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ABSTRACT [At very low Reynolds number, the regime in
which fluid dynamics is governed by Stokes equations, a helix
that translates along its axis under an external force but
without an external torque will necessarily rotate. By the
linearity of the Stokes equations, the same helix that is caused
to rotate due to an external torque will necessarily translate.
This is the physics that underlies the mechanism of f lagellar
propulsion employed by many microorganisms. Here, I exam-
ine the linear relationships between forces and torques and
translational and angular velocities of helical objects to
understand the nature of f lagellar propulsion.]

Much has been written about the fluid mechanics of the helical
f lagellum with which some microorganisms propel themselves
[the earliest studies beginning with Ludwig (3)]. Recent the-
oretical studies include papers by Chwang and Wu (4), by
Lighthill (5–7), by Garcia de la Torre and Bloomfield (8), and
by Brennen and Winet (9). Like the classic paper by Taylor
(10), these are aimed at deriving from first principles the flow
around a moving helix, calculating the associated force and
torque, and determining thereby the motion of the helix and
a large attached body. The helical f lagellum is supposed either
to rotate as a whole, like a rigid corkscrew, or to deform
continuously in a traveling helical wave, like a helical snake.
The two motions are externally indistinguishable in the limit of
vanishing thickness of the helical filament, but the latter case
calls for some mechanism inside the flagellum to drive the
wave. It has been shown that in the case of the bacterium
Escherichia coli the flagellum simply rotates, driven by a rotary
motor in or within the cell wall (11, 12). The flagellum is simply
a rather gently curving helical filament of protein. Usually a
cell has more than one flagellum. When the cell swims, its
several f lagella gather together into a helical bundle, the
rotation of which generates a thrust that pushes the cell from
the rear. Reversed rotation causes the bundle to come apart
(13) and results, not in steady motion of the cell in the opposite
direction, but in an erratic tumbling motion (14). In this note,
only the steady forward propulsion of the cell driven by the
rotating flagellar bundle will be considered.

Instead of calculating the hydrodynamic forces on a rotating
flagellum of some particular shape, I want to develop some
general relations by taking a different approach. Consider any
propulsive device which consists of some rigid object rotating
about a fixed axis. A corkscrew is only one example—the shape
need not be that of a regular helix. Let us call the object, for
short, a propeller. Indeed, an object shaped like a marine screw
propeller could be an acceptable candidate. But whatever the
shape, the rotation is to be so slow that its Reynolds number
(R) is very small. [The Reynolds number of an object of

dimension a moving with velocity v through a fluid of density
r and dynamic viscosity h is

R 5
avr

h
. [1]

This is the ratio of the inertial forces to the viscous forces.] In
bacterial propulsion R is typically 1024 or less. Inertial forces
are utterly negligible. How a similar propeller would work at
high Reynolds number is quite irrelevant. Imagine a ship in a
sea of molasses with its propeller turning at one revolution per
month (R > 1023). I know of no theorem that would enable
one to predict with certainty whether motion ahead or astern
would result.

We consider only two degrees of freedom of the isolated
propeller, rotation at angular speed v around its axis and
translation at velocity v along that axis, as shown in Fig. 1.
These motions are caused by some external force F and some
external torque N applied to the propeller by means not yet
specified. At the same time, a force 2F and a torque 2N are
exerted on the propeller by the surrounding fluid. In the low
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FIG. 1. An isolated propeller, subjected to an external force F and
an external torque N. It rotates at angular velocity v and translates at
velocity v.
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Reynolds number regime [Stokes equations govern the fluid
dynamics:

2 ¹p 1 h¹2v 5 0, [2]

where p is the pressure and there are no derivatives of time.
Therefore,] F and N must be linearly related to the v and v:

F 5 Av 1 Bv [3a]

N 5 Cv 1 Dv. [3b]

We shall call the 2 3 2 matrix SA
C

B
DDthe propulsion matrix P

of this propeller. [Hydrodynamicists call this object the resis-
tance matrix (15).] The constants A, B, C, and D are propor-
tional to the fluid viscosity h and depend otherwise only on the
shape and size of the propeller. They scale with propeller size in
this way: if every dimension of the propeller is increased by the
factor k, the new propulsion matrix P* has elements A9 5 kA;
B9 5 k2B; C9 5 k2C; and D9 5 k3D.

