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This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice
systems with short-range interactions. We provide results leading to a local definition of temperature,
thereby extending the notion of “intensivity of temperature” to interacting quantum models. More
precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly
given in terms of a generalized covariance. For this covariance, we prove exponential clustering of
correlations above a universal critical temperature that upper bounds physical critical temperatures such as
the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable
against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature,
local expectation values can be approximated efficiently in the error and the system size.
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I. INTRODUCTION

The ongoing miniaturization of devices, with structures
reaching the nanoscale, has lead to the development of
extremely small thermometers [1,2], some of which are so
small that they can only be read out with powerful electron
microscopes [3]. Even small thermalmachinesworking in the
quantum regime have been suggested [4,5]. In order to
understand the working of such devices, it is necessary
to formulate a theory of statistical mechanics and thermo-
dynamics at the microscopic and mesoscopic scales. A
prerequisite for such a formulation is a good understanding
of the limitations of the concept of temperature at small scales.
The problem with assigning locally a temperature to a

small subsystem of a globally thermal system is the
following: Interactions between the subsystem and its
environment that generate correlations can lead to noticeable
deviations of the state of the subsystem from a thermal
state (see Fig. 1). Hence, given only a subsystem state,
there is no canonical way to assign a temperature to the
subsystem.We call this the locality-of-temperature problem.
The first steps toward a solution of the locality-of-

temperature problem have been taken in Refs. [6–8], and
more recently, within the mind-set of quantum information
theory, in Ref. [9]. The general locality-of-temperature
problem is, however, still open. In this work, we con-
clusively solve it for spin- and fermionic-lattice systems.

More precisely, we first show that the locality-of-
temperature problem is equivalent to a decay of correlations
measured by an averaged generalized covariance that
precisely captures the response of expectation values to
perturbations of the Hamiltonian. We expect the corre-
sponding equality to be useful for applications beyond the
scope of this article.
We then provide conditions under which the generalized

covariance decays exponentially with the distance, includ-
ing a detailed analysis of the preasymptotic, and of the
finite-size regime. In particular, this exponential decay
holds above a universal critical temperature that only
depends on the “connectivity” of the underlying graph
of the model and is an upper bound on physically relevant
critical temperatures such as the Curie temperature.
While, in the low-temperature regime, quantum lattice

models exhibit a great diversity of phases, many of which
involve the emergence of long-range or topological order
[10], in the high-temperature regime, exponential clustering

FIG. 1. The locality-of-temperature problem: Subsystems of
thermal states are themselves, in general, not in a state with a
locally well-defined temperature. Down to which length scale can
temperature be an intensive quantity?
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of correlations is expected. Our rigorous results help to
delineate the boundary between these two regimes. They
build upon and go significantly beyond previous results on
the clustering of correlations in classical systems [11], for
quantum gases [12], i.e., translation-invariant Hamiltonians
in the continuum, and cubic lattices [13–15].
Mathematically, we significantly contribute to the prob-

lem of whether and under which precise conditions thermal
quantum states are stable against distant Hamiltonian
perturbations. Stability of thermal states is particularly
relevant in the broader scheme of phase transitions in
classical and quantum lattice models [14,16] as well as for
the foundations of statistical mechanics and the equilibra-
tion and thermalization behavior of closed quantum sys-
tems [17–25]. In the light of the recent surge of interest in
these topics, developing a better understanding of the
properties of thermal states has become a timely issue.
A major obstacle to progress on some of the most

interesting open questions in this context, such as equili-
bration time scales in closed quantum systems, is the
limited set of mathematical tools available for exploiting
the structure of locally interacting Hamiltonians [25]. Our
results are among the first that explicitly exploit properties
of local Hamiltonians, without being limited to very
specific models.
For quantum Monte Carlo simulations [26], our results

provide a guideline as to how large the finite system size
has to be taken in order to be able to sample from the right
partition function and, conversely, to identify observables
that are best suited to detect long-range correlations.
In fact, our results are reminiscent of known statements

about ground states. If a Hamiltonian has a unique ground
state and is gapped, correlations in its ground state cluster
exponentially and faraway regions become essentially
uncorrelated. This clustering of correlations is rigorously
proven using information-theory-inspired methods such as
Lieb-Robinson bounds and quasiadiabatic continuation
[27–29]. These rigorous results allow for certified algo-
rithms that efficiently approximate ground states of gapped
Hamiltonians on classical computers [30]. In the same spirit,
we are able to show that an exponential decay of correlations
renders thermal states locally efficiently simulatable.
The rest of this paper is structured as follows: In Sec. II,

we formulate the precise setting and explain the main
results and their implications. In Sec. III, we discuss
connections to known results on phase transitions, thermal-
ization in closed quantum systems, and matrix product
operator approximations. Then, in Sec. IV, we discuss basic
properties of the generalized covariance, explain how
our results can be made applicable to finite-range k-body
interactions, and state the results for fermionic lattices. We
proceed with proving all theorems in Sec. V and conclude
in Sec. VI. In the Appendix, we provide a detailed proof of
two bounds on truncated cluster expansions, one of which
is an important ingredient to the proof of clustering of
correlations.

II. SETTING AND MAIN RESULTS

In this section, we introduce the setting, state the
locality-of-temperature problem more formally, and state
our results.

A. Perturbation formula for thermal states

As the first result, we state a perturbation formula, which
is a general statement about the response of the expectation
value of an observable in the thermal state, upon changes in
the system Hamiltonian. It does not make any reference to
the locality structure of the Hamiltonian but turns out to be
especially useful when correlations between local observ-
ables decay rapidly with distance.
Throughout the paper, we assume the Hilbert space

to be finite dimensional [31] and denote the thermal state,
or Gibbs state, of a Hamiltonian H at inverse temperature
β by

gðβÞ ≔ e−βH

ZðβÞ ; ð1Þ

with ZðβÞ ≔ Trðe−βHÞ being the partition function. If we
mean the thermal state or partition function of a different
Hamiltonian H0, we write g½H0�ðβÞ or Z½H0�ðβÞ.
We measure correlations by the (generalized) covariance

that we define for any two operators A and A0, full-rank
quantum state ρ, and parameter τ ∈ ½0; 1� as

covτρðA; A0Þ ≔ TrðρτAρ1−τA0Þ − TrðρAÞTrðρA0Þ: ð2Þ

We discuss various properties of this covariance and
generalizations to arbitrary-rank quantum states in
Sec. IVA.
The generalized covariance appears naturally in our

first theorem about the response of expectation values to
perturbations. More precisely, when we are given an
unperturbed Hamiltonian H0 and a perturbed
Hamiltonian H, then the difference of expectation values
in the corresponding thermal states is captured by that
covariance.
Theorem 1 (Perturbation formula).—Let H0 and H be

Hamiltonians acting on the same Hilbert space. For
s ∈ ½0; 1�, define the interpolating Hamiltonian by HðsÞ ≔
H0 þ sðH −H0Þ and denote its thermal state by
gs ≔ g½HðsÞ�. Then,

Tr½Ag0ðβÞ� − Tr½AgðβÞ�

¼ β

Z
1

0

dτ
Z

1

0

ds covτgsðβÞðH −H0; AÞ ð3Þ

for any operator A.
The proof of the theorem, which is presented in Sec. VA,

relies on the fundamental theorem of calculus and
Duhamel’s formula. We refer to the double integral over
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the covariance in Eq. (3) as the averaged (generalized)
covariance.

B. Spin-lattice systems

In the remainder of this work, we will be concerned with
spin- and fermionic-lattice systems. We will only write out
everything for spin systems and then later, in Secs. IV C
and V C, explain the necessary modifications for fermionic
systems. In the case of spin-lattice systems, the Hilbert
space is given by H ¼ ⊗

x∈V
Hx, where V is called the vertex

set and is assumed to be finite. To make the presentation
more accessible, many of the following definitions are
highlighted in Fig. 2. A local Hamiltonian with interaction
(hyper)graph ðV; EÞ is a sum

H ¼
X
λ∈E

hλ ð4Þ

of local Hamiltonian terms hλ acting on H. The (hyper)
edge set E is the set of supports λ ¼ suppðhλÞ ⊂ V of the
local terms hλ. For any subset of edges F ⊂ E, we denote
by HF ≔

P
λ∈Fhλ the Hamiltonian only containing the

interactions in F, and for any subsystem B ⊂ V, we define
the truncated Hamiltonian to be H↾B ≔ HEðBÞ, where
EðBÞ ⊂ fλ ∈ E∶λ ⊂ Bg is the restricted edge set and we
take H↾B to be an operator on the Hilbert
space HB ≔ ⊗

x∈B
Hx.

Given some subsystem S ⊂ V, there are two natural
thermal states associated with it.
(i) g↾SðβÞ ≔ g½H↾S�ðβÞ denotes the thermal state of S

alone, i.e., the thermal state of the truncated
Hamiltonian H↾SðβÞ.
(ii) gSðβÞ ≔ TrSc ½gðβÞ� denotes the full thermal state

reduced to S.

For a noninteracting Hamiltonian, these two states
coincide, but, in general, this is not the case due to
correlations between S and its environment. This discrep-
ancy raises the question of how to locally define
temperature as an intensive quantity, i.e., the locality-of-
temperature problem.

