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ON A NEW CLASS OF "CONTAGIOUS" DISTRIBUTIONS, APPLICABLE 
IN ENTOMOLOGY AND BACTERIOLOGY 
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1. Introduction. There are a number of fields in which experimental data 
cannot be treated with any success by means of the usual "Student's" test and- 
very probably-by means of the more general analysis of variance z-test of 
Fisher. It is known in fact [1] that the t-test, as applied to two samples, is 
only valid when the populations from which the samples are drawn have equal 
variances. As the z-test is of a nature similar to the t-test, with the difference 
that it is applied to detect differentiation in means of more than two popula- 
tions, a similar conclusion seems very likely. Thus, whenever we have to 
compare means of populations with distinctly different variances, we have to 
look for some new tests. It may be useful to mention at once two instances 
in which the situation mentioned actually arises. 

As a first instance we may quote certain entomological experiments. Suppose 
it is desired to test the efficiency of several treatments intended to destroy 
certain larvae on a field. The experiments are arranged in the usual way. 
The treatments compared are applied to particular plots with several replica- 
tions and then the plots (or smaller parts of them) are inspected and all the 
surviving larvae are counted. Thus the observations represent the numbers 
of surviving larvae in several equal areas. It happens frequently that, while 
there is room for doubt as to whether there is any significant difference between 
the average number of survivors corresponding to particular treatments, there 
is no doubt whatever that the variability of the observations differs from treat- 
ment to treatment. 

WAe have another similar case in bacteriology. The experiments I have in 
mind consist in determining the bacterial density by the so called "plating 
method." This consists in taking a number of samples of the analyzed liquid 
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36 J. NEYMAN 

and in spreading them separately on Petri plates. After a suitable period of 
time a number of colonies appear on the plates and their numbers represent the 
observational figures. I am informed that the variability of such observations 
does not depend very much on the technique of mixing the liquid and of taking 
the samples-when this technique is on a proper level-but does considerably 
depend on the kind and on the number of bacteria present in the liquid. 

The above examples justify an effort to find some new and more appropriate 
test. The first step in this direction must consist in an analysis of the ma- 
chinery behind the observable distributions and in deducing their analytical 
form. Once this problem is solved and repeated comparisons show a satis- 
factory agreement between the theory and the observation, we may proceed to 
the next step and deduce the appropriate tests. 

The purpose of the present paper consists in deducing a family of distribu- 
tions which provide a reasonably good fit in several cases in which they have 
been tested. It may be hoped that they will prove satisfactory also in many 
cases in the future. 

2. Distribution of larvae in experimental plots. When the problem of the 
distribution of larvae in experimental plots first arose, attempts were made to 
fit the Poisson Law of frequency. These attempts, however, failed almost in- 
variably with the characteristic feature that, as compared with the Poisson 
Law, there were too many empty plots and too few plots with only one larva. 
A similar circumstance is frequently, though not so regularly, observed in 
counts of microorganisms in single squares of a haemacytometer. These facts 
suggest that the distributions considered belong to a class which Polya [3] 
proposed to call "contagious": the presence of one larva within an experimental 
plot increases the chance of there being some more larvae. And it is not diffi- 
cult to see the cause of this dependence. Larvae are hatched from eggs which 
are being laid in so-called "masses." After being hatched they begin to travel 
in search of food. Their movements are slow and therefore, whenever in a 
given plot we find a larva, this means that the mass of eggs, from which it was 
hatched, must have been laid somewhere near, and this in turn means that we 
are likely to find in the same plot some more larvae from the same litter. Of 
course, there may be also others coming from other litters, too. 

A similar explanation may apply also to microorganisms counted in single 
squares of a haemacytometer or to colonies on parallel plates. However, here 
the situation does not seem as clear as in the case of larvae. As far as the 
haemacytometer counts are concerned, also another cause of contagiousness 
may be suggested. Witnessing once the process of preparation of the experi- 
ment, I noticed that, immediately after the drop of liquid was deposited into 
the chamber of the haemacytometer and for some time after, the positions of 
cells seen under the microscope were not fixed. Some of them seemed to lie 
on the bottom and the others were floating downwards in an irregular move- 
ment. Trying to follow the movements of particular cells I had the impression 
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that they were slightly attracted by the cells already stationary or semi-sta- 
tionary on the bottom of the chamber. If this impression of mine is justified, 
then the attraction of the floating cells by those already on the bottom could 
explain the contagiousness of the resulting distribution. It is known, how- 
ever, that this contagiousness is always rather small and that frequently the 
distribution of cells in the squares of the haemacytometer does follow the 
Poisson Law very closely. 

Owing to the fact that the cause of the contagiousness of the distribution 
of larvae in experimental plots is clear, we shall deal primarily with the distri- 
bution of larvae. Consequently, if the theoretical distributions that we shall 
deduce fit the empirical ones, we shall be more or less justified in assuming that 
we guessed the essential features of the actual machinery of movements of the 
larvae. On the other hand, if the same theoretical distributions appear also 
to fit satisfactorily the empirical counts of bacteria then in respect of these 
applications it will be safer to consider that we were lucky enough to find a 
sufficiently flexible interpolation formula. 

After these preliminaries we may proceed to a more accurate specification 
of the conditions of the problem considered. The experimental plot in which 
the larvae are counted will be denoted by P. We shall make no restriction 
as to the shape of this plot, but we shall assume that its area, which we shall 
take as unity, is small compared with that of the experimental field, F. The 
latter will be assumed to possess M units of area. We shall further assume 
that the moths laying eggs on the field F select spots for this purpose in a purely 
random manner. This presupposes that the experimental field is uniform in 
many relevant respects, e.g. is sown in all its parts by the same kind of plant, etc. 
Denoting by t and X the co6rdinates of the mass of eggs laid by some particular 
moth on the field F, we shall treat them as random variables with the elementary 
probability law 

(1) P1 

everywhere within F and zero elsewhere. After the larvae are hatched from the 
eggs there will be some mortality among them. Let us denote by n the number 
of larvae hatched from the same mass of eggs, surviving at the moment when 
the counts are made. We shall treat n as a random variable and denote by 
p(n) its probability law. At the present moment the writer has no information 
as to what may be the nature of the function p(n). Consequently it will remain 
in our calculations in its general form and, wishing to obtain some formulae 
for immediate calculations, we shall have to substitute for p(n) hypothetical 
formulae which, on intuitive grounds, may seem plausible. If the larvae counted 
are all more or less of the same age, there is a possibility that p(n) does not differ 
very much from the Poisson Law, but this point might be verified experimentally 
and we shall not insist on its being necessarily true. 