Of course, these constants will be somewhat modified by the
ship or cell to which we shall eventually attach the propeller
and which will be the actual source of external force and
torque. But for the present we may think of the force and
torque as applied by a thin, perfectly stiff, untwistable axial wire.
Whether such ‘‘mathematical’’ wire can be found does not
matter. Eventually, we shall be interested in the real f lagel-
lum’s stiffness. We may also use such a mathematical wire to
connect two different propellers together to form a single
propeller, as in Fig. 2. From our definition of the propulsion
matrix, it follows that the propulsion matrix of the composite
propeller is the sum of the individual matrices:

P 5 P1 1 P2. [4]

This is true if the force of the fluid on the thin wire can be
neglected, and if the two flows [elements of the propeller] are
well separated. The off-diagonal elements of P are essential for
propulsion; they couple rotation and translation. We shall now
prove that B and C must be equal if Eq. 4 is true.

We show first that B and C must have the same sign.
Consider two cases: (i) Let the propeller be pushed by an
external force F1 applied by an axial wire at speed v1. Constrain
it from rotating by a torque N1 of precisely the strength
required to make v1 5 0. [By Eqs. 3, the] force and torque are
then given by:

F1 5 Av1 [5a]

N1 5 Cv1. [5b]

In this case the external force F1 must do work because the
torque does none. Hence, with signs defined as in Fig. 1, A

must be positive. Similarly, if the propeller were rotated by an
external torque N1 with v1 constrained to be zero, work would
be done by N1, implying that D must be positive also. (ii) Now
remove the torque N1 and apply a force F2 sufficient to cause
the same linear speed v1 with the propeller free from external
torque. [In this case, the propeller will rotate with some
rotational speed v2. By Eqs. 3,

F2 5 Av1 1 Bv2 [6a]

0 5 Cv1 1 Dv2. [6b]

Therefore,]

F2 5 SA 2
BC
D Dv1. [7]

Comparing Eqs. 5a and 7:

F2

F1
5 1 2

BC
AD

. [8]

But F2 cannot be greater than F1 because the change from case
i to case ii amounted to the relaxation of a constraint—i.e., the
removal of an external torque N1 that was doing no work. The
argument can be made by invoking the minimum dissipation
theorem for inertialess f lows (16). If F2 were greater than F1,
the rotationally unconstrained system of case ii could reduce its
energy dissipation by reverting spontaneously to the kinemat-
ics of case i. We conclude that F2 # F1. [In view of Eq. 8,
BCyAD $ 0. Because A . 0 and D . 0, AD . 0; therefore,]

BC $ 0. [9]

The next step in the proof is to exhibit [a special] propeller
for which, manifestly, B 5 C. As shown in Fig. 3, it consists of
two short rods mounted obliquely at the end of stiff radial wires
of infinitesimal thickness [and of length a] attached to a stiff
axial wire likewise of infinitesimal thickness, i.e., of negligible
flow resistance. Let the rods be short compared with their
distance from the axis and let the symmetry axis of each rod
make an angle of 45° with the axial direction. It follows then
from the symmetry of the rods with respect to the orthogonal
directions, axial and circumferential, that the longitudinal
force F associated with a circumferential speed av will be the

FIG. 2. Two propellers with propulsion matrices P1 and P2 (Upper)
connected by a thin axial wire (Lower). The propulsion matrix of the
composite propeller is P1 1 P2.

FIG. 3. A special propeller with a symmetrical propulsion matrix
(B 5 C). See the text.
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same as the circumferential force Nya associated with a
longitudinal speed v. Consequently, the propulsion matrix Ps of
this special propeller must have Bs 5 Cs. By scaling this
propeller in size, we can make Bs have any desired magnitude,
and by reversing the propeller’s handedness, we can make Bs
have either sign.

Now suppose we have [a test] propeller for which Bt Þ Ct.
We could construct a special propeller with Bs 5 Cs 5 2(Bt 1
Ct)y2 and attach it in series with our [test] propeller by one of
our thin, rigid axial wires. [The propulsion matrix of the
composite propeller would be Pc 5 Ps 1 Pt] for which

BcCc 5 SBt 2
~Bt 1 Ct!