C. Locality of temperature

In order to locally assign a temperature to the subsystem
S ⊂ V, it was suggested, e.g., in Ref. [9], to extend S by a
buffer region and define the temperature of S via the
thermal state of the Hamiltonian truncated outside the
extended region B; see Fig. 2. The role of the buffer region
B is to remove the boundary effects and the correlations
with the rest of the system that are intuitively the reason for
the locality-of-temperature problem. Nevertheless, it is not
obvious how these correlations should be quantified and
how large this buffer region needs to be. We will see shortly
that Theorem 1 answers these questions.
By ∂B ⊂ E, we denote the set of boundary edges of B,

i.e., the edges having overlap with both B and its comple-
ment Bc ≔ V ⃥ B. Then, by choosing H0 ¼ H −H∂B in
Theorem 1, using that g0 ¼ g↾B ⊗ g↾Bc , and tracing over
Bc, we obtain the following corollary (see also Fig. 3).
Corollary 1 (Truncation formula).—Let H be a local

Hamiltonian, let B ⊂ V be a subsystem, and denote the
corresponding boundary Hamiltonian by H∂B and the
interpolating Hamiltonian by HðsÞ ≔ H − ð1 − sÞH∂B
with its thermal state gs ≔ g½HðsÞ�. Then, for any operator
A ¼ AB ⊗ 1Bc supported on B,

Tr½ABg↾BðβÞ� − Tr½AgðβÞ�

¼ β

Z
1

0

dτ
Z

1

0

ds covτgsðβÞðH∂B; AÞ: ð5Þ

Now, we choose S ⊂ B ⊂ V (see Fig. 2). If, for a given
inverse temperature β, correlations over the distance
between S and ∂B are negligible, then the corollary clearly
implies that

Tr½AgðβÞ� ≈ Tr½ABg↾BðβÞ� ð6Þ

for any observable AB ¼ AS ⊗ 1B⃥ S on S. Also note that
such an approximate equality does not hold whenever
average correlations over lengths exceeding the distance
between S and ∂B are non-negligible.
Hence, we have the following equivalence for the

temperature defined via thermal states.
Implication 1 (Locality of temperature).—Temperature is

intensive on a given length scale if and only if correlations
(measured by the averaged generalized covariance) are
negligible compared to 1=β on that length scale.
In order to fully exploit Corollary 1 it is necessary to

bound the generalized covariance, which we will do for
high temperatures in the next section.

FIG. 2. A 2D square lattice: The boxes indicate subsystems
S ⊂ B ⊂ V. The edges in S are EðSÞ, boundary edges of B are ∂B,
and F is a shortest path connecting S and ∂B; hence,
dðS; ∂BÞ ¼ jFj ¼ 2. The set of edges EðSÞ is an example for
an animal of size jEðSÞj ¼ 7, while ∂B is not connected and
hence not an animal.
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D. Clustering of correlations at high temperatures

For small temperatures, correlations can be arbitrarily
long ranged, as is, e.g., the case for the ferromagnetic Ising
model in two or higher dimensions below the Curie
temperature. On the other hand, above a universal critical
temperature, depending only on a local property of the
interaction graph, correlations cluster exponentially, as we
will see next. Given the combinatorial nature of parts of
the arguments leading to this result, we need additional
notation related to edges and vertices of the lattice. Most of
the following definitions can be understood intuitively, as is
shown in Fig. 2.
We say that two subsystems X, Y ⊂ V overlap if

X∩Y ≠ ∅, a set X ⊂ V and a set F ⊂ E overlap if F
contains an edge that overlaps with X, and two sets F,
F0 ⊂ E overlap if F overlaps with any of the edges
in F0. A subset of edges F ⊂ E connects X and Y if F
contains a sequence of pairwise overlapping edges such
that the first overlaps with X and the last overlaps with Y
and similarly for the case whereX and/or Y are just vertices.
The graph distance on V, and also the induced distance

on subsets of V, are denoted by d. The distance dðX;FÞ of a
subset X ⊂ V and a subset F ⊂ E is 0 if X and F overlap
and otherwise equal to the size of the smallest subset of E
that connects X and F. Sometimes, we denote the support
of an operator by the operator itself, e.g., for two operators
A and A0, their distance is dðA; A0Þ ≔ dðsuppA; suppA0Þ
and ∂A ⊂ E are the edges across the boundary of suppðAÞ.
A subset of edges F ⊂ E that connects all pairs of

its elements λ, λ0 ∈ F is called connected. Such a con-
nected set F is also called an (edge) animal. The size jFj
of an animal F is given by the number of edges contained
in F. The results presented here apply to Hamiltonians
with interaction graphs ðV; EÞ whose number am of
lattice animals of size m containing some fixed edge is
exponentially bounded. With

am ≔ sup
λ∈E

jfF ⊂ E connected∶ λ ∈ F; jFj ¼ mgj; ð7Þ

the growth constant α is the smallest constant satisfying

am ≤ αm: ð8Þ
For example, the growth constant of aD-dimensional cubic
lattice can be bounded as α ≤ 2De (Lemma 2 in Ref. [32]),
where e is Euler’s number. Moreover, α is finite for any
regular lattice [33]. Upper bounds to growth constants for
so-called spread-out graphs [32] render our results appli-
cable for the case of bounded-range two-body interactions.
By a simple embedding argument, one can also bound
the growth constant for the case of local k-body interac-
tions on a regular lattice, which we explain in Sec. IV B in
detail.
For any operator A and p ∈ ½1;∞�, we denote by kAkp

its Schatten p norm; e.g., kAk∞ is the operator norm and

kAk1 is the trace norm of A. We call J ≔ maxλ∈Ekhλk∞ the
local interaction strength of a local Hamiltonian, as given
in Eq. (4).
We are able to provide a universal inverse critical

temperature β�, which is, in particular, independent of
the system size, below which correlations decay exponen-
tially with a thermal correlation length ξðβÞ.
Theorem 2 (Clustering of correlations at high temper-

atures).—Let gðβÞ be the thermal state at inverse temper-
ature β of a local Hamiltonian with finite interaction (hyper)
graph ðV; EÞ having growth constant α and local interaction
strength J. Define the quantities

β� ≔ ln½ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=α

p
Þ=2�=ð2JÞ ð9Þ

and

ξðβÞ ≔ j ln½αe2jβjJðe2jβjJ − 1Þ�j−1: ð10Þ

Then, for every jβj < β�, parameter τ ∈ ½0; 1�, every two
operators A and B with dðA; BÞ ≥ L0ðβ; aÞ [given in
Eq. (50)], and a ≔ minfj∂Aj; j∂Bjg,

j covτgðβÞðA; BÞj ≤
4akAk∞kBk∞

lnð3Þð1 − e−1=ξðβÞÞ e
−dðA;BÞ=ξðβÞ: ð11Þ

The proof is given in Sec. V B.
In the following sections, we outline some of the

applications of Theorem 2.

E. Universal locality and stability at high temperatures

If one is interested in the state gSðβÞ of some subsystem
S, then one can truncate the Hamiltonian to S extended
by some buffer region and obtain the approximation via
the thermal state of the truncated Hamiltonian. The follow-
ing theorem implies that the approximation error is
exponentially small in the width of the buffer region.
For any operator ρ, we denote its reduction to a

subsystem S ⊂ V by ρS ≔ TrSc ½ρ� and note that

kρSk1 ¼ sup fjTr½Aρ�j∶ suppðAÞ ¼ S; kAk∞ ¼ 1g: ð12Þ

Then, as a consequence of Corollary 1 and Theorem 2, we
obtain the following corollary.
Corollary 2 (Universal locality at high temperatures).—

Let H be a Hamiltonian satisfying the conditions of
Theorem 2, let jβj < β�, and let S ⊂ B ⊂ V be subsystems
with dðS; ∂BÞ ≥ L0ðβ; j∂SjÞ. Then,

kgSðβÞ − gS↾BðβÞk1 ≤
vjβjJ

1 − e−1=ξðβÞ
e−dðS;∂BÞ=ξðβÞ; ð13Þ

where gS↾B denotes the thermal state of B reduced to S
and v ≔ 4j∂Sjj∂Bj= lnð3Þ.
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Similarly, as a corollary of Theorems 1 and 2, we obtain
the following implication.
Implication 2 (Stability).—Below the critical inverse

temperature β� [from Eq. (9)], thermal states of local
Hamiltonians are exponentially stable against distant,
locally bounded perturbations.

F. Efficient approximation

Corollary 2 on the universal locality of thermal states
also has the following complexity-theoretic consequence.
Implication 3 (Efficient approximation).—For jβj < β�,

local expectation values can be approximated with a
computational cost independent of the system size and
bounded polynomially in the reciprocal error.
In this sense, the error bound (see Fig. 4) of Corollary 2

is reminiscent of the quasilocality of dynamics, as,
e.g., presented in Ref. [34], which is a consequence of

Lieb-Robinson bounds [35,36]. The quasilocality theorem
[34] allows for an approximation of time-evolved local
observables by truncating the Hamiltonian in the time-
evolution operator at a distance L > 0 far away from the
spacetime cone of the observable’s support and has an
approximation error that is exponentially small in L.

G. Fermions

In Ref. [37], it was shown for fermionic systems that
two-point functions of observables that are odd polyno-
mials in the fermionic operators decay exponentially with a
correlation length proportional to the inverse temperature.
Here, we obtain an exponential decay of the covariance
above the critical temperature for all operators.
Observation 1 (Fermions).—All results also hold for

locally interacting fermions on a lattice. See Theorem 4
and Corollaries 4 and 5 in Sec. IV C for the precise
statements.

III. RELATIONS TO KNOWN RESULTS

In this section, we discuss the critical temperature from
the clustering theorem, the connection of this work to
concepts related to thermalization, and approximations of
thermal states with so-called matrix product operators;
as a last point, we briefly mention similarities with local
topological quantum order.

A. Critical temperatures and phase transitions

Our results show that the quantity β�, as defined in
Eq. (9), provides a potentially coarse but universal and
completely general upper bound on physical critical tem-
peratures like the Curie temperature. For the ferromag-
netic two-dimensional isotropic Ising model without an
external field, our bound yields, for example, 1=ðβ�JÞ ¼ 2=
ln½ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=e
p Þ=2� ≈ 24.58, whereas the phase transi-

tion between the disordered paramagnetic and the ordered
ferromagnetic phases is known to really happen at 1=ðβcJÞ ¼
2= lnð1þ ffiffiffi

2
p Þ ≈ 2.27 [16]. Our universal bound is about

an order of magnitude higher than the actual value for
this example. To put this discrepancy into perspective, it is
worth pointing out that it is a very difficult task to estimate
physical critical temperatures—numerically or analytically.
In fact, analytic expressions for critical temperatures or even
just bounds on their values are known only for very few
models.
One of the few known general statements is the Mermin-

Wagner-Hohenberg theorem [38]. It states that in certain
low-dimensional systems with short-range interactions,
there cannot be any phase transition involving the
spontaneous breaking of a continuous symmetry at any
nonzero temperature. However, such systems can still have
a low-temperature phase with quasi-long-range order
characterized by power-law-like decaying correlations.
Consequently, even for systems covered by the Mermin-
Wagner-Hohenberg theorem, our Theorem 2 is nontrivial.