Consider now a single larva, survivor at the moment of observation, which 
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38 J. NEYMAN 

was hatched out at a point with co6rdinates t and t. Denote by x and y the co- 
ordinates of this larva at the moment of counts. We shall consider x and y as 
random variables. It is obvious that the probability law of x and y must 
depend on the values of t and tq. We shall assume that the dependence is 
of a particular character; namely, that the probability law of x and y given 
t and q is a function of the differences x - t and y- n. We shall denote it by 
f(x - t,y - _ . 

There is very little that we may consider as known about the function f(x - 

y - a). It may be treated as describing the habits of travelling of the larvae. 
There are some indications that there are certain directions in which the larvae 
tend to travel rather than in others, but they are too vague to be taken into 
consideration. Only one thing is certain: during the period of time between 
the birth of the larvae and the moment that the counts are made the larvae are 
able to travel only at some limited distance. Consequently we shall assume 
that for sufficiently large values of I x-t I and I y - n I the function f(x -, 
y - q) is identically zero. Otherwise we shall not make any further assumption 
concerning f(x - t, y - q), and it will remain arbitrary in our calculations until 
we reach the final general formula. 

While abstaining from making arbitrary assumptions concerning the habits 
of single larvae, we shall make one concerning the habits of several of them. 
This assumption, however, seems to be very plausible. We shall assume that 
the larvae have no social instincts, so that the random variables x and y cor- 
responding to one larva are independent from those corresponding to any other 
-that is to say, apart from the possible dependence on the same pair of t and vj. 

Denote by N the total number of masses of eggs laid on the field F and let 
ki be the number of larvae hatched from the i-th mass of eggs, surviving at the 
moment of observation and present within some particular experimental plot P. 
Finally let 

N 

(2) X= ki 

be the total number of larvae to be found within this plot. Our purpose will be 
to use the above hypotheses in order to determine the probability law of X. 
In doing so we shall first find that of any of the k,'s. Obviously, when con- 
sidering just one variable ki, it would be useless to retain the subscript i, so 
that below we shall write simply k to denote the number of living larvae, to be 
found within P, all of which were hatched from the same mass of eggs, situated 
at some point (Q, q). 

Let us first write the expression for the probability that one particular larva 
of that group will be found within P. This probability will be a function of 
t and v only, say 

(3) P(t, = ff f(x-X, y-n) dx dy. 
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Given that the number of survivors of the mass of eggs of the point (t, q) 
is n, the probability that exactly k of them will be found within P will be repre- 
sented by the binomial formula, say 

(4) P{kIn,q}= k!=(n-nk)! pk(,,)(1l- P( r))nk 

It will be noticed that in writing this formula we use the hypothesis that the 
larvae have no social instincts. 

Multiplying (4) by the probability law of t and a, and integrating with respect 
to those variables over the whole field F, we shall obtain the probability, P{k I n} 
that out of the n survivors of a mass of eggs, laid anywhere within F, exactly k 
larvae will be found within P: 

(5) PikfInl = 
k! (n 1k) 

f fM plc(1 )(1 - P ))kdtdn. 

Multiplying this result by p(n) and summing for all values of n, we shall 
obtain the absolute probability of k having any specified value. 

However, before doing so, we must use the hypothesis about the function 
f(x - {, y - q) to deduce certain consequences concerning the integral in (5). 

Originally we did not make any assumption as to the origin of co6rdinates 
on the field F. It will be now convenient to assume that it is located somewhere 
within the experimental plot P, for example in its center or in any other easily 
specified point. Owing to the particular property of the functionf(x - i, y -) 
it will now follow that, for sufficiently large values of t and ', the probability 
P(, j) will be equal to zero. Let us denote by A the part of the experimental 
field where P(Q, n) > 0. Obviously A denotes the set of points, a, in F such that, 
if a mass of eggs is laid in one of them, the distance of a from the plot P is not 
too large for the larvae hatched in a to reach the plot P before the moment of 
observation. Obviously also the plot P is included in A. Consequently the 
area of A, to be denoted by the same letter A, must be greater than unity. 
Owing to the lack of any precise knowledge of the nature of the function f(x - 

y -) 'it is impossible to say anything about the shape of A. 
Let us now turn to the integral in (5). The function under this integral 

changes its form according to whether the point (Q, n) is within or without A. 
If k = 0, then the integral in (5) reduces to 

(6) M - (-(,1)ni =M A + 
n 

d; (-(,r)dtdl. 

If however k > 0, then 

(7) f fUPk(p, r1) (1 _ p(%, ,))n- 
kd dr = f f pk(t 7) (1 - P(, l dl d 

Now we can write 

(8) PUkI = Zp(n)P{k I n}, 
n2O 
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40 J. NEYMAN 

which gives in particular 

(9) A if 
(9) P{k = O} = 1-- + M J E (1- P(%, ))Yp(n) d, dq 

and for k > 0 

(10) Pl = r)(1 - P(t, 7))n-kp(n) d, d. 

