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A BRIEF INTRODUCTION TO SOME
SIMPLE STOCHASTIC PROCESSES

Benjamin Lindner

There is a variety of different sources of fluctuations which affect various variables
in neural systems. Consequently, there are different types of stochastic pro-
cesses relevant for a quantitative modelling of stochastic neural activity. Take, for
instance, the behaviour of ion channels, which are the key players in the neural
dynamics for action potential generation. Only many channels together generate
the behaviour modelled in the deterministic Hodgkin–Huxley (HH) system – a
single channel switches stochastically between open and closed states possibly
going through a cascade of substates. In the simplest modelling approach this
would be an example of a two-state process – a function that attains only two
discrete values {σ−, σ+} and switches stochastically (randomly) between them
with rates r− and r+ according to the scheme

σ−
r−
�
r+

σ+. (1.1)

Taking into account the summed effect of many such channels and their effect
on the potential difference of a small patch of neural membrane we come to
another stochastic process: the membrane potential, which can vary continuously
and is driven by synaptic noise (shot noise) and channel noise. Approximating
the conductance fluctuations by current fluctuations and neglecting any spiking
mechanism (voltage-dependent conductance), the membrane fluctuations obey
the simple stochastic differential equation (formally equivalent to the Ornstein–
Uhlenbeck process from statistical physics)

τmembraneV̇ = −(V − VL) + ξ(t) (1.2)

where the effective membrane time-scale is, in the simplest case, τmembrane =
C/gL (with C and gL being the capacitance and the leak conductance of the
patch of membrane) or which may also include contributions from the synaptic
conductance. All the driving fluctuations are lumped into ξ(t) and assumed to be
Gaussian and uncorrelated (white) noise. We will see how to extract statements
about the statistics of V (t) that are only based on this kind of knowledge.

Going one level further, noise and external signals (injected currents, evoked
synaptic activity, etc.) together lead to the generation of stereotypical action
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potentials which encode information in the spiking times only. In Eqn (1.2)
this could be modelled by adding voltage-dependent conductances or simply a
threshold for spike generation (leaky integrate-and-fire model). The generation of
stereotypical spikes naturally leads to the notion of the point process – a random
sequence of time instances {ti}. The spike train can be represented by a series
of δ functions

x(t) =
∑
{ti}
δ(t− ti) (1.3)

with a certain (possibly time-dependent) rate r. The statistics of the point pro-
cess can be based on the spike train statistics or on the statistics of the intervals
between firing times (interval statistics) – both are related in a non-trivial way
as we will see.

Basic concepts of the stochastic theory have already been introduced in the
Introduction (p. x). Here, we present a detailed overview of methods to simulate,
measure, and analytically determine the most common probability measures for
the three simple processes introduced above and illustrated in Fig. 1.1. We start
by introducing our notation for moments, probability densities, correlation func-
tions, power spectra, and give definitions for the characteristics of a fluctuating
function (correlation time, noise intensity). We then discuss simple continuous,
two-state, and point processes with special emphasis on the relation between dif-
ferent statistics (e.g. power spectra and interval densities). Possibly unexpected
relations among the three processes are given in the last section.

Continuous
process

(a)

(b)

(c)

Two-state
process

Point
process

Time

Fig. 1.1: The three classes of stochastic processes discussed in this chapter: (a)
a continuous process (Ornstein–Uhlenbeck process according to Eqn (1.2),
see Section 1.2); (b) a discrete process (random telegraph noise according to
the scheme in Eqn (1.1), see Section 1.3); (c) a point process indicated by
the circles and the associated δ spike train according to Eqn (1.3) shown by
arrows (see Section 1.4).
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This chapter can in no way replace a thorough introduction to probability the-
ory and the theory of stochastic processes as given, for instance, in the following
monographs: continuous systems are covered by Papoulis (1965), Stratonovich
(1967), Risken (1984), Gardiner (1985), and van Kampen (1992). Gardiner (1985)
and van Kampen (1992) also study discrete systems in more detail; useful results
on point processes are covered in the books by Cox (Cox, 1962, Cox and Lewis,
1966) and Stratonovich (1967). Many useful results (some of which are rederived
here) can be found in textbooks on stochastic processes in the neuroscience by
Holden (1976), Ricciardi (1977), Tuckwell (1988), Tuckwell (1989), and more
recently Gerstner and Kistler (2002).