FIG. 3. The truncation from Corollary 2 and Implication 3: For
β < β� and dðS; ∂BÞ ≪ ξðβÞ, Corollary 2 implies that gSðβÞ,
depicted on the left, and gS↾BðβÞ, depicted on the right, are
approximately equal.

FIG. 4. One can obtain slightly tighter error bounds in Corol-
laries 2 and 5 by directly using Eq. (47). The plot shows this
bound on the approximation error kgSðβÞ − gS↾BðβÞk1 for the case
of S being a single site on a 2D square lattice as a function of the
inverse temperature β in units of the critical temperature and the
width of the buffer region L. This bound can be seen as an
imaginary-time Lieb-Robinson “cone” with diverging width
as β → β�.
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For example, it implies an upper bound on the critical
temperature of the Kosterlitz-Thouless transition in the
two-dimensional XY model [39].
In this work, we have concentrated on the general

picture, but it seems likely that refinements of the methods
employed and developed here can yield much tighter
bounds on critical temperatures if more specific properties
of a model are taken into account. At the same time, it
remains an open problem to actually find a model with a
phase transition with long-range order at the universal
highest possible temperature.

B. Foundations of statistical mechanics

The recent years have seen a large number of
numerical and experimental (see Ref. [21] for a review)
as well as analytical investigations (see, for example,
Refs. [17–19,22–24]) of equilibration and thermalization
in closed quantum systems. In the focus of these works
are the approach to equilibrium or properties of energy
eigenstates. The current work complements this body of
literature in that it shows fundamental properties of systems
in thermal equilibrium. A feature that makes the current
work unique is that, contrary to essentially all other works,
the results derived here explicitly use the structure of
locality interacting systems. (Noteworthy exceptions are
Ref. [24] and, albeit in a very special setting, Ref. [18].)
The locality of thermal states is also of interest for recent

results [24] on the dynamical thermalization of translation-
invariant lattice models: Our Corollary 2 guarantees the
existence of a “unique phase” [24] for all temperatures
above our critical temperature. Hence, it implies that at
sufficiently high temperatures, Theorems 1, 2, and 3 of
Ref. [24] are applicable for any translation-invariant
Hamiltonian.
There is also an interesting connection of our locality and

stability results to the so-called eigenstate-thermalization
hypothesis (ETH) [20,21]. The ETH essentially conjectures
that the expectation values of certain physically relevant
observables (for example, local ones) in energy eigenstates
of sufficiently complex Hamiltonians should be very
similar to the expectation values in thermal states with
the same average energy. Corollary 2 and Implication 2
thus imply that the eigenstates of a Hamiltonian in
the center of the spectrum (which correspond to high-
temperature thermal states) must, if the Hamiltonian fulfills
the ETH, also be locally stable against perturbations of the
Hamiltonian. This insight could put constraints on the class
of Hamiltonians that fulfills the ETH, provide new insights
into the properties of their eigenstates, and open up new
ways to test the ETH.

C. MPO approximation of thermal states

Matrix product operators (MPOs) are a certain class of
operators that are tractable on classical computers for one-
dimensional systems. Therefore, they play an important

role in numerical simulations based on so-called tensor
networks.
An important ingredient to our proof of Theorem 2 on

the clustering of correlations will be a bound on a truncated
cluster expansion (Lemma 1). The original result on the
cluster expansion (Lemma 2 in the Appendix) is due to
Hastings and was first used to approximate thermal states
with inverse temperature below 2β� by MPOs [40]. This
approximation is summarized in the next theorem.
In one spatial dimension, this MPO approximation yields

a tensor size bounded polynomially in the system size
and the approximation error (see the subsequent corollary).
In higher dimensions, however, the MPO approximation
yields a tensor size bounded only subexponentially in the
system size and is hence not computationally efficient,
albeit exponentially cheaper than storing the full density
matrix gðβÞ. In order to explain the MPO approximation
in more detail, we start the discussion with a slightly
nonstandard definition of MPOs.
Definition 1 (MPO).—Let ðb½x�ðjÞÞd2j¼1 be a basis for the

operators on Hx and write an arbitrary operator A on H in
the product basis as

A ¼
X

k∈½d2�V
Ak ⊗

x∈V
b½x�ðkxÞ; ð14Þ

with expansion coefficients Ak ∈ C and where
½d2� ≔ f1; 2;…; d2g. If the Ak are of the form

Ak ¼
Y
x∈V

a½x�ðkÞ; ð15Þ

where every a½x�ðkÞ only depends on at most r of the jVj
indices kx, then A is called an MPO with tensor size d2r.
Thermal states can be approximated by such MPOs. The

following theorem is a consequence of Lemma 2, which we
will prove in the Appendix along with Lemma 1.
Theorem 3 (MPO approximation of thermal states

[40]).—Let H ¼Pλ∈Ehλ be a local Hamiltonian with
finite interaction graph ðV; EÞ having a growth constant
α and local interaction strength J ¼ maxλ∈Ekhλk∞, and
define bðβJÞ ≔ αejβJjðejβJj − 1Þ. Moreover, let β be small
enough such that bðβJÞ < 1. Then, for each L ∈ Zþ, there
exists a self-adjoint MPO ρðβ; LÞ [given in Eq. (A3)] with
tensor size d2NðLÞ, where

NðLÞ ≔ sup
x0∈V

jfx ∈ V∶dðx; x0Þ < Lgj ð16Þ

is the number of vertices within a distance less than L. The
approximation error is bounded as

kgðβÞ − ρðβ; LÞk1 ≤ exp

�
jEj bðβJÞL

1 − bðβJÞ
�
− 1; ð17Þ
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i.e., for fixed jβJj < b−1ð1Þ, the trace norm difference
scales as OðjEje−j ln½bðβJÞ�jLÞ for large enough L.
In particular, the above theorem implies the following

corollary.
Corollary 3 (Bound on the tensor size).—Let D be the

spatial dimension of the Hamiltonian’s interaction graph
ðV; EÞ, let n ≔ jEj be the system size, and let β < 2β� with
β� from Eq. (9). Then, the MPO approximation in
Theorem 3 gives rise to a tensor size of the MPO
ρðβ; LÞ scaling as

logdðtensor sizeÞ ≤ O½lnðCn=ϵÞD�; ð18Þ

with some β-dependent constant C. In particular, for
D ¼ 1, the bound on the tensor size scales polynomially
with n=ϵ.
Let us consider a one-dimensional system and suppose

we are explicitly given the MPO tensors a0½x� [see Eq. (15)]
of an approximation to a state ρ and, similarly, an
observable A of MPO form with MPO tensors a½x�. If
the tensor sizes of both MPOs scale at most polynomially in
the system size, then one can compute the corresponding
approximation to the expectation value TrðρAÞ with a
computational cost scaling polynomially in the system
size. Thus, for instance, global product observables can be
approximated efficiently, which is not guaranteed by our
Implication 3. The problem with the MPO approximation,
however, is that Theorem 3 only guarantees the existence of
the MPO tensors but it is not obvious how they can be
computed (efficiently).
Proof of Corollary 3.—The condition β < 2β� is equiv-

alent to bðβJÞ < 1. Let us denote the bound to the
approximation error in Eq. (17) by ϵ. Note that the upper
bound in Eq. (17) satisfies

ϵ ≔ exp

�
jEj bðβJÞL

1 − bðβJÞ
�
− 1 ≤ Cn bðβJÞL ð19Þ

for distances L being at least logarithmically large in
n ¼ jEj and some β-dependent constant C. Then, the
distance L necessary to reach ϵ must asymptotically be
at least as large as

L ≥
ln ðCn=ϵÞ
j ln½bðβJÞ�j : ð20Þ

Bounding NðLÞ in terms of the spatial dimension D as
NðLÞ ≤ MLD with some constant M yields a tensor size
bounded as

logdðtensor sizeÞ ≤ 2M

�
ln ðCn=ϵÞ
ln½1=bðβJÞ�

�
D
: ð21Þ

▪

D. Local topological quantum order

It is worth mentioning that Corollary 2 and Implication 2
are very reminiscent of the local topological quantum order
condition for open quantum systems introduced in
Ref. [41] and the results on the local stability of stationary
states of local Liouvillians in Ref. [42]. A slightly different
family of local topological quantum order conditions for
closed quantum systems [41–44] has played a very impor-
tant role in the theory of locally stable (topological) lattice
systems and for rigorous proofs of entropic area laws.
Corollary 2 similarly characterizes the regime where local
perturbations cannot drive any thermal phase transition.

IV. DETAILS

In this section, we first discuss the generalized covari-
ance and then provide details concerning the applicability
of our results to Hamiltonians with k-body interactions.
Finally, we justify Observation 1 by stating the fermionic
versions of our results.

A. The generalized covariance

The generalized covariance defined in Eq. (2), which
depends on a parameter τ ∈ ½0; 1�, provides more informa-
tion about the correlations between two observables
than the standard covariance in a similar way as the class
of Rényi entropies characterizes more completely the
entanglement properties of a state than simply the von
Neumann entropy [45]. While it occurs quite naturally
in the perturbation formula of Theorem 1, other possible
applications are to be explored. Here, we discuss possible
generalizations of the generalized covariance to operators
of arbitrary rank, show that for operators A and A0 they are
always bounded by kAk∞kA0k∞, and comment on con-
vexity and a symmetrized version of the generalized
covariance.
A definition of the generalized covariance for states of

arbitrary rank is not relevant for this work because for
nonzero temperature, thermal states are full-rank operators.
However, the discussion of possible generalizations also
hints at the behavior of covτ at the end points of the unit
interval. On the open interval τ ∈ �0; 1½, it is natural to
simply keep the definition from Eq. (2). There are two
natural ways to define ρ0: Either as ρ0 ≔ 1 or as
ρ0þ ≔ limτ→0ρ