This is the general form of the probability law of k, which involves two un- 
specified functions p(n) and P(t, n). We shall not analyze it but proceed to the 
calculation of the characteristic function qk(t) of k, which will then be used to 
calculate that of X. We have 

(11) 4k(t) = e$kP{k} 
k2O0 

or, using (9) and (10), and after easy transformations 

(12) 4k(t) = 1 - A (1 - I ff p(n)(P(%, j)e" + 1 - P(, ))ndtdl) 

Owing to the assumption that the larvae have no social instincts all the 
variables ki, k2, *.. kN in (2) must be considered as mutually independent. 
As the characteristic function of any of them has the same form (12), the char- 
acteristic function, +x(t), of their sum, X, will be represented by the Nth power 
of the expression (12). Denoting by m the average number of masses of eggs 
per unit of area of the field F, so that N = Mm, we shall have 

+x(t) =km(t) 

(13) = i Mmjf ~+ 
{ M ( AJ1 nzoop(n) (P(%,q )ei + 1-(,) d d}U 

This will be the characteristic function of X for any value of M. If it is desired 
to put into effect the assumption that "M is large", we shall have to consider the 
limit of (13) for M - oo. This will be denoted by +(t) and we shall have 

(14) 4(t) = exp - Am(1 - |f EZp(n)(P(t,ii)e" + 1-P(t, 7))dI . 

In order to obtain the numerical value of the probability of X having any 
specified value X', it remains only to specify the functions p(n) and P(Q, a) and 
to use the familiar formula 

r+ 
(15) P{X = X'} - f (t)ex' dt. 

27r r 

3. Particular classes of the limiting distribution of X. Until we have some 
experimental evidence as to what might be the nature of the two functions 
p(n) and f(x - (, y - j) or P(t, n), we may try a few guesses. If the results 
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obtained in this way agree with empirical distributions, we shall have some 
reason to think that the guesses are not altogether wrong. 

In certain cases all the larvae considered are at the moment of observation 
approximately of the same age. Alternatively, we may count only larvae 
which are at the same stage of development. With such counts it is not un- 
reasonable to try for p(n) either the binomial or the Poisson formula. Either 
of them will lead to easy calculations of (14). Writing 

(16) p(n) = e- w 

with X representing the average number of survivors at the moment of observa- 
tion per unit mass of eggs, we shall get for +(t) the following expression 

(17) ?(t) = exp -Am (I - 1 
f eXP(Q )(e"-1) d, d) 

Substituting here for P(Q, v) any suitable function we shall obtain a cor- 
responding particular form of the characteristic function ?(t), so that (17) 
determines a whole family of distributionls. Substituting in (14) instead of (16), 
say the binomial formula, we shall obtain another family of contagious distri- 
butions. 

Strictly speaking, in order to obtain some particular distribution from the 
formula (17), we have to specify the function f(x - t, y - 7), then to calculate 

P(Q, q) and substitute it in (17). Since however we have no knowledge of the 
properties of f(x - (, y - a) and have to select it only on intuitive grounds, 
we may as well select the function P(t, q). It may be selected either by itself 
directly, in which case there will be no difficulty in substituting it in (17), or by 
some indirect method. In the other case we may find it more convenient to use 
another form of (17) which is obtained by expanding the exponential under the 
sign of the integral in (17) and by integrating term by term, which is obviously 
permissible. In this way we get 

(18) log +(t) = Am EA 
ne 

n! ) Pn. 

Where Pn stands for the expression 

(19) Pn = A pn% q) d dq 

and has the form of a moment of nth order of a certain probability law which 
it is easy to determine. 

We may consider for a moment the value of P(t, i7) as a random variable Z. 
Its values cannot exceed the limits, zero and unity. Let z be any number 
between zero and unity and denote by AF(z) the measure of the set of points 
belonging to A where P(Q, a) < z. Then the function F(z) will possess all the 
properties of the integral probability law of a variable Z which we may identify 
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42 J. NEYMAN 

with P(Q, a) and the integrals P. will be simply the moments of Z namely, 

P= f z"dF, where, of course, the integral would be considered in the sense 

of Stieltjes. It is interesting to notice that P1 is always equal to A-. To see 
this consider the integral 

(20) APl1 P( s) dt d= 

and substitute in it the expression of P(t, q) in terms of the function f(x - 

y -v). We get 

(21) AP1= ffd dn ff(x - t,y - q)dxdy 

(22) = ff ff(x -, y -) dx dy dt da. 

Where the four-dimensional region of integration W is defined as follows. (i) 
The variables x and y vary so that the point having them for its coordinates 
may have any position within, but cannot be outside, of the experimental plot P. 
(ii) When x and y are fixed in the above way, say x = x' and y = y', then t and 7 
may assume all those values for which the function f(x' - t, y' - ) is positive. 
Let us denote this system of values of t and v by B(x', y'). Then we can calcu- 
late APl as follows 

(23) APi=ff dx dy I f(x-i, y-a-) d dq. 

Now it is easy to see that the second integral in (23) is always equal to unity, 
whatever be x and y satisfying (i). To see this we have to recall the funda- 
mental property of the function f(x- , y -), due to the fact that it is the 
elementary probability law of x and y, namely that if t and v are fixed in one 
way or another, and it is integrated with respect to the other pair of variables, 
over all their values for which it is positive, the result will be equal to unity. 
In particular we shall have 

(24) I> f(u, v) dudv = 1. 
f>0 

Consider now the second integral in (23) and make the substitution 

(25) t- x-u, = y-v 

so that, instead of t and I we shall now integrate for u and v. It will be seen 
that the result of this substitution is exactly the integral (24), equal to unity. 
Since it was assumed that the area of P is equal to unity, it follows that APl = 1. 
This equality is thus the necessary condition that the function P(t, v) must 
satisfy. Besides, being a probability, it cannot be negative and cannot exceed 
unity. Whether any function having these properties may play the role of 
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P(Q, v) must be left for further inquiry. Assuming temporarily that this is so 
we can tentatively specify the probability laws belonging to the class determined 
by (18) by substituting in (18) instead of the P,,'s the corresponding moments 
M. of any distribution function F(z) with its range between zero and unity, 
remembering only the interpretation of its first moment that we have found 
above, namely M1 = P1 = A-. 