1.1 Statistics of stochastic variables and stochastic processes

Averaging Having an ensemble of N independent samples {xi} of a stochastic
variable x, we can estimate the average of any function f(x) by

〈f(x)〉 def=
1
N

N∑
i=1

f(xi) (1.4)

which becomes exact for N → ∞. In particular, we can ask for the mean of x

〈x〉 = 1
N

N∑
i=1

xi (1.5)

and its variance

〈∆x2〉 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2 = 1
N

N∑
i=1

x2
i − 〈x〉2. (1.6)

If x is not only a variable but a stochastic function (or process) of time x(t),
we can ask for averages over functions of x(ti) at different times {ti} that are
defined by

〈f(x(t1), x(t2), . . .)〉 = 1
N

N∑
i=1

f(xi(t1), xi(t2), . . .). (1.7)

The averages obviously depend on the ensemble from which we pick the values
xi(tk) at a certain time t = tk and they will depend (via the temporal evolution
of this ensemble) on the time instants t1, t2, . . .. We may define a stationary
ensemble, by requiring that all possible averages Eqn (1.7) depend only on the
time differences t2−t1, t3−t1, . . . but not on the absolute time. For other (weaker)
kinds of stationarity, see Papoulis (1965).
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Probability densities A very important average gives us the probability density
of the stochastic variable or function. For a stochastic function x(t) this density
is given by

P (X, t) = 〈δ(X − x(t))〉. (1.8)

If we know this density for a continuous process, P (X, t)∆X with a small incre-
ment ∆X gives us the probability to observe x(t) ∈ [X−∆X/2, X+∆X/2]. Once
we know the probability density, we can calculate the average of any function
f(x(t)) by

〈f(x(t))〉 =
〈∫ ∞

−∞
dXf(X)δ(x(t)−X)

〉
=

∫ ∞

−∞
dXf(X)〈δ(x(t)−X)〉

=
∫ ∞

−∞
dXf(X)P (X, t) (1.9)

which still may depend on the time t as a parameter.
The definition of the probability density can be easily extended to values at

different times yielding a multivariate distribution (joint probability density),
formally defined by

Pn(X1, t1;X2, t2; . . . Xn, tn) = 〈δ(X1 − x(t1))δ(X2 − x(t2)) . . . δ(Xn − x(tn))〉.
(1.10)

The stochastic process is described in more and more detail by a hierarchy of
probability densities of increasing order n. However, it is generally also more
complicated to measure or calculate densities of higher order.

A conditional probability density assumes a certain knowledge about val-
ues of the process at time instants t1, . . . , tk (say, we know, for instance, that
x(t1) = X1) and gives us the probability of values at other times under this con-
dition. The conditional density (everything following the bar is the condition) is
defined by

P (Xk+1, tk+1; . . . ;Xn, tn|X1, t1; . . . Xk, tk) =
Pn(X1, t1; . . . Xk, tk; . . . ;Xn, tn)

Pk(X1, t1; . . . ;Xk, tk)
.

(1.11)

Markov process An important class of processes is defined by the property that
the evolution of their probability density depends only on the present state but
not on the past. Thus if we deal with a density Pn(X1, t1; . . . ;Xn, tn) (where
t1 < t2 < · · · tn) and ask for the lower-order probability conditioned on k values,
then only the condition at the latest instant in time will matter

P (Xk+1, tk+1; . . . ;Xn, tn|X1, t1; . . . ;Xk, tk) = P (Xk+1, tk+1; . . . ;Xn, tn|Xk, tk).
(1.12)

Knowledge about x(tk) = Xk at t = tk (which is the present time) determines
the density at later times tk′ > tk; knowledge about values in the past at tk′′ < tk
does not improve our statistical knowledge about the future.
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For a Markov process, any multivariate probability density can be expressed
by one specific conditional probability density P (X, t|X0, t0) which is called the
transition probability and is the central quantity of interest for a Markov process.
Correlation function In order to characterize the stationary time-dependent
features of the dynamics, one can use the autocorrelation function (or short
correlation function)