τ, where ρ0þ turns out to be the projector
onto the image of the operator ρ. For each end point τ ¼ 0
and τ ¼ 1, there are hence two natural ways to define covτ,
either such that the generalized covariance is continuous
or such that cov0ρðA; A0Þ ¼ covρðA0; AÞ and cov1ρðA; A0Þ ¼
covρðA; A0Þ, where

covρðA; A0Þ ≔ TrðρAA0Þ − TrðρAÞTrðρA0Þ ð22Þ

defines the standard covariance.
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Note that for product states and operators with disjoint
support, all versions of the generalized covariance vanish.
Moreover, for pure states, the continuous version of the
generalized covariance vanishes also, meaning that
classical correlations are needed to yield a nonzero value.
Next, we show that the generalized covariance is always

bounded as

j covτρðA; A0Þj ≤ kAk∞kA0k∞; ð23Þ

irrespective of which definitions are chosen for cov0 and
cov1. We consider a state ρ and define Ā ≔ A − TrðρAÞ.
Then,

covτρðA; A0Þ ¼ TrðρτĀρ1−τA0Þ: ð24Þ

Hölder’s inequality generalized to several operators and the
fact that kXkp ¼ kjXjpk1=p1 then imply that

j covτρðA; A0Þj ≤ kρτk1=τkĀk∞kρτk1=ð1−τÞkA0k∞ ð25Þ

¼ kĀk∞kA0k∞; ð26Þ

and, by noting that kĀk∞ ¼ kAk∞, the bound (23) is
proven for the continuous version of the generalized
covariance. For the noncontinuous versions, the bound
follows similarly.
The variance covτρðA; AÞ induced by the continuous

version of the covariance is convex in τ, as can be seen by
writing out ρ in its eigenbasis. As one can change the sign
of covτρðA; A0Þ by just changing the sign of A0, the
generalized covariance is not convex in τ. But, it might
be that its magnitude j covτρðA; A0Þj is convex, which is
unclear. If this were the case, it would be enough to prove
the clustering Theorem 2 only for the end points τ ∈ f0; 1g,
and hence the proof could be significantly simplified.
Similarly, as there is a symmetrized version of the

standard covariance, one can also symmetrize the gener-
alized covariance with respect to the two operators.
Because of the cyclicity of the trace, the generalized
covariance satisfies the symmetry property

covτρðA; A0Þ ¼ cov1−τρ ðA0; AÞ: ð27Þ

Hence, one can define the symmetrized version of the
generalized covariance as follows:

covτρðA; A0Þ ≔ 1

2
½ covτρðA; A0Þ þ covτρðA0; AÞ�: ð28Þ

Our results can also be phrased in terms of this sym-
metrized version, since the averaged generalized covari-
ance in the perturbation formula of Theorem 1 can easily be
rewritten in terms of cov, and a bound analogous to the
clustering of Theorem 2 holds also for the symmetrized
quantity.

B. Bound on the growth constant for
local k-body interactions

In this section, we show that regular hyperlattices also
have a finite growth constant, which renders our results
applicable to Hamiltonians with local k-body interactions.
In the case of k-body interactions, the Hamiltonian is

again a sum of local terms hλ whose supports are hyper-
edges λ ¼ suppðhλÞ ⊂ V with jλj ≤ k. As before, V denotes
the vertex set and E the set of hyperedges.
We assume that the interaction hypergraph ðV; EÞ is a

regular hyperlattice, i.e., that it can be embedded into a
regular hypercubic lattice of a certain dimension D with
hyperedges of hypercubic form. Let us denote by R the
edge length of the resulting hypercubes. Note that such an
embedding is, in general, not unique and changes both the
number of terms in the Hamiltonian and the local inter-
action strength of H. Moreover, the grouping changes the
values of the metric d in our results.
In order to find an exponential upper bound to the

number am of hyperanimals composed of m hypercubes,
let us define a spread-out graph of range R as the graph
with the edge set consisting of all pairs fx; yg with
0 < kx − yk∞ ≤ R and x; y ∈ ZD (see Ref. [32]). Notice
that as any hypercube is uniquely specified by the coor-
dinates of its “lower left corner,” any hyperanimal of sizem
corresponds to a lattice animal of sizem − 1 and range R in
the spread-out graph. It follows from Lemma 2 in Ref. [32]
that am ≤ ðKeÞm with K ¼ ð2Rþ 1ÞD − 1 being the co-
ordination number. Hence, the hyperlattice has a growth
constant bounded by α ≤ ½ð2Rþ 1ÞD − 1�e.
The bound obtained is, for most models, far from

optimal, in particular, in situations where the supports of
the local Hamiltonian terms are very different from hyper-
cubes. For such cases, one can derive tighter but more
specific bounds from known results about lattice animals in
a similar way.

C. Fermionic versions of the main results

To make Observation 1 about fermions precise, we
introduce the setting of interacting fermions on lattices.
For each site x ∈ V, the corresponding fermionic operators,
i.e., the creation and annihilation operators f†x and fx, act
on the fermionic Fock space and satisfy

ffx; f†yg ¼ δx;y1; ð29Þ

ffx; fyg ¼ 0; ð30Þ

where fA; Bg ≔ ABþ BA is the anticommutator. For such
systems, all operators can be given in terms of polynomials
in the fermionic operators. A monomial of fermionic
operators is called even (odd) if it can be written as a
product of an even (odd) number of fermionic operators fx
and f†y. A polynomial of fermionic operators is called even
(odd) if it can be written as a linear combination of only
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even (odd) monomials, and an operator is called even (odd)
if it can be written as an even (odd) polynomial of fermionic
operators. According to the fermion-number-parity super-
selection rule, only operators that are even polynomials
in the fermionic operators are physical observables and
Hamiltonians.
As with spin-lattice systems, we have again a finite

interaction graph ðV; EÞ; however, the support of an
operator is now to be understood in the picture of the
second quantization as follows: The support of any operator
A being a polynomial in the fermionic operators is the set
of vertices of the fermionic operators that occur in the
polynomial. Correspondingly, we denote the algebra of the
even operators supported on a region X ⊂ V by GX and
denote G ≔ GV for short. The Hamiltonian of a fermionic-
lattice system is of the form

H ¼
X
λ∈E

hλ ð31Þ

with hλ ∈ Gλ. For B ⊂ V, the truncated Hamiltonian H↾B is
similarly the sum only over the edges contained in B. As for
spin systems,H∂B is the sum over the boundary edges of B.
Theorem 1 also holds for such fermionic-lattice systems,

and we can prove statements analogous to Corollary 1,
Theorem 2, and Corollary 2. Hence, all implications stated
in Sec. II also hold. All proofs are presented in Sec. V C.
Corollary 4 (Fermionic truncation formula).—Let H ¼P
λ∈Ehλ be a fermionic local Hamiltonian with local terms

hλ ∈ G, let B ⊂ V be a subsystem, and let the interpolating
Hamiltonian by HðsÞ ≔ H − ð1 − sÞH∂B with its thermal
state gs ≔ g½HðsÞ�. Then, for any operator A with support
suppðAÞ ⊂ B,

TrfAg½H↾B�ðβÞg − Tr½AgðβÞ�

¼ β

Z
1

0

dτ
Z

1

0

ds covτgsðβÞðH∂B; AÞ: ð32Þ

Theorem 4 (Clustering of correlations in fermionic
systems).—Let gðβÞ be the thermal state at inverse temper-
ature β of a local fermionic HamiltonianH ¼Pλ∈Ehλ with
finite interaction graph ðV; EÞ having growth constant
α, local terms hλ ∈ G, and local interaction strength J.
Define the functions β�, ξ, and L0 as in Eqs. (9), (10), and
(50). Then, for every jβj < β�, τ ∈ ½0; 1�, and every two
operators A and B with dðA; BÞ ≥ L0ðβ; aÞ, where
a ≔ minfj∂Aj; j∂Bjg,

j covτgðβÞðA; BÞj ≤
4akAk∞kBk∞

lnð3Þð1 − e−1=ξðβÞÞ e
−dðA;BÞ=ξðβÞ: ð33Þ

Corollary 5 (Locality of fermionic thermal states).—Let
H be a Hamiltonian satisfying the conditions of Theorem 4,
let jβj < β�, and let S ⊂ B ⊂ V be subsystems with
dðS; ∂BÞ ≥ L0ðβ; j∂SjÞ. Then,

kgSðβÞ − gS½H↾B�ðβÞk1 ≤
vjβjJ

1 − e−1=ξðβÞ
e−dðS;∂BÞ=ξðβÞ; ð34Þ

where v ¼ 4j∂Sjj∂Bj= lnð3Þ.

V. PROOFS

We start this section with the proofs of Theorems 1
and 2. One important stepping stone for the proof of the
latter is a tailored version of a bound on a truncated cluster
expansion (Lemma 1) from Ref. [40]. Both versions are
proven in the Appendix. In the last part of the section, we
prove the fermionic versions of our main results,
Theorem 4 and Corollaries 4 and 5.

A. Proof of the perturbation formula (Theorem 1)

The two main ingredients in the proof of Theorem 1 are
the fundamental theorem of calculus and Duhamel’s
formula. The generalized covariance appears as a natural
measure of correlations.
Proof of Theorem 1.—Using the fundamental theorem of

calculus, we obtain

Tr½Ag0ðβÞ� − Tr½Ag1ðβÞ� ¼ −Tr
�
A
Z

1

0

d
ds

e−βHðsÞ

ZsðβÞ
ds

�

with Zs ≔ Z½HðsÞ�. The derivative can be written as

d
ds

e−βHðsÞ

ZsðβÞ
¼ 1

ZsðβÞ
d
ds

e−βHðsÞ −
gsðβÞ
ZsðβÞ

Tr

�
d
ds

e−βHðsÞ
�
:

After applying Duhamel’s formula to both derivatives, i.e.,
using that

d
ds

e−βHðsÞ ¼ −β
Z

1

0

ðe−βHðsÞÞτ
�
d
ds

HðsÞ
�
ðe−βHðsÞÞ1−τdτ;

we obtain

TrðAg0Þ−TrðAgÞ¼−β Tr
�
A
Z

1

0

Z
1

0

f−gτsðH−H0Þg1−τs

þgsTr½gτsðH−H0Þg1−τs �gdτds
�
: ð35Þ

Together with the cyclicity of the trace and the definition
of the generalized covariance in Eq. (2), the last equation
finishes the proof. ▪