4. Certain general properties of the distributions deduced. Using the above 
result, we may substitute it in the formula (18) and get 

(26) log +(t) = mX(e - 1) + Am E Xn(e"-1)n p 
n-2 M 

Owing to the fact that the first term in the right hand side, mX(e" - 1), repre- 
sents the logarithm of the characteristic function of the Poisson Law, 

(27) p(x) = e-m) (mX)X 

for x = 0,1, 2, ... the formula (26) is especially interesting. Comparing the 
formulae 

[P1 = fzdF = A 

(28) 1 
Pn = z%IdF 

we see that 0 < P. < A-' so that AP. < 1. This circumstance assures the 
absolute and uniform convergence of (26). Frequently the higher moments 
Pn will be much smaller than the first, P,, and if this tends to zero, all the 
products AP. for n > 2 will do so too. In those cases log +(t) will tend to 
mX(e" - 1) uniformly for all values of t. To see this take an arbitrary e > 0 
and select N so large that 

(29) MnEN+1 n! 2 

Next let Ao be large enough for 

(30) APn < -e-2X 
2m 

for all n = 2, 3, ... N and for any A 2 Ao. For such values of A we shall 
have 

Am Pn - 1 
n=2 n! 

(31) < Nm xnl tit_ 1 in E0 Xn et _1[ 

n=2 ? I n=N+l M 

independently of what is the value of t. This result may be formulated as 
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PROPOSITION 1. If the parameters m and X remain constant but the probability 
law F(z) is changed so that all the products AP. tend to zero for n = 2, 3, ***, 
then +(t) tends to mX(et - 1) uniformly for all values of t and, consequently, the 
corresponding probability law of X tends to that of Poisson, given by (27). 

The above proposition may be considered as an explanation of the circum- 
stance that occasionally the distribution of larvae may be very close to that of 
Poisson. This may happen for instance when the larvae that we count are 
sufficiently old and have had a sufficient time to travel very far from the spot 
where they were hatched. In such cases A will be large and, if the function 
f(x - {, y - i) has some appropriate properties, all the products AP. may be 
very small. But it is interesting to notice that there is a possibility of A in- 
creasing without the products AP. tending to zero. Such will be for instance 
the case if P(Q, n) could have within A only two values B1(A) and B2(A) changing 
with A, one close to unity and the other close to zero. If Ap and Aq are the 
areas of the parts of A where P(t, t) has those two different values, then we 
shall have 

(32) jP, = pB13(A) + qB2(A) = A 

Pn = pBj (A) + qBa(A) 
and 
(33) n pB;(A) + qBn(A) 

P pB,(A) + qB2(A) 
may tend to unity as A is increased. In such cases the probability law of X 
will not tend to (27). While calling attention to this possibility, it should be 
emphasized that it is not likely to occur in practice. In the cases of discon- 
tinuous F(z) considered below P{X} does tend to (17). The same is true also 
in such cases where it is assumed that 

(34) dF=a+bz >0 for 0<2<c<1 

= 0 elsewhere 
etc. 

Before proceeding to specialize the expression (26) of the logarithm of the 
characteristic function, we shall show the connection existing between the Pns'S 
and the semi-invariants of X. To calculate the latter it is sufficient to differ- 
entiate (26) with respect to t, to put t = 0, and to divide the result by the 
appropriate power of i. Denoting by Yk the kth semi-invariant, by z4 the first 
moment about zero, and by jk the kth central moment of X we easily get 

I IL = Mx iH-41 = my 

=Y'Y2 = mX(1 + AXP2) 

(35) 14 = 73 = mX(1 + 3AXP2 + AX2P3) 

A4- 3 2 = 4= mX(1 + 7AXP2 + 6AX2P3 + AX3P4) 

etc. 
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It will be seen that, in general, the kth semi-invariant depends on P2, P3, 
... Pk only. Another property of the new distributions that we shall mention 
is that they are "stable". 

PROPOSITION II. If Xi, X2, *X. are s independent random variables all 
following the same distribution with the logarithm of the characteristic function 

8 

given by (26), then the sum Y = E Xi will follow the same probability taw with 
i=l 

the exception that instead of the parameter m it will depend on the product sm. 
In order to establish this proposition it is sufficient to notice that the logarithm 

of the characteristic function of the variable Y is equal to the expression (26) 
multiplied by s. 

Lastly, it may be noticed that the family of distributions determined by (26) 
is different from the comparable distributions deduced by P6lya ([3], p. 153, 
formulae (40) and (41)). In fact the logarithms of the characteristic functions 
of the latter could be written as follows: 

(36) -a log (1 - b(e" - 1)) = ab(e" - 1) + a z b8(e" - 

n=2 n 

and 

(37) c(et - 1) = c(e - 1) c 1- d (1-d) 

respectively and, even if the formal expansions in powers of (e" - 1) converge, 
the identification of those expansions with (26) would require that Pn possess 
values exceeding unity, which is inconsistent with their essential property of 
being successive moments of a positive variable 0 < Z < 1. Of course, the 
convergence of (36) and (37) would impose special restrictions on the constants 
that those formulae involve. 

5. Contagious distribution of type A depending on two parameters. The 
simplest assumption that we can make concerning the function P(Q, q) is that it 
possesses some constant positive value within A and is zero elsewhere. Owing 
to (20) this constant value must be equal to A-1. Substituting this in (17) we 
immediately obtain, say 

(38) 41(t) = exp {-Am[1 - exp (eit -1) 

We could use the above formula directly to obtain the corresponding probability 
law. But before doing so, it may be useful to illustrate the machinery of the 
alternative method of obtaining the characteristic function of X and to calculate 
the same formula using (26). 