C(τ) = lim
t→∞[〈x(t)x(t+ τ)〉 − 〈x(t)〉2], (1.13)

telling us essentially how much two values of the trajectory which are lagged
by an interval τ have in common. The second term in Eqn (1.13) takes care of
what we may expect for statistically independent values and the limit t→ ∞ is
taken in order to achieve independence on the initial value x(0). The correlation
function for vanishing lag corresponds to the stationary variance of the random
variable x(t).

If we know the two-times probability density P (X0, t0;X1, t1) or, equivalently,
the conditional probability density P (X1, t1|X0, 0) together with the steady-state
density P0(X) we can express the correlation function as follows:

C(τ) = lim
t→∞

∫ ∞

−∞
dX0

∫ ∞

−∞
dX1 X0 X1 [P (X0, t;X1, t+ τ)− P0(X0)P0(X1)]

=
∫ ∞

−∞
dX0

∫ ∞

−∞
dX1 X0 X1 P0(X0)[P (X1, τ |X0, 0)− P0(X1)]. (1.14)

This formula is also useful if we know a differential equation for P (X1, τ |X0, 0):
multiplying this equation by X0X1 and integrating yields a potentially useful
relation for C(τ).
Power spectrum An alternative way to quantify the fluctuations and their
dynamics is to ask how the variance (in electrical systems proportional to the
power of the process) is distributed with respect to frequency. The latter appears
naturally by Fourier analysis. Defining the Fourier transform of x(t) by

x̃(f) =
∫ T

0
dt x(t) e2πift (1.15)

we obtain a new (complex-valued) random variable that depends on the fre-
quency f as a parameter. For a stationary time series x(t) the mean value at
finite frequency will vanish, that is 〈x̃(f > 0)〉 = 0. The variance grows with the
simulation time T ; the factor of proportionality is given by the power spectrum

S(f) = lim
T→∞

〈x̃x̃∗〉
T

(1.16)
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where x̃∗ denotes the complex conjugate of x̃. In order to see that this has
anything to do with the the variance in the time domain let us consider the
latter relation in more detail (assuming 〈x〉 = 0, for simplicity):

〈x̃x̃∗〉
T

=
1
T

∫ T

0
dt

∫ T

0
dt′e2πif(t−t′)〈x(t)x(t′)〉

=
1
T

∫ T

0
dt

∫ t

t−T

dτe2πifτC(τ)

=
1
T

∫ 0

−T

dτe2πifτC(τ)
∫ T+τ

0
dt+

1
T

∫ T

0
dτe2πifτC(τ)

∫ T

τ

dt

=
∫ T

−T

dτe2πifτC(τ)−
∫ T

−T

dτe2πifτC(τ)
|τ |
T
. (1.17)

Here, we have introduced a new variable τ , used the autocorrelation function
C(τ), and exchanged the order of integration. For most processes of interest,
the correlation function C(τ) decays sufficiently strongly at large times that the
integral

∫
dτC(τ)τ remains finite. Hence, for T → ∞ the second term in the last

line vanishes and we thus obtain the important relation

S(f) =
∫ ∞

−∞
dτe2πifτC(τ) (1.18)

called the Wiener–Khinchin theorem (Risken, 1996, Gardiner, 1985). The rela-
tion is sometimes used as a definition of the spectrum: the power spectrum is
the Fourier transform of the autocorrelation function. As for any Fourier trans-
form, the reverse is also true: The correlation function is the (inverse) Fourier
transform of the spectrum:

C(τ) =
∫ ∞

−∞
dfe−2πifτS(f). (1.19)

In particular for τ = 0 we obtain

C(0) = 〈∆x2〉 =
∫ ∞

−∞
dfS(f). (1.20)