B. Proof of Theorem 2 on clustering of correlations

The proof of Theorem 2 builds on and develops further a
cluster expansion of the power series of e−βH in terms of
summands of the form

hðwÞ ≔ hw1
hw2

…hwjwj ; ð36Þ
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where wj ∈ E. For the sake of a compact presentation, we
refer to edges as letters, to the edge set E as an alphabet, and
call sequences of edges words. For any subalphabet F ⊂ E,
we denote by F� ≔ ⋃∞

l¼0F
l the set of words with letters

in F and arbitrary length l, where the length jwj of a word
w ∈ E� is the total number of letters it contains. For
two words w; v ∈ E�, their concatenation is denoted by
w ∘ v ≔ ðw1; w2;…; wjwj; v1; v2;…; vjvjÞ. We call a word
c ∈ E� connected or a cluster if the set of letters in c is an
animal, i.e., connected. So, clusters are connected sequences
of edges where the edges can also occur multiple times,
while animals are sets of edges without any order or
repetition. A word v is called a subsequence of w ∈ E� if
v can be obtained from w by omitting letters, i.e., if there
is an increasing sequence j1 < j2 < � � � < jjvj such that
vi ¼ wji . This will be denoted by v ⊂ w. A connected
subsequence c ⊂ w is called a maximal cluster of w if c is
not a subsequence of any other connected subsequence of w.
Importantly, for any word w ∈ E�, one can permute its
letters to a new wordw0 such that hðw0Þ ¼ hðwÞ, irrespective
of the choice of the local terms hλ and such that
w0 ¼ c1 ∘ c2 ∘ � � � ∘ ck is a concatenation of maximal clus-
ters cj ⊂ w of w. Note that this decomposition is unique up
to the order of the cj.
In the following, we will consider systems that are either

n ¼ 2 or n ¼ 4 copies of the original system with Hilbert
space H. For any operator A on H, we denote by AðjÞ the
operator onH⊗n that acts as A on the jth copy, e.g., Að2Þ ≔
1 ⊗ A for n ¼ 2. By Sði;jÞ, we denote the swap operator on
H⊗n that swaps the ith and jth tensor factors, e.g.,
S1;2jk1; k2; k3; k4i ¼ jk2; k1; k3; k4i for n ¼ 4. For n ¼ 2,
we write S instead of S1;2.
We can now state the subsequent lemma, which is a

bound on a truncated cluster expansion that is based on a
more general, but for our purposes not tight enough bound,
used previously in Ref. [40]. (See Lemma 2 in the
Appendix.) The lemma will play an important role in
the subsequent proof of Theorem 2.
Lemma 1 (Truncated cluster expansion).—Let τ ∈ ½0; 1�

and H ¼Pλ∈Ehλ be a local Hamiltonian on H with finite
interaction graph ðV; EÞ having growth constant α and local
interaction strength J ¼ maxλ∈Ekhλk∞. We denote by ~H
the Hamiltonian of two weighted copies with local terms
~hλ ≔ τhð1Þλ þ ð1 − τÞhð2Þλ . Consider two operators A and B
on H, define bðxÞ ≔ αejxjðejxj − 1Þ, and let jβj be small
enough such that bðβJÞ < 1. For some set of edges F ⊂ E,
let C≥LðFÞ ⊂ E� be the set of words containing at least
one cluster c that contains at least one letter of F and has
size jcj ≥ L (see Fig. 5) and let us denote the corresponding
truncated cluster expansion of e−β ~H by

Ω½ ~H�ðβÞ ≔
X

w∈C≥LðFÞ

ð−βÞjwj
jwj!

~hðwÞ; ð37Þ

with ~hðωÞ∶ ¼ ~hω1 ~hω2… ~hωjωj. Then, for all τ ∈ ½0; 1�,

jTr½SAð1ÞBð2ÞΩ½ ~H�ðβÞ�j
kAk∞kBk∞ZðβÞ

≤ exp

�
jFj bðβJÞL

1 − bðβJÞ
�
− 1: ð38Þ

We provide a detailed proof of this lemma in the
Appendix. The terms resulting from the expansion of the
exponential series of e−βH are classified according to
whether they contain a cluster of size at least L that
contains a letter from F. One can then show that there is
a percolation transition at β� ¼ b−1ð1Þ=ð2JÞ such that for
jβj < β�, the contribution of long clusters is exponentially
suppressed.
In the following proof of the exponential clustering, we

will use the so-called swap trick: For any two operators A
and B, it holds that

TrðABÞ ¼ Tr½SðA ⊗ BÞ�; ð39Þ

which can be checked by a straightforward calculation.
Proof of Theorem 2.—Fix some τ ∈ ½0; 1�. For any

operator A∶ H → H, we define Að�Þ≔A⊗1�1⊗A
and ~AðþÞ ≔ τðAð1Þ þ Að2ÞÞ þ ð1 − τÞðAð3Þ þ Að4ÞÞ.
As the first step, we write the covariance as

covτρðA;BÞ ¼
1

2
2Tr½Að−Þðρτ ⊗ ρτÞBð−Þðρ1−τ ⊗ ρ1−τÞ�:

Using the swap trick (39) yields (see Fig. 6)

covτρðA;BÞ ¼
1

2
2Tr½S1;3S2;4ðAð−Þ ⊗ Bð−ÞÞρ4�; ð40Þ

where ρ4 ≔ ρτ ⊗ ρτ ⊗ ρ1−τ ⊗ ρ1−τ. For the case ρ ¼ gðβÞ,
the operator ρ4 turns out to be

FIG. 5. A 2D square lattice. Three different subalphabets are
indicated: Words that contain all letters in those alphabets are
members of different sets C≥LðFÞ.
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ρ4 ¼
e−β ~HðþÞ

ZðβÞ2 : ð41Þ

Writing out ρ4 as a power series yields

covτgðβÞðA; BÞ ¼
1

2ZðβÞ2
X
w∈E�

ð−βÞjwj
jwj! tðwÞ ð42Þ

with

tðwÞ ≔ Tr½S1;3S2;4ðAð−Þ ⊗ Bð−ÞÞ ~hðþÞðwÞ� ð43Þ

and ~hðþÞðwÞ ≔ ~hðþÞ
w1

~hðþÞ
w2

… ~hðþÞ
wjwj . Next, we argue that tðwÞ

vanishes whenever w does not contain a cluster connecting
the supports of A and B. Without loss of generality, we
assume that j∂Aj ≤ j∂Bj and consider C≥Lð∂AÞc ¼
E� ⃥ C≥Lð∂AÞ, the set of words that do not contain a cluster
containing an edge in ∂A of size L ≔ dðA;BÞ or larger.
The set C≥Lð∂AÞc hence contains no words with clusters
that connect suppðAÞ and suppðBÞ. Any word w ∈
C≥Lð∂AÞc can be replaced by a concatenation of two words
wA and wB such that ~hðþÞðwÞ ¼ ~hðþÞðwAÞ ~hðþÞðwBÞ, where
wA contains all maximal clusters of w that overlap with
suppðAÞ and wB all other maximal clusters of w. The
operators ~hðþÞðwAÞ and 1 ⊗ 1 ⊗ Bð−Þ≕B̂, and ~hðþÞðwBÞ
and Að−Þ ⊗ 1 ⊗ 1≕Â, then have disjoint supports,
respectively, and the trace in Eq. (43) factorizes into a
product of two traces, one over the subsystem X ≔
suppðÂÞ∪supp½ ~hðþÞðwAÞ� and the other over the
rest of the system. It turns out that both vanish: By
using the symmetries Â ¼ −S1;2ÂS1;2, ~hðþÞðwAÞ ¼
S1;2S3;4 ~hðþÞðwAÞS3;4S1;2, ÂS3;4 ¼ S3;4Â, and that
ðSi;jÞ2 ¼ 1, one can show, e.g., that

Tr½S1;3S2;4Â ~hðþÞðwAÞ� ¼ −Tr½S1;3S2;4Â ~hðþÞðwAÞ�: ð44Þ

This equation implies that for every w ∈ C≥Lð∂AÞc,

tðwÞ ∝ Tr½S1;3S2;4Â ~hðþÞðwAÞ� ¼ 0: ð45Þ

Together with Eq. (42), realizing that ZðβÞ2 ¼ Z½HðþÞ�ðβÞ,
and using the notation from Eq. (37) with F ¼ ∂A and
L ¼ dðA;BÞ, it follows that

covτgðβÞðA;BÞ ¼ Tr

�
S1;3S2;4Â B̂
2ZðβÞ2 Ω½ ~HðþÞ�ðβÞ

�
: ð46Þ

After applying Lemma 1 and using that kÂk∞ ≤ 2kAk∞,
and similarly for B, we obtain

j covτgðβÞðA;BÞj
kAk∞kBk∞

≤ 2ðej∂Ajbð2βJÞL=½1−bð2βJÞ� − 1Þ: ð47Þ

The fact that the condition β < β� is equivalent to
bð2βJÞ < 1 implies that bð2βJÞL decays exponentially
with L. In order to obtain the desired exponential bound
(11), we apply the bound ∀ x ∈ ½0; x0�∶ expðxÞ − 1 ≤
xðex0 − 1Þ=x0 with the choice x0 ¼ lnð3Þ. In order to have

j∂Aj bð2βJÞL
1−bð2βJÞ ≤ lnð3Þ, we impose

L ≥
���� ln
� j∂Aj
lnð3Þ½1 − bð2βJÞ�

�
= lnð2βJÞ

���� ð48Þ

¼ ξðβÞj ln½lnð3Þð1 − e−1=ξðβÞÞ=j∂Aj�j ð49Þ

≕ L0ðβ; j∂AjÞ: ð50Þ

This inequality guarantees the exponential bound (11) and
finishes the proof. ▪

C. Proofs of the fermionic versions
of the main results

In order to also establish our main results for fermionic
systems, we go through the proofs for spin systems and
discuss the necessary modifications.
Proof of Corollary 4.—In Theorem 1, we choose H0 ¼

H −H∂B. As the local terms are all in G, we have that the
thermal state of H0 factorizes, i.e., g0 ¼ g½H↾B�g½H↾Bc �.
After tracing over Bc, the statement follows. ▪
Proof of Theorem 4.—We use the same tensor copy trick

as in the proof of Theorem 2. Equation (40) still holds in the
fermionic setting. Note that the Hilbert space over which
the trace is performed in Eq. (40) is not the Fock space of a
system of 4 times the number of modes but the tensor
product of four identical fermionic Fock spaces with the
canonical inner product. This Hilbert space can be inter-
preted as that of a system of four types of fermionic
particles that are each mutually indistinguishable and
subject to (up to τ-dependent prefactors) identical
Hamiltonians but do not interact with each other and
can be distinguished from each other. It is spanned by
tensor products of Fock states. The state g½ ~HðþÞ�ðβÞ is the
thermal state of this system. Equation (42) with tðwÞ as
defined as in Eq. (43) still holds. Note that the swap
operators swap tensor factors, not fermionic modes.
Thus, they still satisfy the symmetry relations that are

