oxide-semiconductor (CMOS) sensor in a mobile
phone (Nokia N9), a color camera, from which we use only
the green pixels for the purpose of this article.
The experimental setup for the random number generator

is shown in Fig. 3: A camera is illuminated by a LED, and
the raw pixel data are passed through an extractor, which
outputs random numbers that are ready to be used.
First, however, we check that the cameras comply with

the manufacturer’s specification and that the operating
conditions are appropriate for the generation of quantum
random numbers. In particular, we are interested in veri-
fying that the photon number distribution does not exceed
the region where the camera is linear and that there are
enough digital codes to represent each possible number of
absorbed photons, i.e., ζ ≥ 1.

A. Camera characterization

To characterize the two cameras, we use a well-
controlled light source based on a LED, as shown in Fig. 3.
As shown in Fig. 1, a number of photons n is absorbed by

the image sensor and converted into an equal number of
electrons. This charge is in turn converted into a voltage by
an amplifier and finally digitized. The amplifier gain (which
in the sensors used corresponds to the “ISO” setting) is set
such that each additional input electron will result in an
output voltage increase sufficient to be resolved by the
ADC. This means that each electron increases the digital
output code c by at least 1. We check that this is the case by
illuminating the cameras with a known amount of light.
Using the nominal quantum efficiency of the cameras, we
can infer n̄, andwe observe ζ ¼ c=e to be 2.3 codes/electron
for the ATIK camera and 1.9 codes/electron for the Nokia
camera, as expected from the devices’ specifications.
To evaluate the linearity of the camera sensors, we

measure the Fano factor given by F ¼ VarðcÞ=ζc. In
Fig. 4, we plot F for various illuminating intensities of
our light sensors. Both detectors have a large range of
intensities where the Fano factor is constant with a value
close to 1. In this range, the statistics are dominated by the
quantum uncertainty (shot noise). At strong illuminations,

saturation occurs; for the Nokia N9, this happens at
intensities corresponding to 450 absorbed photons per
pixel. This is due to the high amplifier gain used (ISO
3200). When saturation occurs, the Fano factor decreases,
as the output is a constant. At low illumination intensities,
we measure a Fano factor much greater than 1 due to
detector technical noise.
Image sensors such as CCD and CMOS have various

sources of noise: thermal noise, leakage current, and readout
noise. Thermal and leakage noise accumulate with integra-
tion time, so it is possible to eliminate them using short
exposure times (of the order of a millisecond). In this case,
readout noise becomes the dominant technical noise, and it
is given by the readout circuit, the amplifier, and the ADC.
In image sensors, noise is usually counted in electrons (e−).
The CCD camera and CMOS camera have noises of 10e−
and 3.3e−, respectively. Measurements of the quantum and
classical noise of these cameras are shown in Fig. 6.

B. Source characterization

Our light source is a standard LED. We check that it
illuminates the detector homogeneously, and we measure
the intensity of the emitted light with a power meter, which
allows us to calculate the mean number of photons arriving
at each pixel within the exposure time and thus verify the
camera’s efficiency. Using two single-photon detectors (ID
Quantique ID100), we measure the second-order correla-
tion function gð2Þ, which we find to be 1, as expected for a
LED and acquisition times much longer than the coherence
time of the order of around 100 fs. We also measure, using a
single-photon detector, that the number of photons emitted
within an exposure time follows a Poisson distribution, as
shown in Fig. 5.

C. Random number generation

To generate random numbers, we illuminate the cameras
so that the mean number of absorbed photons n̄ is sufficient

FIG. 3. Random number generator setup. A camera is fully and
homogeneously illuminated by a LED. The raw binary repre-
sentation of pixel values is concatenated and passed through a
randomness extractor. This extractor outputs quantum random
numbers.
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FIG. 4. Fano factor (variance/mean) of the devices employed in
this experiment. We operate in the region where the Fano factor is
1 and the detector is most linear.
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to give a quantum uncertainty σq ¼
ffiffiffī
n