Thus as promised the integrated spectrum gives the variance (the power) and
the spectrum shows how this power is distributed over frequencies.
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The Wiener–Khinchin theorem offers a fast numerical way to estimate the
correlation function: One measures or simulates many independent realizations of
the process xi(t) for a sufficiently long time window T , calculates the fast Fourier
transform, and determines the frequency-dependent variance of the resulting
ensemble. Dividing by the time window T yields an estimate of the power spec-
trum and applying an additional Fourier back-transformation on the function
gives the autocorrelation function C(τ).
Correlation time In order to estimate the time over which a trajectory is cor-
related, different definitions of a correlation time can be used. If the process’
correlation function does not show oscillations and remains positive we may use
the integral over the normalized autocorrelation function that is also simply
related to the power spectrum at vanishing frequency:

τcorr =
∫ ∞

0
dτC(τ)/C(0) =

S(0)
2C(0)

. (1.21)

In other cases an integral over the absolute value (see, for instance, Hänggi and
Jung 1995) or the square of the autocorrelation function yields a more meaningful
estimate of a correlation time.
Noise intensity The intensity or strength of the process is not just given by the
variance of its steady-state density. A widely used definition of the noise intensity
of a process with non-negative correlation function is as follows:

D =
∫ ∞

0
dτC(τ) =

S(0)
2

= 〈∆x2〉τcorr. (1.22)

In the last step we have related the noise intensity to the variance and the
correlation time of the process using Eqns (1.20) and (1.21). This illustrates that
it matters not only how large typical amplitudes of the noise are (as quantified
by the variance) but also for how long the noise acts with roughly the same
value (as quantified by the correlation time). As is clear from the discussion
of the correlation time, the definition of the noise intensity is also meaningful
for processes with monotonically decaying correlation but does not apply to
processes with a strongly oscillating correlation function.

In order to illustrate these rather dry definitions we turn to our standard
examples. We will also use this opportunity to introduce simple simulation
algorithms for the three classes of stochastic systems.

1.2 The Ornstein–Uhlenbeck process

As an example of a continuous stochastic process we consider the Ornstein–
Uhlenbeck process (or OU process) which is also known in the mathematical
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literature as a mean-reverting process. It appears in a number of chapters in this
book; see Chapters 4, 5 and 9 for a conductance model, and Chapter 10. It obeys
the Langevin equation (Uhlenbeck and Ornstein, 1930, Risken, 1996)

v̇ = −γv +
√
2Dξ(t) (1.23)

where ξ(t) is a Gaussian white noise with average zero and a δ correlation in time

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′). (1.24)

The intensity of the driving noise
√
2Dξ(t) is (according to Eqn (1.22)) D, and

its correlation time is zero as expected for an uncorrelated process. The power
spectrum is flat, S(f) = 2D, which led to the name ‘white’ noise in analogy
with the spectrum of white light. The fact that this driving noise has infinite
variance and vanishing correlation time (unlike any function in the real world)
is a mathematical abstraction leading to the very useful Markov property of the
driven process. We note that the Gaussian property is used when dealing with
increments of the process (which are also Gaussian).

We have seen that the voltage across a passive membrane obeys the same
dynamics as Eqn (1.23) (with τmembrane = 1/γ and a proper rescaling of the
noise strength). In the above form, however, the model describes the velocity of a
Brownian particle of unit mass by Newton’s law with the acceleration term on the
left-hand side and a sum of a friction force (Stokes friction with coefficient γ) and
a random stochastic force

√
2Dξ(t) on the right-hand side. It was introduced 100

years ago by Langevin (Langevin, 1908) and later in detail studied by Uhlenbeck
and Ornstein (Uhlenbeck and Ornstein, 1930). In neuroscience it has immense
importance because, supplemented with a fire-and-reset condition, Eqn (1.23) is
mathematically equivalent to the often-used leaky integrate-and-fire model.