FIG. 6. The “multiple swap trick”: Eq. (40) as a tensor network.
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used to prove that only terms corresponding to the words
w ∈ C≥Lð∂AÞ can contribute to the covariance.
It remains to show that Lemma1 still holds in the fermionic

setting. Lemmas 3 and 8 are purely combinatorial.
Lemmas 4–7, 9, and 10 only use the local boundedness of
the Hamiltonian and that Hamiltonian terms with disjoint
support commute. The same holds in the fermionic setting
because the Hamiltonian terms must be physical operators,
i.e., even polynomials in the fermionic operators. Hence,
all lemmas used in the proof of Lemma 1 carry over to the
fermionic setting. It is then straightforward to see that the
proof itself also goes through without any modifications.▪
Proof of Corollary 5.—Tracing out Bc in the second

trace in Eq. (32) and bounding the integral yields

jTr½AgðβÞ� − TrfAg½H↾B�ðβÞgj
≤ jβj sup

s∈½0;1�
sup
τ∈½0;1�

j covτgsðβÞðA;H∂BÞj: ð51Þ

Taking the supremum over all A with kAk∞ ¼ 1 and
suppðAÞ ⊆ S and using Theorem 4 finish the proof. ▪

VI. CONCLUSIONS

In this work, we clarify the limitations of a universal
concept of scale-independent temperature by showing that
temperature is intensive on a given length scale if and only
if correlations are negligible. The corresponding correlation
measure turns out to also quantitatively capture the stability
of thermal states against perturbations of the Hamiltonian.
Moreover, we find a universal critical temperature above
which correlations always decay exponentially with the
distance. We compare our results to known results on phase
transitions, comment on recent advances concerning ther-
malization in closed quantum systems (e.g., concerning
the eigenstate-thermalization hypothesis), and discuss
known matrix product operator approximations of thermal
states. More concretely, our results imply that at high
enough temperatures, the error made when truncating a
Hamiltonian at some distance away from the system of
interest is exponentially suppressed with the distance. As a
computational consequence, expectation values of local
observables can be approximated efficiently.
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APPENDIX: CLUSTER EXPANSIONS
AND PROOF OF LEMMA 1

The following discussion of cluster expansions is
expected to be interesting in its own right, as it contains

a rigorous formulation of the ideas outlined in Ref. [40].
We will provide a proof of the original statement used to
establish Theorem 3 as well as of the tailored statement
in Lemma 1, which is used to prove Theorem 2 on the
clustering of correlations.

1. The original cluster expansion from Ref. [40]

The original cluster expansion is similar to Lemma 1
with just one copy of the system instead of two
weighted ones.
Lemma 2 (Truncated cluster expansion [40]).—Let

H ¼Pλ∈Ehλ be a local Hamiltonian with finite interaction
graph ðV; EÞ having growth constant α and local interac-
tion strength J ¼ maxλ∈Ekhλk∞, and define bðxÞ ≔
αejxjðejxj − 1Þ. Moreover, let β be small enough such
that bðβJÞ < 1. For some subset of edges F ⊂ E, let
C≥LðFÞ ⊂ E� be the set of words containing at least one
cluster c that contains at least one letter of F and has size
jcj ≥ L and denote the corresponding truncated cluster
expansion by

Ω½H�ðβÞ ≔
X

w∈C≥LðFÞ

ð−βÞjwj
jwj! hðwÞ: ðA1Þ

Then,

kΩ½H�ðβÞk1
ZðβÞ ≤ exp

�
jFj bðβJÞL

1 − bðβJÞ
�
− 1: ðA2Þ

If one applies this lemma to the setting of Lemma 1, one
obtains a bound similar as the one in Eq. (38) but with
Z½ ~H�ðβÞ instead of ZðβÞ, where the ratio Z½ ~H�ðβÞ=Z½H�ðβÞ
can be exponentially large in the system size for τ ∈�0; 1½.
Lemma 2 was used in Ref. [40] to establish a math-

ematically (not algorithmically) constructive version of
Theorem 3, on MPO approximations, where the MPO in
Eq. (17) is given by

ρðβ; LÞ ¼ 1

ZðβÞ
X

w∈E� ⃥ C≥LðEÞ

ð−βÞjwj
jwj! hðwÞ: ðA3Þ

2. Proofs of Lemmas 1 and 2

The purpose of this section is to prove Lemma 1. But,
along the way, we also prove Lemma 2. In order to do so,
we start with the introduction of some more notation,
mainly concerning clusters and lattice animals. For w ∈ E�
and any subalphabet G ⊂ E, we write G ⊂ w if every letter
in G also occurs in w. By Gc ≔ E⃥ G, we denote the
complement of G ⊂ E. The extension of G is defined to
be Ḡ ≔ fλ ∈ E∣ ∃ λ0 ∈ G∶λ0∩λ ≠ ∅g and, similarly as for
subsystems, its boundary is ∂G ≔ Ḡ⃥ G. Throughout the
proof, we fix some subset of edges F ⊂ E. We denote by
C≥LðFÞ ⊂ E� the set of words that contain at least one
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cluster c with c∩F ≠ ∅ and jcj ≥ L, and we denote by
Ck≥LðFÞ the set of words that contain exactly k such clusters.
Note that for an animal G ⊂ E, there exists a cluster c ∈ E�
such that G ¼ fλ ∈ cg, and if one imposes some order on
G, one obtains a cluster. We denote byA¼lðFÞ andA≥LðFÞ
the sets of animals that contain at least one edge of F and
are of size exactly l or at least L, respectively. Moreover,
we denote by Ak

≥LðFÞ the corresponding sets of k-fold
animals, i.e.,

Ak
≥L ≔ f⨄k

j¼1Gj∶Gj ∈ A≥LðFÞ nonoverlappingg:

For a more compact notation, we write the terms in the
exponential series as

fðwÞ ≔ ð−βÞjwj
jwj! hðwÞ: ðA4Þ

We will frequently use the following fact: For any
Hamiltonian with a finite interaction graph ðV; EÞ, the
partial series over any set of words W ⊆ E� converges
absolutely, i.e.,

���X
w∈W

fðwÞ
���
∞

≤
X
w∈W

ðjβjJÞjwj
jwj! ðA5Þ

≤
X
w∈E�

ðjβjJÞjwj
jwj! ðA6Þ

¼ expðjβjJjEjÞ: ðA7Þ

In particular, this bound implies that the order of the terms
in the series over any subset of words W does not matter.
In the following proofs of Lemmas 1 and 2, we use

several technical auxiliary lemmas, which we will only
state and prove subsequently.
Proof of Lemma 1.—During this proof, we indicate

quantities corresponding to ~H by a tilde accent, e.g.,
~fðwÞ is defined as in Eq. (A4) but with respect to the
local terms ~hλ of ~H while fðwÞ is defined with respect to the
local terms hλ of H.
We start the proof by rearranging the terms in the series

over C≥LðFÞ in Eq. (37) according to the number of relevant
clusters they contain and use Lemma 3 with bk being the
series over Ck≥LðFÞ to obtain

Ω½ ~H�ðβÞ ¼
X∞
k¼1

X
w∈Ck≥LðFÞ

~fðwÞ

¼ −
X∞
m¼1

ð−1Þm
X∞
k¼m

�
k

m

� X
w∈Ck≥LðFÞ

~fðwÞ: ðA8Þ

Lemmas 5, 6, and 9 are the core of the proof. They define a
series of operators ð~ρmÞ∞m¼1 that have a particularly useful

form given in Lemma 10. This form exactly matches the
series over k in Eq. (A8), which leads to the following
identity:

Ω½ ~H�ðβÞ ¼ −
X∞
m¼1

ð−1Þm ~ρm: ðA9Þ

The operators ~ρm are defined in Eq. (A57) as series over
m-fold lattice animals G of operators ρðGÞ [defined in
Eq. (A31)]. This definition implies

TrðSAB~ρmÞ ¼
X

G∈Am
≥LðFÞ

Tr½SAB~ρðGÞ�: ðA10Þ

In the previous steps, the series over words has been
rewritten as a series over m-fold animals. Lemma 7
provides a bound on ~ρðGÞ that, together with Eqs. (A9)
and (A10), yields

jTrfSABΩ½ ~H�ðβÞgj
kAk∞kBk∞ZðβÞ

≤
X∞
m¼1

X
G∈Am

≥LðFÞ
yðβJÞjGj: ðA11Þ

Now, a counting argument for lattice animals from
Lemma 8 allows us to bound the series overm-fold animals
G in terms of a series of animals

jTrfSABΩ½ ~H�ðβÞgj
kAk∞kBk∞ZðβÞ

≤
X∞
m¼1

1

m!

� X
G∈A≥LðFÞ

yðβJÞjGj
�

m
:

Using that the number al [see Eq. (7)] of lattice animals G
with G∩F ≠ ∅ and of size jGj ¼ l is bounded by jFjal and
that al ≤ αl [see Eq. (8)], we obtain

jTrfSABΩ½ ~H�ðβÞgj ≤ ZðβÞ
X∞
m¼1

1

m!

�
jFj
X∞
l¼L

bðβJÞl
�m

with bðxÞ ≔ αyðxÞ. Performing the partial geometric series
over l with argument bðβJÞ < 1 and the exponential series
over m yields Eq. (A2) and completes the proof. ▪
Similarly, we prove Lemma 2.
Proof of Lemma 2.—By the same argument that led us to

Eq. (A9) in the proof of Lemma 1, we obtain

Ω½H�ðβÞ ¼ −
X∞
m¼1

ð−1Þmρm: ðA12Þ

Applying the triangle inequality and using the bound on ρm
from Lemma 9 yields

kΩ½H�ðβÞk1 ≤ ZðβÞ
X∞
m¼1

1

m!