If P(t, 77) is equal to A` everywhere in A, this means that the function F(z) 
is a step function, which is equal to zero for any z < A-1 and is equal to unity 
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elsewhere. Accordingly we shall have Mn = A'. Substituting this into (26) 
instead of P. we easily get 

(39) log 4(t) = Am (e(eA 1) - 

which is equivalent with (38). 
We shall now proceed to the calculation of the probabilities P {x = k } as 

determined by either (38) or (39). For this purpose it will be useful to notice 
that the characteristic function (38) depends really on two parameters only, 
which we shall denote by m1 and M2, 

(40) ml = Am, m2 =X/A 

In order to simplify the printing we shall further denote 

(41) z = mie-m2 

Expanding the two first exponentials of the three involved in (38), we may write 

co k co n 

(42) etl(t) m E k 2 
eikt EZ L nk. 

k=o k! n=ofn! 

This is the form of the characteristic function which is the most convenient 
when we have in mind applying the formula (15). In fact, it will be seen that 
we may multiply (42) by e-Xt and then integrate the series term by term. 
Further, it will be noticed that, on integrating between the limits -ir and +r, 
all the terms of the product will vanish except for the one which is independent 
of t. Consequently, the result of substituting (42) in the right hand side of (15) 
will be the coefficient of etX t in the expansion (42), so that 

(43) P{X = k} = e k? t=o t! t 

As it is easy to verify, we have 

(44) P{x = 03 = e-ml (1-e 2) 

and, for k > 1 

(45) P{X = k = e-m' M d emje 2 

00 

This formula gives an easy check of the identity E P {x = n = 1. In fact, n=0 

the left hand side can be looked upon as a product of e-ml by the Taylor's expan- 
sion of the function differentiated in (45) taken at the point u = M2, which 
gives identically unity. 
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Successive differentiations give in turn 

(46) P{X = 11 = e ml(l- 2) m2 mie" 

(47) P{X = 2} = eMml(e 2) m (m2e-2m2 + mlem2) 
2! 

etc. Comparing the formulae (44), (46) and (47), the effect of the "contagious- 
ness" of the distribution is easily seen. P{x = 2} differs from what it would 
have been, if the distribution was that of Poisson, by the additional term mie7m2 
within the brackets. 

Formulae (44), (46) and (47), and others which could be obtained by differ- 
entiating as indicated in (45), could be used for numerical calculations. How- 
ever, these are greatly simplified by the use of the following elegant formula, 
deduced by Dr. Geoffrey Beall of the Dominion Entomological Experimental 
Station, Chatham, Ontario. 

(48) P{X = n + l}m 2 = M 2e ' E 2PtX = n - t}. n + 1 t=o C 

The correctness of this formula may be easily checked by calculating P{X = 

n - t} from (43) and by substituting it in (48). Simple rearrangements will 
then give what could be obtained from (43) by putting k = n + 1. 

Substituting Pn = A n in formulae (35) and taking account of (40), we get 

(49) Y 1 = XM = mlm2 

(50) /2 = Xm(1 +A) = m1m2(1 + M2). 

Solving these equations for ml and m2 we obtain the formulae 

(51) M2 = (G2 - 14)/114, ml = 1l/M2 

If the moments ,4 and M2 are determined for an empirical distribution, these 
formulae may be used for estimating m1l and Mi2. In cases which were tried, 
this process did give frequently a satisfactory fit. Sometimes, however, when 
the tail of the original empirical distribution was very irregular, this distribution 
was better approximated by calculating the moments ol and M2 not from itself 
but after a certain amount of smoothing of the tail. It follows that the method 
of fitting the new distribution to the empirical data requires some further study. 
At present it will suffice to mention that, whenever this distribution was tried 
on distributions of larvae which at the moment of counts were approximately 
of the same stage of development, the fit obtained was very satisfactory. It is 
hoped that a number of actual distributions fitted, together with the description 
of the method of counting, etc., will be soon published by Dr. Beall. As a matter 
of illustration one of his distributions is reproduced at the end of the present 
paper. 
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As for the distribution considered we have 

(52) lim APn = lim A-n+l = 0, n = 2, 3, . 
A -o 

It follows from the above theory that, as A > , the probability law (48) tends 
to that of Poisson, namely 

(53) lim P{X = n) = e-mlm2 (mIm2)n 
A- n. 

For this reason the distribution (48) could be perhaps called the generalized 
probability law of Poisson, but it seems that the term "contagious distribution 
of type A with two parameters" will be more descriptive. Further on we shall 
see what is the justification of the description "of type A". 

It was stated at the outset of the present paper that, when comparing the 
distributions of larvae in two series of plots subjected to two different treat- 
ments, there is sometimes doubt whether the means of those distributions are 
equal or not, while the difference in variability is more or less obvious. The 
formulae (49) and (50) give us the explanation of these facts. It is seen from 
the formula (49) that the mean of the distribution is equal to the product of the 
mean number of masses of eggs per unit of area and of the mean number of 
larvae per mass of eggs surviving at the moment of counts. If the two treat- 
ments compared are of about the same efficiency of killing the larvae, then the 
values of X for each of them will be approximately equal and, consequently, 
we shall obtain about the same values for the two means. But while being of an 
equal efficiency as far as the killing is concerned, the two treatments may annoy 
the larvae in an unequal way. For example if the first treatment is dummy 
(no treatment) and the other is in general ineffective, it may still spoil the taste 
of the leaves that the larvae feed on. In such a case they may be compelled to 
travel a little more than they would otherwise, which will lead to an increase in A. 
Looking at the formula (50), it is easy to see that this would lead to a decrease 
in the value of /u2. Alternatively the treatment may produce a temporary 
paralysis of the larvae which may reduce A and bring an increase of U2 . 

These remarks were applied to moments (49) and (50) of the particular dis- 
tribution (45), but looking at the formulae (35), it is easily seen that they are 
true in the general case also. 