2 DSCt 2
~Bt 1 Ct!

2 D 5 2
~Bt 2 Ct!

2

4
.

[10]

[But if Bt Þ Ct, BcCc is negative,] in violation of Eq. 9. Hence,
a propeller with Bt Þ Ct cannot exist. Every propulsion matrix
must be symmetrical. We have here a reciprocity theorem
typical of a linear system. Note that it implies that a structure
like our ‘‘special’’ propeller will have Bs 5 Cs even with the rods
set at some other angle. It should perhaps be emphasized that
the extremely idealized nature of our hypothetical special
propeller and connecting hardware does not, in itself, com-
promise the rigor of the proof.

We turn now to the question of propulsion of the bacterial
cell by a rigidly rotating flagellum or flagellar bundle, assured
that the relevant properties of the propeller, at least in
isolation, are completely specified by the three independent
elements of its propulsion matrix, A, B, and D. The cell itself
is characterized by the propulsion matrix P0, which is presum-
ably diagonal, with its only nonzero elements A0 and D0. These
are given exactly by the Stokes drag relations for translation
and rotation as A0 5 6pha and D0 5 8pha3.

We now connect the propeller to the motor in the cell. We
shall assume that the proximity of the cell does not seriously
disturb the flow around the propeller. Our results would be
strictly correct if we used a long thin wire as a propeller shaft.
Because most of the flagellum is in fact relatively far from the
cell, we may hope to achieve a reasonably good approximation.

The cell, of course, must rotate continuously in a sense
opposite to the propeller rotation, there being no external
torques on the system. We denote by V the angular velocity
of the cell. Both the f lagellum and the cell must translate at
the same speed v. The torque on the cell must be equal and
opposite to the torque on the propeller; likewise, the force
on the cell must be equal and opposite to the force on the
propeller. Fig. 4 will help us to make a self-consistent
assignment of signs. The propeller shown has been arbitrarily
chosen to be a right-handed helix. The directions have been
made consistent with the fact, not predicted by this general
analysis, that a helical filament does tend to move like a
corkscrew in a cork when it is rotated. With our sign
convention, the off-diagonal elements of the propulsion

matrix of a right-handed corkscrew will then be negative: B ,
0. The motor will have to drive the propeller in the sense v ,
0 to propel the system to the right, that is with v . 0. The
external force F acting on the propeller is negative, that is,
directed toward the left. The counter rotation of the cell itself
is negative: V , 0. With due regard to these signs, equality of
action and reaction of both forces and torques at the propeller
shaft requires

A0v 5 2Av 2 Bv [11a]

D0V 5 2Bv 2 Dv. [11b]

The rotation speed of the motor itself, that is, the speed of the
‘‘rotor’’ attached to the flagellum relative to the ‘‘stator’’
attached to the cell wall, is v 2 V, which is greater in
magnitude than v. Let us call the motor speed Vm and derive
from Eqs. 11 the relation between v and Vm:

v 5 2
BD0

~A0 1 A!~D0 1 D! 2 B2 Vm. [12]

As expected, the swimming speed is proportional to Vm. The
torque N exerted by the motor on the propeller is

N 5
B2 2 D~A0 1 A!

B
v. [13]

Let us compare the power output of the motor, which is NVm,
with the least power that would be required to move the cell
at speed v by any means of propulsion whatever, namely A0v2.
The ratio of A0v2 to NVm provides a definition of the propul-
sive efficiency «. Using the relations above, we find

« 5
A0v2

NVm
5

A0D0B2

@~A0 1 A!D 2 B2#@~A0 1 A!~D0 1 D! 2 B2#
.