�
jFj
X∞
l¼L

bðβJÞl
�m

: ðA13Þ
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Performing the partial geometric series over l with argu-
ment bðβJÞ < 1 and the exponential series over m yields
Eq. (A2) and completes the proof. ▪
We now prove various lemmas that are used in the

previous proofs of Lemmas 1 and 2.
Lemma 3.—Let ðbkÞ∞k¼1 be a sequence of complex

matrices

AK ≔
XK
k¼1

bk ðA14Þ

and

BK ≔ −
XK
m¼1

ð−1Þm
XK
k¼m

�
k
m

�
bk: ðA15Þ

Then, AK ¼ BK for all K ∈ N. In particular, if both
sequences converge, then their limits are the same,
i.e., limK→∞AK ¼ limK→∞BK .
Proof.—Applying the binomial theorem to ð1 − 1Þk ¼ 0

yields

Xk
l¼0

ð−1Þl
�
k
l

�
¼ 0; ðA16Þ

which we will use. We prove the identity by induction.
A1 ¼ B1 is easy to see. Under the assumption that AK ¼ BK
for some K ∈ N, we obtain

BKþ1 ¼ BK − ð−1ÞKþ1

�
K þ 1

K þ 1

�
bKþ1 ðA17Þ

−
XK
m¼1

ð−1Þm
�
K þ 1

m

�
bKþ1 ðA18Þ

¼ AK þ
�
−ð−1ÞKþ1 −

XK
m¼1

ð−1Þm
�
K þ 1

m

��
bKþ1

¼ AKþ1; ðA19Þ

where we have used Eq. (A16) in the last step. ▪
The goal of the following lemmas is to show that ρm is

well-defined and to upper bound it in trace norm. The order
of the lemmas is chosen in a way that makes clear that the
two quantities ρm and ρðGÞ, which will be defined shortly,
are actually well-defined.
We start with a trace norm bound on the perturbed

exponential series.
Lemma 4 [Eq. (21) from Ref. [40]].—Let H be a

Hamiltonian with finite interaction graph ðV; EÞ. For any
sequence ðGjÞkj¼1 of subalphabets Gj ⊂ E,

���e−βðH−
P

k
j¼1

HGj
Þ
���
1
≤ ZðβÞ

Yk
j¼1

���ejβjHGj

���
∞
: ðA20Þ

Proof.—The lemma is essentially a consequence of the
Golden-Thompson inequality and the fact that the trace
norm of a positive operator coincides with its trace. Using
first the Golden-Thompson and then Hölder’s inequality,
we obtain

���e−βðH−
P

k
j¼1

HGj
Þ
���
1
≤ Tr½e−βðH−

P
k−1
j¼1

HGj
ÞeβHGk �

≤ Tr½e−βðH−
P

k−1
j¼1

HGj
Þ�
���ejβjHGk

���
∞
: ðA21Þ

Now, iteration completes the proof. ▪
We will use the following lemma to bound the operator

norm of certain subseries of fðwÞ.
Lemma 5.—Let ðV; EÞ be a finite graph and J ≥ 0. For

any G ⊂ E,

X
w∈G�∶G⊂w

jβJjjwj
jwj! ¼ ðejβJj − 1ÞjGj: ðA22Þ

Proof.—Ordering the words in the sum in Eq. (A22) with
respect to their length yields

X
w∈G�∶G⊂w

jβJjjwj
jwj! ¼

X∞
l¼jGj

X
w∈Gl∶G⊂w

jβJjjwj
jwj! ðA23Þ

¼
X∞
l¼jGj

jβJjl
l!

jfw ∈ Gl∶G ⊂ wgj: ðA24Þ

From basic combinatorial considerations, we obtain

jfw ∈ Gl∶G ⊂ wgj ¼
X

j1;j2;…;jn≥1;
j1þj2þ…þjn¼l

�
l
j

�
; ðA25Þ

where
� l
j

	
is a multinomial coefficient. Therefore, the

right-hand side of Eq. (A24) only depends on n ≔ jGj and
we denote it by

γðnÞ ≔
X∞
l¼n

γðn; lÞ ðA26Þ

with
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γðn; lÞ ≔ jβJjl
l!

X
j1;j2;…;jn≥1;

j1þj2þ…þjn¼l

�
l

j

�

¼
X

j1;j2;…;jn≥1;
j1þj2þ…þjn¼l

jβJjj1
j1!

jβJjj2
j2!

…
jβJjjn
jn!

: ðA27Þ

Then,

γðnÞ ¼
X∞
l¼n

X
j1;j2;…;jn≥1;

j1þj2þ…þjn¼l

jβJjj1
j1!

jβJjj2
j2!

…
jβJjjn
jn!

¼
X∞
l¼n

Xl−ðn−1Þ
j1¼1

jβJjj1
j1!

X
j2;…;jn≥1;

j2þ…þjn¼l−j1

jβJjj2
j2!

…
jβJjjn
jn!

¼
X∞
l¼1

Xl
j1¼1

jβJjj1
j1!

γðn − 1; lþ n − 1 − j1Þ ðA28Þ

and, after realizing that the last series is a Cauchy product,

γðnÞ ¼
X∞
j1¼1

jβJjj1
j1!

X∞
l¼n−1

γðn − 1; lÞ ðA29Þ

¼ ðejβJj − 1Þγðn − 1Þ: ðA30Þ

We note that γð1Þ ¼ ejβJj − 1, and iteration finishes
the proof. ▪
The following lemma provides a factorization of the

series ρðGÞ in Eq. (A33) over words that have no letters on
the boundary of an m-fold animal G ∈ Am

¼lðFÞ and contain
all letters in G, into expð−βHðḠÞcÞ, whose norm we have
bounded in Lemma 4, times a product of operators ηðGjÞ.
The ηðGjÞ are supported on the single animals Gj compos-
ing the m-fold animal G. As we will see, a norm bound for
ηðGjÞ follows immediately from the previous lemma,
which, in turn, also yields an upper bound on ρðGÞ. The
form of ρðGÞ given in Eq. (A33) together with this upper
bound plays an important role in the main cluster
expansion.
Lemma 6.—Let H be a Hamiltonian with finite inter-

action graph ðV; EÞ. For G ⊂ E, let G ¼ ⨄m
j¼1Gj be the

decomposition of G into nonoverlapping animals Gj ⊂ E
and define

ρðGÞ ≔ e−βHðḠÞc
Ym
j¼1

ηðGjÞ ðA31Þ

with

ηðGÞ ≔
X

w∈G�∶G⊂w
fðwÞ: ðA32Þ

Then,

ρðGÞ ¼
X

w∈½ð∂GÞc��∶G⊂w
fðwÞ: ðA33Þ

Proof.—To simplify the notation, we denote the relevant
set of words that contain no letters in ∂G and each letter in
G at least once by

W⊃G ≔ fw ∈ ½ð∂GÞc��∶G ⊂ wg: ðA34Þ

The idea is to group these words into subsets ½w� ⊂ W⊃G

that coincide on the connected components of G and on
ðḠÞc and correspondingly split up the series (A33). We
formalize this idea by introducing an equivalence relation
on W⊃G. For v; w ∈ W, we define

v ∼ w∶⇔


v↾Gc ¼ w↾Gc

v↾Gj ¼ w↾Gj ∀j ¼ 1; 2;…; k;

where, for any subalphabet G0 ⊂ E, the restriction w↾G0 of
a word w ∈ E� is obtained from w by omitting all letters
that are not in G0. Then, the size of each equivalence class
½w� ∈ W⊃G=∼ is given by the multinomial coefficient

j½w�j ¼
� jwj
ðjw↾Gcj; jw↾G1j;…; jw↾GkjÞ

�
: ðA35Þ

Note also that hð½w�Þ ≔ hðw↾GcÞQk
j¼1 hðw↾GjÞ ¼ hðwÞ is

well-defined as a function on the classes. Let us denote the
set of words over the alphabet Gj that contain all letters at
least once by

W¼Gj ≔ fw ∈ ðGjÞ�∶Gj ⊂ wg: ðA36Þ

Then, the quotient set can be identified with a Cartesian
product of these sets

W⊃G=∼ ≅ ½ðḠÞc�� × ×
k

j¼1
W¼Gj: ðA37Þ

For each equivalence class K ∈ W⊃G=∼, we pick an
arbitrary representative wK ∈ W⊃G, use the definition of
f in Eq. (A4), and determine that k is the number of
connected components of G to obtain
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X
w∈½ð∂GÞc��∶G⊂w

fðwÞ ¼
X

K∈W⊃G=∼

jKj ð−βÞ
jwK j

jwKj!
hðwKÞ ðA38Þ

¼
X

v∈½ðḠÞc��

X
w1∈W¼G1

X
w2∈W¼G2

…
X

wk∈W¼Gk

� jvj þPk
j¼1 jwjj

ðjvj; jw1j;…; jwkjÞ
� ð−βÞjvjþ

P
k
j¼1

jwjj

ðjvj þPk
j¼1 jwjjÞ!

hðvÞ
Yk
j¼1

hðwjÞ

¼
X

v∈½ðḠÞc��
fðvÞ

� X
w1∈W¼G1

fðw1Þ
�� X

w2∈W¼G2

fðw2Þ
�
…

� X
wk∈W¼Gk

fðwkÞ
�
: ðA39Þ

Using the definition of η from Eq. (A32) on the last factors
yields

X
w∈½ð∂GÞc��∶G⊂w

fðwÞ ¼ e−βHðḠÞc
Yk
j¼1

ηðGjÞ ¼ ρðGÞ: ðA40Þ

▪
The following lemma is a tighter variant of some of the

original arguments leading to Lemma 2 for Hamiltonians
consisting of two weighted copies of a local Hamiltonian.
Its purpose is to provide a specialized tighter bound on
ρðGÞ, which turns out to be sufficient for our purposes. The
central idea of the lemma is to expand ρðGÞ in the left-hand
side of Eq. (A41) in order to be able to bound the trace
using the generalized Hölder’s inequality.
Lemma 7.—Let τ, H, ~H, A, and B be as in Lemma 1

and let G ∈ A¼m
≥L ðFÞ be an m-fold lattice animal with

G ¼ ⋃m
j¼1Gj and Gj ∈ A≥LðFÞ. Moreover, let ~ρðGÞ be

defined as ρðGÞ in Eq. (A31) but with respect to ~H. Then,

jTr½SAð1ÞBð2Þe−β ~HḠc ~ρðGÞ�j
kAk∞kBk∞ZðβÞ

≤ yðβJÞjGj; ðA41Þ

where yðxÞ ≔ ejxjðejxj − 1Þ.
Proof.—Let us denote kð1Þλ ≔ τhð1Þλ and kð2Þλ ≔ ð1−τÞhð2Þλ .