p
as large as possible

while not saturating the detectors. In practice, we illuminate
the ATIK and Nokia cameras with an amount of light
sufficient to generate 1.5 × 104e− and 410e−, respectively.
From Eq. (3), it is possible to calculate that the amount of
entropy of quantum origin per pixel is 8.3 bits and 5.7 bits
for each camera, respectively, which are encoded over 16
and 10 bits, resulting in an average entropy per output bit of
0.52 for the CCD and 0.57 for the CMOS sensor. The raw
data are sent to the extractor as a bit string. When the
illumination corresponds to approximately half the maxi-
mum value represented by the digitizer, the entropy is
distributed over the output bits fairly homogeneously. For
different illuminations, the most significant bits start to
carry less entropy. We rely on the extractor to ensure that
the final output is perfectly random. Working parameters
and results are summarized in Table I.
From Eq. (5), we calculate that, using the camera in the

Nokia cell phone and an extractor with a compression
factor of 4, for example, with k ¼ 500 and l ¼ 2000, it
would take an impossible ∼2 × 1096 trials to notice a
deviation from a perfectly random bit string. If everybody
on earth used such a device constantly at 1 Gbps, it would
take 1060 times the age of the Universe for one to notice a
deviation from a perfectly random bit string.

IV. RESULTS AND TESTS

We collected 48 frames corresponding to approximately
5 Gbits of raw random numbers and processed them on a
computer through an extractor with a 2000-bit input vector
and a 500-bit output vector to generate 1.25 Gbits of
random numbers. Random number generators are notori-
ously hard to test; however, it is possible to check the
generated bit string for specific weaknesses. The first step is
to individuate potential problems of the system and then
test for them. First, we tested the generated random bit
string before extraction. At this stage, the entropy per bit is
still considerably less than unity; moreover, possible errors
could arise from dead pixels and from correlations between
pixel values given by electrical noise.
Besides increasing the mean entropy per bit, the random-

ness extractor also ensures that if some of the pixels
become damaged or covered by dust or they suffer from
any other problem, the extremely good quality of the
randomness is maintained.
A simplistic test to check that the generator does not

suffer from a problem is to check the autocorrelation of the
output bit string. We plot this in Fig. 7, showing no
correlation.
Finally, we performed the “die harder” battery of

randomness tests on both the extracted bit strings. This
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FIG. 5. Statistics of the number of photons detected by a
single-photon detector (ID Quantique ID100) in 1ms, which, as
expected for most sources, follows a Poisson distribution.

TABLE I. Experimental parameters for the two cameras
employed in this experiment.

ATIK 383L Nokia N9

Noise, σt (e−) 10 3.3
Saturation (e−) 2 × 104 500
Illumination (e−) 1.5 × 104 410
Quantum uncertainty, σq (e−) 122 20
Offset (e−) 144 −6
Output bits per pixel 16 10
Quantum entropy per pixel 8.3 bits 5.7 bits
Quantum entropy per raw bit 0.52 0.57
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FIG. 6. Measurement of the quantum and classical noise of our
ATIK (a) and Nokia (b) detectors. At the operating conditions,
quantum noise strongly dominates.
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set of tests contains the National Institute of Standards and
Technology test, the diehard tests, and some extra tests. The
RNG passed all tests; the results of the most commonly
used tests are shown in Fig. 8.
For many applications, such as the generation of

cryptographic keys or gaming, speed is not as important
as the affordability and portability given by this system.
Nevertheless, a quantum random number generator based

on an image sensor can provide very reasonable perfor-
mance in terms of speed. Consumer-grade devices acquire
data at rates between 100 Megapixels per second and 1
Gigapixel per second. After the necessary processing, each
pixel will typically provide three random bits so that
rates between 300 Mbps and 3 Gbps can be obtained.
To sustain such high data rates, processing can either be
done on a field programmable gate array (FPGA) or it
could be embedded directly on a CMOS sensor chip.
Implementing the extractor fully in the software of a
consumer device can sustain random bit rates greater than
1 Mbps, largely sufficient for most consumer applications.

V. CONCLUSION AND OUTLOOK

We demonstrate a generator of random numbers of
quantum origin using technology compatible with con-
sumer and portable electronics. We believe that the sim-
plicity and performance of this device will make the
widespread use of quantum random numbers a reality,
with an important impact on information security. We find
it exciting that, with a few tricks, quantum experiments can
now be done with consumer-grade hardware and that this
may lead to the widespread use of a quantum technology
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