[14]

It will be a good approximation to drop the B2 terms in the
denominator, for it will turn out that B2 is considerably smaller
than AD in practical cases. [For B2 ,, AD, Eqs. 12 and 14 may
be well approximated by

v 5 2
BD0

~A0 1 A!~D0 1 D!
Vm, [15a]

and]

« 5
A0D0B2

~A0 1 A!2 ~D0 1 D!D
. [15b]

To the same approximation, the factor D0y(D0 1 D) is just the
ratio vyuVmu, which, to anticipate again, will be fairly close to
unity in cases of interest. That is, the counter-rotation of the
large cell is relatively slow compared with the rotational speed
of the flagellum (17). [Therefore, Eqs. 15 can further be
approximated by

v 5 2
B

A0 1 A
Vm, [16a]

and]

« 5
A0B2

~A0 1 A!2 D
. [16b]

Consider now a flagellar propeller of some particular spec-
ified shape. Suppose we are free to scale it up or down in size
by some factor k. The resulting propulsion matrix will have
elements kAp, k2Bp, and k3Dp, where Ap, Bp, and Dp refer to

FIG. 4. A propeller in the shape of a right-handed helix connected
to a spherical cell, both moving to the right at velocity v. The propeller
and cell rotate in opposite directions, at angular velocities v and V,
respectively. The external force F acting on the propeller is directed to
the left.
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some prototype of a particular size. Is there a size of propeller
that maximizes « for the propulsion of a cell of given A0? There
is, as we find by substituting into Eq. 16b:

« 5
A0Bp

2

Dp

k
~A0 1 kAp!

2. [17]

The maximum efficiency, «max, is attained when k 5 A0yAp and
has the value

«max 5
Bp

2

4ApDp
. [18]

«max depends only on the shape of the propeller itself, a rather
remarkable result. Given any propeller shape, Eq. 17 gives the
greatest efficiency attainable in propelling anything with such
a propeller, and the relation A 5 A0 tells us how to match the
propeller to the object being propelled. Incidentally, A 5 A0 is
just the condition under which the force required to drag the
cell through the fluid at speed v is equal to the force required
to drag the locked propeller through the fluid at the same
speed. [Therefore, the swimming speed of a cell driven by a
maximally efficient flagellum is

vmax 5
2 kBp

2Ap
Vm.] [19]

The fractional error in these efficiency relations incurred by
the approximations in Eqs. 15b and 16b is generally of the
order of magnitude of « itself, which, as we shall see, is not
more than a few percent. There remains, of course, the
unknown error arising from interference of the flow fields
around cell and propeller. It seems unlikely that such an effect
would increase the efficiency, so we are probably safe in
regarding Eq. 18 as an upper bound on the propulsive effi-
ciency attainable with a flagellum of a given shape. The
efficiency of a flagellar bundle of the given shape will be lower
still, owing to dissipation within the cross section of the bundle
where the fluid between adjacent filaments is necessarily
undergoing shear.

For any given shape of propeller, the elements of the
propulsion matrix A, B, and D can be determined by very
simple experiments with a model. Consider the propeller of
Fig. 5a realized in the form of a steel wire. Let this object sink
under its own weight, with its axis vertical, in a fluid of viscosity

sufficient to ensure R ,, 1. Measure the sinking speed v1 and
the speed of rotation V1:

v1 5
WD

~AD 2 B2!
[20a]

V1 5 2
WB

~AD 2 B2!
[20b]

(where W is the weight of the propeller in the fluid, of course).
Now prepare a composite propeller consisting of the propeller
of Fig. 5a joined rigidly to its mirror image. The propulsion
matrix of this ‘‘racemic’’ composite (Fig. 5b) will be diagonal,
with elements 2 A and 2D. Measure the speed v2 with which this
object sinks under its weight 2W in the same fluid,

v2 5
W
A

. [21]

It should sink without rotating. The three measurements
suffice to determine A, B, and D, through Eqs. 20 and 21. The
maximal efficiency attainable with a propeller of the given
shape, as expressed by the approximate Eq. 18, is determined
by only two measurements, those of v1 and v2:

«max 5
B2

4AD
5

v1 2 v2

4v1
. [22]

The values of A, B, and D determined from Eqs. 20 and 21
contain the viscosity of the fluid. Dividing them by 6ph will
normalize them so that the dimensions of A, B, and D are cm, cm2,
and cm3, respectively, and the radius of the spherical cell to which
the propeller would be matched for maximal efficiency is equal
to A. In other words, the radius of spherical cell for which the
model propeller is [most efficient] is that of a sphere that would
sink at speed v2 if its weight in the fluid were W.

A few propellers in the form of regular helices were tested
by the method just described. The fluid used was Dow–
Corning [silicon oil.] The results are given in Table 1.
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