6. Contagious distributions of type A depending on three parameters. As 
mentioned before, in order to determine some particular contagious distribution 
contained in the class depending on equation (18) it is sufficient to substitute 
in it instead of the Pn the moments of any distribution with its range confined 
to the interval from zero to unity, with the only restriction that the reciprocal 
of the first moment should be equal to A. Obviously this could be done in an 
infinity of ways, all of which will give more or less different results. We shall 
select the following one, representing a natural generalization of the procedure 
adopted above and leading to very simple formulae. 
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Formerly we have assumed that P(Q, a) possesses a constant value A-1 within 
the whole area A. At present we may assume that within this area it may 
possess one of two (three, four, etc.) values, say B1 and B2 . Considering again 

P(Q, n) as a random variable Z, this will be equivalent to an assumption that Z 
may possess only one of the values B1 and B2 both positive and not exceeding 
unity. Again the probabilities of Z = Bi are at our disposal. We shall take 
that these probabilities are equal, i.e. equal to 2. 

Comparing these assumptions with what may be the actual situation, one 
may be led to think that they are rather artificial. This however is not so. 
There is no doubt that the value of P(Q, n) does change within A, and it is also 
probable that the change is smooth. As we have no knowledge of the character 
of this function we first take its mean value within the area A and treat it as its 
first approximation. Next we divide the area A into two equal parts, say Al 
and A2 and so that the greatest value of P(Q, n) in A1 does not exceed any of the 
values in A2. Then taking the average of P{ t, t7} within A1 and a similar aver- 
age within A2 and denoting them by B1 and B2 respectively, we do obtain a 
better approximation to the actual values of P(t, t7) assuming that it is equal 
to B, everywhere in Ai. That is, in fact, the real meaning of the hypothesis 
formulated above and that we are going to accept in the following. 

Denoting again by M. the moments of Z we shall have 

(54) M, = 4(B1 + B2) = A-' 

and generally 

(55) l7kin = 4(Bn + B ). 

Substituting (55) in (26) we get, say 

(56 ,2t) Am B("1 
(56) 02 (t) = 

2 

(exB1(e1t-) 

+ ex 

-1) 

- 2). 
We notice that this expression depends on three parameters, say 

(57) mI = Am, m2 = XB1, m3 = XB2. 

In order to get the formulae for the probabilities of X having any specified values 
we could again apply the method used above when treating the more simple case. 
It may be useful however to illustrate a shorter way which easily leads to a 
generalization of Dr. Beall's recurrence formula. As we have noticed before, 
the probability P {X = k} is equal to the coefficient of eikt in the expansion of the 
characteristic function in powers of e"t. Substituting for simplicity z = e't, 
so that t = -i log z, we may say that, if +(t) is the characteristic function of a 
variable Xi which is able to possess only integer values, then PI{X = k } is equal 
to the coefficient of zk in the expansion of say ,6(z) = p(-i log z). Applying 
this rule to (56) we can write the following expression for the generating func- 
tion Vl(z), 

-ml m {e2 (z-)+,M3 (z- I) X E P{ 
(58) i1(z) = eme - m2 zkP{X = kl. 

k=O 
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In other words 

ml 
(59) P{X = 01 = e 22(O3 =e 

(60) P{X = k} = k! dzk |ok =1, 2, ... 

But 

(61) ~~~dII, Ml 
m12(-1) M Z1 (61) dk- = p (z) { m2em' + m3em3(z-1) 

=21-(Z)x(Z) (say) 

and it is easy to see that generally 

d X k+1 m2 (z-1) k+1 m3 (z-1) (62) dZk =Me M3e 

As the kth derivative of 41(z) in (60) may be calculated by applying the familiar 
formula for the (k - 1)st derivative of the product 4t'(z)x(z) in (61), we obtain 

(63) =__ n! __ __ 

dzn+l Izo 2 Ac-o k. (n - k)! k dZn-k/ z-o 

Using the formulae (60) and (62) we immediately obtain 

2(n + 1) 
km= lG2+mk l-m 

(64) P{X = n+1} = k! 
l 2 

m3+e- P{X=1} 

As whenever B1 = B2 and consequently m2 = m3, the distribution considered 
now becomes identical with that considered formerly, depending on two param- 
eters only, it is seen that the formula (64) represents a direct generalization 
of the formula (48). For purposes of successive calculation of the probabilities 
it will be probably more convenient to write (64) in the following form 

P{X = n + 1 }= 2+ 1 p= mm{X = n-e 
-m 

(65) 2(n + 1) k1-0 10? 
+mim3e M3 nmk 

2(n + 1) ko k! 

This device of finding a recurrence formula for the probabilities will always 
succeed whenever there are no difficulties in finding the value of the nth deriva- 
tive of the function x. 

It may be easily shown that if m and X remain fixed but A tends to infinity, 
then the distribution (60) tends to the Poisson Law of frequency. Owing to 
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the general result stated in Proposition I, in order to show this it is only sufficient 
to prove that for n > 2 

on, B n 
(66) lim AMn = lim 1 +2 = B 

A--+o A-+oo B1 + B2 

As both B1 and B2 must be included between zero and unity and their sum is 
equal to 2A-1, it follows that 

(67) 0 < B1 < A-' < B2 < 2A-1. 

Therefore 

(68) 0 < AMn <1 + A 

and (66) becomes obvious. 
Substituting the values of M2 and M3 instead of P2 and P3 in the general 

expressions (35) of the moments, and taking into account the formulae (57), 
we obtain 

(A = Ym1(m2 + M3) 

(69) /2= 2ml(M2 + m3 + m 3 + m2) 

1= ml(m2 + i3 + 3(m2 + M2) + M2 + M3). 

If it is desired to fit the distribution to some empirical one using the method of 
moments, then these formulae could be solved with respect to mi, M2 and m3. 
We may proceed as follows. Write 

(70) a = 2p1, b = 2(,L2 - YI C = 2(1u3 + 3/12 + 2k'). 