The OU process is a Markov process. This might not be obvious since
although we deal with a first-order equation in Eqn (1.23) that is (in the
autonomous case) determined only by its initial condition (i.e. by the present
time), we have time-dependent driving (the noise). The noise is, however, uncor-
related and thus does not introduce a statistical dependence on the past that
would contradict the Markov property in Eqn (1.12).
Simulation algorithm A simple algorithm for this process is obtained by
iterating its discretized version in a simple Euler procedure

vi,j+1 = vi,j(1− γ∆t) +
√
2D∆tηi,j , i = 1, . . . , N (1.25)

where the first index i denotes the realization and the second index j the time
t = j∆t; ηi,j are independent Gaussian random numbers (see Section 1.6) with
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zero mean and unit variance1 〈ηi,jηi′,j′〉 = δi,i′δj,j′ (where we have used the
Kronecker symbol).

In order to measure an example of a time-dependent probability density
P (V, t), we start every realization at vi,0 = v0 and so, of course, the initial
probability density would be P (V, t = 0) = δ(V − v0); P (V, t) is then the transi-
tion probability of the process. Performing NK iterations of Eqn (1.25) we may
find an estimate of the density P (V, t = K∆t) at time t = K∆t by making a
histogram of the N values vi,K (i = 1, . . . , N). The whole procedure is shown in
Fig. 1.2. An estimate of the probability density is given by

P (V, t = K∆t) ≈ 1
N∆v

N∑
i=1

Θ(V +∆v/2− vi,K)Θ(vi,K − (V −∆v/2)) (1.26)

where the product of Heaviside functions Θ(·) ensures that vi,K only contributes
to the estimate if it falls into the interval [V − ∆v/2, V + ∆v/2]. Clearly, the
density estimated by Eqn (1.26) depends on the time. In the example we have
chosen there is a drift of the whole probability density towards the origin – for
short times the histogram is biased towards the initial value (which is positive
in our numerical example). For longer times (t � τ) the probability density
becomes independent of time and reaches a stationary limit P (V, t) → P0(V )
which means that the initial value (or the initial distribution) is forgotten. In
many cases of importance (ergodic processes) this steady-state density would
coincide with a time-average of the process itself. This means that instead of
a large ensemble of trajectories we may just average a single trajectory over a
longer time (bottom panel in Fig. 1.2b). Indeed, this yields the same density as
the ensemble average at long times.

We can calculate the probability density analytically and compare it to our
simulation result. For the Langevin equation there exists a corresponding Fokker–
Planck equation that governs the evolution of the probability density

∂tP (V, t) = ∂V [γV +D∂V ]P (V, t). (1.27)

The first term on the right-hand side is the drift term (resulting from the fric-
tion term in the Langevin equation) and the second one is the diffusion term
(resulting from the stochastic driving). The correct boundary conditions for a
freely evolving Ornstein–Uhlenbeck process are natural boundary conditions

lim
V →∞

P (±V, t) = lim
V →∞

∂V P (±V, t) = 0. (1.28)

1Please note the uncommon scaling of the stochastic term with
√
∆t which can be under-

stood as follows: integrating Eqn (1.23) over the time step ∆t, we get the increment ∆W =
∫ t+∆t

t dt′ξ(t′) of a Wiener process which is Gaussian, has vanishing mean, and a variance
〈∆W 2〉 = ∫ t+∆t

t

∫ t+∆t
t dt′dt′′〈ξ(t′)ξ(t′′)〉 = ∆t; hence the standard deviation is ∼ √

∆t.
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Fig. 1.2: Time-dependent probability densities of an Ornstein–Uhlenbeck (OU)
process for D = 0.1 and γ = 1. N = 104 trajectories were started at
v(t = 0) = 1 and simulated according to the scheme Eqn (1.25) (time
step ∆t = 0.01) and the density was estimated via Eqn (1.26). In (a) the
first six trajectories are shown; the dashed lines indicate the instants at
which snapshots of the density are shown in (b): the density is initially cen-
tred around a positive value (top panel in (b)), for later times it is centred
around zero (bottom panel in (b)). Also shown by dots is the density obtained
from a long time average (T = 103) which agrees nicely with the long-time
ensemble average (bottom panel in (b)). Theory (dashed lines) is given
in Eqn (1.29).