For w ∈ E� and v ∈ f1; 2gjwj, we define ~hðw; vÞ ≔
kv1w1

kv2w2
� � � kvjwjwjwj . Then, by expanding the product ~hðwÞ, it

can be written as

~hðwÞ ¼
X

v∈f1;2gjwj
~hðw; vÞ: ðA42Þ

Importantly, we can reorder the terms in ~hðw; vÞ so that

~hðw; vÞ ¼ ~hð1Þðw; vÞ ~hð2Þðw; vÞ; ðA43Þ

where ~hð1Þðw; vÞ ¼ hðiÞðw; vÞ ⊗ 1 and ~hð2Þðw; vÞ ¼ 1 ⊗
hðiiÞðw; vÞ. Factorizing the operators and using the swap
trick (39), we obtain

Tr½SAð1ÞBð2Þe−β ~HḠc ~hðw; vÞ� ¼ TrfS½Ae−βτHḠc hðiÞðw; vÞ� ⊗ ½Be−βð1−τÞHḠc hðiiÞðw; vÞ�g ðA44Þ

¼ Trf½Ae−βτHḠc hðiÞðw; vÞ�½Be−βð1−τÞHḠc hðiiÞðw; vÞ�g: ðA45Þ

Bounding the trace by the trace norm and applying Hölder’s inequality generalized to several operators yields

jTr½SAð1ÞBð2Þe−β ~HḠc ~hðw; vÞ�j ≤ kAk∞kBk∞ke−βτHḠck1=τke−βð1−τÞHḠck1=ð1−τÞkhðiÞðw; vÞk∞khðiiÞðw; vÞk∞
≤ kAk∞kBk∞ke−βHḠck1Jjwjτnð1ÞðvÞð1 − τÞnð2ÞðvÞ; ðA46Þ

where in the second step, we have used that kXkp ¼ kjXjpk1=p1 and that with nðjÞðvÞ ≔ jfvk∶vk ¼ jgj for j ∈ f1; 2g,
the bounds khðiÞðw; vÞk∞ ≤ ðτJÞnð1ÞðvÞ and khðiiÞðw; vÞk∞ ≤ ½ð1 − τÞJ�nð2ÞðvÞ hold. Now, we apply Lemma 4 and use that

kejβjHGjk∞ ≤ ejβjJjGjj to arrive at

jTr½SAð1ÞBð2Þe−β ~HḠc ~hðw; vÞ�j ≤ kAk∞kBk∞ZðβÞejβjJjGjJjwjτnð1ÞðvÞð1 − τÞnð2ÞðvÞ: ðA47Þ

From the definition of η in Eq. (A32), it follows that
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Ym
j¼1

~ηðGjÞ ¼
X

n
wðjÞ∈G�

j∶
Gj⊂wðjÞ

o
m

j¼1

Ym
i¼1

ð−βÞjwðiÞj

jwðiÞj!
~hðwðiÞÞ ðA48Þ

¼
X

n
wðjÞ∈G�

j∶
Gj⊂wðjÞ

o
m

j¼1

ð−βÞjwjQ
m
i¼1 jwðiÞj!

X
v∈f1;2gjwj

~hðw; vÞ;

ðA49Þ

where w ≔ wð1Þ ∘wð2Þ ∘… ∘wðmÞ and hence ~hðwÞ ¼Q
m
i¼1 hðwðiÞÞ. Together with the bound (A47) we obtain

jTr½SAð1ÞBð2Þe−β ~HḠc
Q

m
j¼1 ~ηðGjÞ�j

kAk∞kBk∞ZðβÞ

≤ ejβjJjGj
X

n
wðjÞ∈G�

j∶
Gj⊂wðjÞ

o
m

j¼1

jβjjwjQ
m
i¼1 jwðiÞj! J

jwj

×
X

v∈f1;2gjwj
τn

ð1ÞðvÞð1 − τÞnð2ÞðvÞ: ðA50Þ

Using the definition (A31) of ρðGÞ and the multinomial
formula yields

jTr½SAð1ÞBð2Þe−β ~HḠc ~ρðGÞ�j
kAk∞kBk∞ZðβÞ

ðA51Þ

¼ ejβjJjGj
X

n
wðjÞ∈G�

j∶
Gj⊂wðjÞ

o
m

j¼1

Ym
i¼1

ðjβjJÞjwðiÞj

jwðiÞj! ðA52Þ

¼ ejβjJjGj
Ym
i¼1

 X
wðiÞ∈G�

i ∶
Gi⊂wðiÞ

ðjβjJÞjwðiÞj

jwðiÞj!

!
ðA53Þ

≤ ejβjJjGj
Ym
i¼1

ðejβjJ − 1ÞjGij; ðA54Þ

where in the second-to-last step, we have factorized the
series and in the last step, we have used Lemma 5. ▪
We will need the following combinatorial lemma.
Lemma 8.—Let ðV; EÞ be a finite (hyper)graph and

y ∈ ½0; 1½. Then, for any F ⊂ E,

X
G∈Am

≥LðFÞ
yjGj ≤

1

m!

� X
G∈A≥LðFÞ

yjGj
�

m
: ðA55Þ

Proof.—Remember that Am
≥LðFÞ is the set of m-fold

(edge) animals of size at least L that contain a letter from F.

For every G ∈ Am
≥LðFÞ, one finds m pairs ðG1; G2Þ with

G1 ∈ Am−1
≥L ðFÞ and G2 ∈ Am

≥LðFÞ such that G ¼ G1⊎G2;
hence,

m
X

G∈Am
≥LðFÞ

yjGj ≤
X

G1∈Am−1
≥L ðFÞ

X
G2∈A≥LðFÞ

yjG1jþjG2j

¼
 X

G∈Am−1
≥L ðFÞ

yjGj
! X

G∈A≥LðFÞ
yjGj
!
:

By iterating this inequality, we obtain

X
G∈Am

≥LðFÞ
yjGj ≤

1

m!

� X
G∈A≥LðFÞ

yjGj
�

m
: ðA56Þ

▪
In the following lemma, we define a family of operators

ρm and bound their trace norms. The bounds, in particular,
guarantee that the ρm are well-defined. In addition, they
are useful for the proof of Lemma 2, albeit they are not
explicitly needed for the proof of Lemma 1.
Lemma 9.—Let ρðGÞ be defined as in Lemma 6 with

respect to a Hamiltonian H having a finite interaction
(hyper)graph ðV; EÞ with growth constant α and let

ρm ≔
X

G∈Am
≥LðFÞ

ρðGÞ ðA57Þ

for some F ⊂ E. Then,

kρmk1 ≤
ZðβÞ
m!

�
jFj
X∞
l¼L

bðβJÞl
�m

; ðA58Þ

where bðxÞ ≔ αejxjðejxj − 1Þ.
Proof.—Consider a k-fold animal G ∈ Am

≥LðFÞ and
decompose it into its k nonoverlapping animals Gj∈
A≥LðFÞ as G ¼ ⨄k

j¼1Gj ⊂ E. Then, Eq. (A31) and
Hölder’s inequality imply

kρðGÞk1 ≤ ke−βHðḠÞck1
Yk
j¼1

kηðGjÞk∞; ðA59Þ

and it follows from Lemmas 4 and 5 in conjunction with
the definition of η in Eq. (A32) that

kρðGÞk1 ≤ ZðβÞyðβJÞjGj: ðA60Þ

Hence, by the definition from Eq. (A57) and Lemma 8, we
obtain
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kρmk1 ≤ ZðβÞ
X

G∈Am
≥LðFÞ

yðβJÞjGj ðA61Þ

≤
ZðβÞ
m!

� X
G∈A≥LðFÞ

yðβJÞjGj
�

m
: ðA62Þ

By decomposing the set of animals of size at least L
into a union of sets of animals of fixed size l, i.e.,
A≥LðFÞ ¼ ⨄∞

l¼LA¼lðFÞ, we can write

kρmk1 ≤
ZðβÞ
m!

�X∞
l¼L

jA¼lðFÞjyðβJÞl
�m

: ðA63Þ

The bound (8) on the number of lattice animals, the fact
that the number jFj of edges in F upper bounds the
number of possibilities of translating an animal G such
that G ⊂ F, and b ¼ αy finish the proof. ▪
While the last lemma provides a bound on ρm and, in

particular, implies that ρm is well-defined, the next lemma
provides a useful form of ρm.
Lemma 10.—Let ρm be defined as in Eq. (A57). Then,

ρm ¼
X∞
k¼m

�
k
m

� X
w∈Ck≥LðFÞ

fðwÞ: ðA64Þ

Proof.—For G ∈ Am
≥LðFÞ, let

WðGÞ ≔ fw ∈ ½ð∂GÞc��∶G ⊂ wg: ðA65Þ

According to Eqs. (A33) and (A57),

ρm ¼
X

G∈Am
≥LðFÞ

X
w∈½ð∂GÞc��∶G⊂w

fðwÞ: ðA66Þ

As

⋃
G∈Am

≥LðFÞ
WðGÞ ¼ ⨄∞

k¼mC
k
≥LðFÞ; ðA67Þ

the sums in Eqs. (A57) and (A64) contain the same terms.
It remains to show that the multiplicities are correct, i.e.,
are given by the binomial factor. Every word in WðGÞ
contains at least m maximal clusters of size at least L, each
of which contains a letter in F. The key is to decompose
this set as

WðGÞ ¼ ⨄∞
k¼mW

kðGÞ ðA68Þ

with

WkðGÞ ≔ fw ∈ WðGÞ∶ ∃ exactly k maximal clusters

c ⊂ w∶c ∈ C≥LðFÞg;

i.e., into sets of words having exactly k ≥ m such clusters.
Then, the observation that for every w ∈ WkðGÞ there

are exactly
�
k
m

	
many m-fold animals G0 ∈ Am

≥LðFÞ with
w ⊂ G0 completes the proof. ▪
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