Then 

(71) MIn(M2 + M3) = a 

(72) Mi(M2 + m2) = b 

(73) m 2(m3 + m3) = c 

Multiplying the first of these equations by M2 and subtracting the result from 
the second and repeating the same process with the second equation and the 
third, we get 

m1m3(m3 - M2) = b - ama 

( EL) m1m2(m3 -M M2) = c- bM2 

and it follows 

(75) M3 = _- 
bM2 

b - a2 
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or 

(76) ~~~~~b c (76) - (M2 + MO) - m2m= 
a a 

Again, dividing (73) by (71) we get 

(77) (M2 + M3)2 - 3mm2 = c- 
a 

Multiplying (76) by 3 and subtracting from (77), we obtain 

(78) 2- 3bs/a - 2c/a = 0, 

where s = m2 + Mi3. It follows that 

(79) s = 3b 
i (3b2 _ 2c 

2a Y ia) ai 
bs- c 

(80) M2M3 = p = bs-c 

(81) M2 = K(s S2 - 4p) 

(82) m2 = 2(s+ Vs2 4p) 

(83) ml = a/s. 

Following these steps we finally arrive to the values of all three parameters, 
given by the last three formulae. 

If the values of the moments 4,u1,2 and y3 were known without error, the 
above formulae would give accurate values of ml, M2 and m3. If, however, 
the moments are estimated from a sample, then the reader must be prepared 
that, even if the observed variable follows exactly the law, occasionally the 
sampling errors in the moments will make it impossible to carry out all the 
calculations indicated. Especially this may easily happen when the true values 
of M2 and m3 are equal or nearly equal, so that the empirical distribution is close 
to that given by the contagious distribution with only two parameters. As it is 
seen from (81) and (82), in such a case the true values of s and p must satisfy 
the relation 

(84) s2-4p = 0. 

However, the sampling errors in the moments will ascribe to the left hand side 
of (84) a value only approximately equal to zero, which may be either positive 
or negative. In the latter case we shall not be able to use (81) and (82) to 
estimate M2 and m3. As a matter of fact, the above circumstance actually arose 
in one case when it was tried to fit the three parameters distribution Jo a set 
of data which were excellently fitted by a simpler formula (45) involving only 
two parameters. As mentioned before, the problem of fitting the distributions 
which are deduced here requires further consideration. 
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Looking back on the method by which we have substituted a contagious 
distribution with three parameters ml, im2 i n3 for the simpler one with only 
two parameters, it is easily seen that it can be carried further leading to distri- 
butions with four, five, etc. parameters. In each case we would mentally divide 
the area A in a number of parts of equal size so that the values of P(t, w) in the 
first never exceed those in the second, etc. Denoting the average values of 
P(t, q) in those areas by B1, B2, - , Br Xwe shall obtain the moments 

1r 
(85) n- - E t 

r t-1 

substitute them in (26) and proceed more or less as we did above. All the 
distributions which may be obtained in this way possess certain common traits 
and I propose to call them "of type A". If the number of parameters in such a 
distribution is sufficiently high, it seems practically certain that the function 
P(t, q) will be well approximated and we may hope to get an excellent fit. 
However, if a good fit may be attained only by introducing a great number of 
parameters, it usually means that the method of introducing those parameters 
is not very successful, and therefore it does not seem worth while to discuss in 
greater detail the distributions of type A with the number of parameters exceed- 
ing three. Instead we shall briefly indicate another class of distributions, built 
on another principle, which may be called of type B or C. 

7. Contagious distributions of types B and C. As mentioned before, when- 
ever the distributions of type A were tried on data, the character of which did 
not obviously contradict the basic assumptions of the theory (approximate 
equality of age of the larvae), the results were always satisfactory. However, 
our present experience is rather limited and it is well to anticipate the failures. 
We may expect that these will be caused by the over-simplified assumptions 
concerning the function P(t, -). 

In order to deal with such a case we may assume that for 0 < z < 1 the 
derivative of F(z) exists and is either a linear function of z or is equal to zero. 
Writing p(z) = dF/dz we shall put 

(86) pl(z) = 1A for O < z < 2A-1, A > 2 

= 0 elsewhere. 

Alternatively we may write, say 

2A2 
(87) p2(Z) = 2 (3A-1 - z) for 0 < z < 3A-I 

= 0 elsewhere. 

In the first case we shall obtain, say 

(88) Mn= 1 ( 
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On the other hand, the moments of p2(z) will be given by 

(89) M" 2(3A=_)n 
(n +1)(n +2) 

Substituting these expressions in (26) we shall easily obtain the two new 
forms of the characteristic function of X, say 

eM2(eit-l)_1 

(90) log #3(t) =-ml + ml M2(i- 1)e 

with 

(91) mi = Am and M2 = 2X/A. 

Accordingly, the generating function of the probabilities will be, say 
.er2(z-1)-.1 00 

(92) +3(Z) = e-mle 1 M2(Z-1) = 2 z"P{X = n1 
n=0 

The distribution determined by (92) may be called of type B. 
Using the moments (89) and substituting them in the usual way in (26), we 

obtain, say 
em2(ei'-1) _-1-ii(e;'-1) 

(93) log 464(t) = -Ml, + 2in, 2n(eit - ) 

with 

(94) mi = Am and m2 = 3X/A. 

The probabilities of X having any specified value will be generated by the 
function, say 

mle2(o-1)'-l-M2(z-1) 00 

(95) 4 (Z) = e-em' rn(z_ )2 = zP{X = n}. 
n=0 

The probability law determined by (95) may be called of type C. The com- 
parative merits of all those distributions could be judged by comparing them 
with the results of observation. 

8. Illustrative Examples and Concluding Remarks. Any series of positive 
terms adding up to unity may be considered as determining a probability law 
of a discontinuous variable such as the X considered above. When trying to 
obtain probability laws fitting the empirical distributions of some particular 
origin, the distributions of the numbers of larvae in experimental plots, or the 
like, we could really start by considering series of some positive terms each 
depending on one or more parameters, say 

(96) uO(ml, M2), Ul(Ml , M2), u2(m, , M2), ... *, un(ml , M2), * 
00 

and having the property that, whatever the values of those parameters, 2 
ns, 

u,(m1 , m2) = 1. Studying a considerable number of empirical d'istributilons, 
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we could apply the "method" of trial and error to guess the form of dependence 
of the u.(mi, M2) on the m's so that for a broad class of empirical distributions 
there would be a system of values of the m's, for which the series (96) would 
satisfactorily fit the data. If we succeed in this task we shall be entitled to a 
considerable satisfaction as the solution that we obtained would permit various 
further studies, e.g. the deduction of tests of significance applicable, or approx- 
imately applicable, in various cases, and so on. 