We note in passing that a Fokker–Planck equation can also be found when there is
a nonlinear drift term and state-dependent noise (also called multiplicative noise)
and that it can also be generalized to more than one variable; for derivation(s)
of the Fokker–Planck equation and further applications see Risken (1996). For
the OU process it is possible to find the full time-dependent solution with the
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initial condition P (V, 0) = δ(V − v0) and natural boundary conditions, yielding
the transition probability (see Risken 1996)

P (V, t) =
1√

2π〈∆v2(t)〉 exp
[
− (V − 〈v(t)〉)2

2〈∆v2(t)〉
]

(1.29)

where the time-dependent mean and variance read

〈v(t)〉 = v0e−γt, (1.30)

〈∆v2(t)〉 = D
γ
[1− e−2γt]. (1.31)

Equation (1.29) has been plotted in Fig. 1.2; the shape of the histograms
reproduce this formula quite well.

For long times (t → ∞) the mean and variance approach 〈v〉 → 0 and
〈∆v2〉 → D/γ = kBT (the latter relation is called the Einstein relation
(Risken, 1996)) and in this limit the steady-state density is a so-called Maxwell
distribution (Risken, 1996)

P0(V ) =
e−V 2/(2kBT )

√
2πkBT

. (1.32)

The time-dependent density (either simulated or calculated) could be used to
calculate the autocorrelation function of the OU process. However, we want to
illustrate the calculation of the second-order statistics in different ways. First
of all, we can determine the correlation function via the power spectrum and
fast Fourier transform from simulations. Secondly, we can analytically calculate
the correlation function using (i) the Fokker–Planck equation; (ii) the formal
solution of Eqn (1.23); and (iii) the Fourier transform of the power spectrum
which is obtained by Rice’s method.

Simulations are shown in Fig. 1.3: a single trajectory v(t) (a) is Fourier
transformed to ṽ (b); many such realizations are used to estimate the power
spectrum (variance of ṽ divided by simulation time) shown in (d); a back-
transformation into the time domain yields the autocorrelation function shown
in (c). For an Ornstein–Uhlenbeck process the correlation function decays with a
single rate (the friction coefficient) and the power spectrum displays a Lorentzian
shape with a corner frequency determined by the friction coefficient, that is the
power spectrum attains half its maximal value at 2πfcorner = γ (see below,
Eqn (1.37)).
Calculation of the correlation function using the Fokker–Planck equation First,
it is instructive to calculate the stationary variance 〈v2〉 from the Fokker–Planck
equation (1.27), that is the correlation function at vanishing lag C(0). To this
end, we set the time derivative on the left-hand side to zero (implying that we



LAING: “CHAP01” — 2009/8/17 — 16:08 — PAGE 12 — #12

12 Stochastic methods in neuroscience

2
(a)

(c)

(b)

(d)

30

20
10

–10

–20
–30

0

1

0

–1

–2

0.1

0.08

0.06

0.04

10–2

10–4
0.02

0

0 0

0 2 4 6 8 10 0 2 4 6 8 10

2 4 6 8 10200 400 600 800 1000
Time

Time delay Frequency

Correlation function
Power spectrum

Theory
Sims

Frequency

Trajectory Fourier transform

Fig. 1.3: Second-order statistics of the Ornstein–Uhlenbeck process. A single
realization shown in (a) is Fourier transformed according to Eqn (1.15); the
real part of this complex-valued stochastic quantity is shown as a function
of frequency in (b). From many such realizations (N = 1000) one obtains
the variance of the Fourier transform and from the latter one can determine
the power spectrum (d) via Eqn (1.16). The Fourier back-transformation
of the power spectrum yields, through Eqn (1.19), the correlation function
(c) which shows an exponential decay. Theory is given in Eqn (1.35) (cor-
relation function) and Eqn (1.37) (power spectrum). Numerical parameters:
D = 0.1, γ = 1,∆t = 0.001, T = 1000.

now deal with the stationary density P0(V )), multiply both sides by V 2/2, and
integrate V over the real axis. Multiple integrations by parts (using Eqn (1.28))
yield

0 = −γ
∫ ∞

−∞
dV V 2P0(V ) +D

∫ ∞

−∞
dV P0(V ) = −γ〈v2〉+D

⇒ 〈v2〉 = C(0) = D
γ
. (1.33)