Looking back at the history of statistics we shall find that the systems of 
frequency curves of Pearson, of Bruns-Charlier and others belong to the class 
of results just discussed. They are very important-and this especially applies 
to the Pearson curves-because of the empirical fact, that it is but rarely 
that we find in practice an empirical distribution, which could not be satisfac- 
torily fitted by any of such curves. Consequently, wishing to deduce some test 
applicable in this or that case, we may usefully assume that the basic distribution 
is one of the Pearson system and, owing to the frequently continuous character 
of the connection between the conditions and the final results, our final formula 
will be approximately valid when applied to the data under consideration. 

This point of view is not unfamiliar in pure mathematics. For example, we 
know that a broad class of functions may be approximated with any prescribed 
accuracy by means of polynomials. Wishing to prove a theorem applicable 
to this class of functions, we sometimes start by proving it for polynomials and 
then conclude that it is also true for the whole class. Here the r6le of poly- 
nomials is perfectly analogous to that of Pearson curves and could be described 
as that of good interpolation formulae. 

But the problem of deducing theoretical distributions could be also considered 
from a slightly different point of view. Here again we require that the theo- 
retical distribution fits satisfactorily the empirical data. But we may legit- 
imately require something else: an "explanation" of the machinery producing 
the empirical distributions of a given kind. I have enclosed the word "explana- 
tion" in quotation marks so as not to suggest that I am attaching to it too much 
importance. Mathematics is always dealing with the conceptual sphere which 
is quite distinct from the perceptual and, at most, admits the possibility of 
establishing some correspondence. Therefore, however hard we try, we can 
never produce anything like a real mathematical explanation of any phenomena 
but instead only some "interpolation formula", some system of conceptions 
and hypotheses, the consequences of which are approximately similar to the 
observable facts. But this similarity may be differently placed. In the case of 
Pearson's curves it applies to the shape of these curves and to the shape of the 
empirical histograms. Otherwise it may apply to certain real features of the 
phenomena studied and to some mathematically described model of the same 
phenomena. And if the theoretical distributions deduced from the mathe- 
matical model do agree with those that we observe, and if that agreement is 
more or less permanent, we say that the mathematical model has "explained" 
the origin of the distributions. 
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If the problem of deducing interpolation formulae, sufficiently flexible to 
represent adequately a class of distributions, is of considerable interest, then 
that of producing similar formulae but involving an "explanation" of the 
phenomena studied, seems to be still more interesting. Of course, for it to be 
considered as successfully solved, the theoretical distributions deduced must fit 
the empirical ones, of a clearly specified kind, "practically always". At the 

TABLE I 

Distribution of European corn borers in 
120 groups of 8 hills each, (data pro- 
vided by Dr. Beall), fitted by Poisson 
Law and by type A Law with two 
parameters 

Frequency 
No. of 
borers Exp. P. L. Ob- Exp. 

served T. A. 

0 5.0 24 22.6 
1 16.0 16 16.7 
2 25.3 16 18.3 
3 26.7 18 16.4 
4 21.1 15 13.4 
5 13.4 9 10.3 
6 7.1 6 7.5 
7 3.2 5 5.2 
8 1.3 3 3.5 
9 .4 4 2.3 

10 .1 3 1.5 
11 0 
12 1 

Beyond 2.3 

Ml 2.178 
m2 1.454 

PX2 ????.000 .95 

TABLE II 

Distribution of yeast cells in 400 squares 
of haemacytometer observed by "Stu- 
dent" (1907), fitted by Poisson Law 
and by type A Law with two param- 
eters 

Frequency 
No. of 
cells Exp. P. L. Ob- Exp. T. A. 

served 

0 202 213 214.8 
1 138 128 121.3 
2 47 37 45.7 
3 11 18 13.7 
4 3 3.6 
5 1 .8 

Beyond 2 .1 

ml - 3.605 
m2 .189 

PX2 >>.02 >.1 

present time we may quote a number of instances where it was possible to estab- 

lish a mathematical probabilistic model of some class of phenomena determining 
probability laws which fit the empirical distributions with a remarkable accu- 

racy. Perhaps the most important class of these phenomena is provided by the 

Mendelian theory; a number of other examples, although of a lesser importance 
but still interesting, have been mentioned elsewhere [2]. In all of them success- 
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ful checks and rechecks increase our confidence that the conclusions based on the 
mathematical model determining the theoretical distributions will satisfactorily 
apply to observational data and also that our interpretations of various constants 
is more or less correct. 

Now, what is the situation with the contagious distributions deduced above? 
They do represent an attempt to give good interpolation formulae involving an 
"explanation" of the observable phenomena, and all the constants introduced 
have meanings which are easy to interpret. Owing to the fact that in the 
process of the larvae surviving and spreading over the field there are certain 
unknown features, the final general formula that we have deduced involves 
two arbitrary functions p(n) and P(t, a). By substituting for them any appro- 
priate functions that the intuition may suggest, we can obtain a number of 
distributions, each of which may or may not provide a satisfactory interpolation 
formula. Whether they do or not, must be empirically tested. 

Up to the present time the contagious distributions of type A were tried on 
12 distributions of larvae and on three distributions of yeast cells in squares 
of the haemacytometer, which did not quite agree with the Poisson Laws. 
The results of these trials were always the same: The type A distribution 
with two parameters provided an excellent fit, which was never worse than that 
of the more elaborate distribution with three parameters. This circumstance 
seems encouraging, but future experience may be less satisfactory and it would 
be very desirable to have some more empirical distributions and checks. 

The following table gives two empirical distributions fitted with Poisson Law 
and with its generalization, as provided by the type A distribution with two 
parameters. 
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