In order to derive an equation for the correlation function we proceed as follows.
We multiply the Fokker–Planck equation (1.27) by V V0P0(V0) and perform a
double integral over V0 and V . Using (i) the relation between correlation function
and time-dependent density Eqn (1.14); (ii) the fact that the stationary mean
value vanishes, that is 〈v〉 = ∫

dV0V0P0(V0) = 0; (iii) all probability densities
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and their derivatives vanish at infinity, one obtains after multiple integrations
by parts on the right-hand side, the equation

d

dt
C(t) = −γC(t), t > 0 (1.34)

(here the partial derivative with respect to time turns into an ordinary deriva-
tive). From the initial condition in Eqn (1.33) and the fact that the correlation
function is an even function in τ , we find

C(τ) =
D

γ
e−γ|τ |. (1.35)

This formula shows excellent agreement with our simulation data in Fig. 1.3(c).
Calculation of the correlation function using the formal solution If we know
the value of v(t) at t = 0, i.e. v(t = 0) = v0, we can formally solve the
Langevin equation (it is a linear inhomogeneous first-order differential equation).
We obtain

v(t) = v0e−γt +
√
2D

∫ t

0
dt′e−γ(t−t′)ξ(t′). (1.36)

It is easily seen that the stationary mean value must vanish:

〈v〉st = lim
t→∞

[
v0e

−γt +
√
2D

∫ t

0
dt′e−γ(t−t′)〈ξ(t′)〉

]
= 0

where we have used the fact that the white noise has a zero mean at all
times. The autocorrelation function is obtained as follows. For t → ∞ any
term involving the initial condition (the first term on the right-hand side in
Eqn (1.36)) decays to zero; dropping the respective terms we obtain for positive
increment τ > 0

〈v(t)v(t+ τ)〉 = 2D
∫ t

0
dt′

∫ t+τ

0
dt′′e−γ(2t+τ−t′−t′′)〈ξ(t′)ξ(t′′)〉

= 2D
∫ t

0
dt′e−γ(2t+τ−2t′) =

D

γ
[e−γτ − e−γ(2t+τ)].

Doing the same calculation with negative τ , we can generalize this formula and
recover in the limit t→ ∞ the autocorrelation function (1.35).
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Analytical calculation of the power spectrum using Rice’s method It suffices to
perform a Fourier transformation of the Langevin equation as follows:

∫ T

0
dte2πiftv̇ = −γ

∫ T

0
dte2πiftv +

√
2D

∫ T

0
dte2πiftξ(t)

v(T )e2πifT − v0 − 2πifṽ = −γṽ +
√
2Dξ̃

⇒ ṽ =
√
2Dξ̃ − v(T )e2πifT + v0

γ − 2πif
.

Multiplying by the complex conjugated Fourier transform ṽ∗ and dividing by T ,
the last two terms in the numerator vanish and only the white-noise spectrum
remains (〈ξ̃ξ̃∗〉/T = Sξ = 1). By averaging we obtain

S(f) =
2D

γ2 + (2πf)2
(1.37)

which agrees with the Fourier transform of the correlation function (1.35) in full
accordance with the Wiener–Khinchin theorem (1.18).
Noise intensity and correlation time The noise intensity of the OU process is

DOU = Dγ−2. (1.38)

Its correlation time is easily calculated via Eqn (1.21):

τcorr = S(0)/[2C(0)] = γ−1 (1.39)

which is independent of the parameter D. For the OU process we can nicely
separate and control the intensity and the correlation time of the noise, e.g. by
scaling D = Qγ2; then Q and γ−1 are the intensity and the correlation time,
respectively. This is in general not possible for processes generated by nonlinear
stochastic differential equations (SDEs).

1.3 Two-state process

A switching between two states can result from complicated dynamics and is
in general characterized by the sequence of residence times (the random peri-
ods spent in the two possible states). A very simple process is the Markovian
two-state process in which transitions from one state to the other are entirely
determined by a switching rate and do not depend on the whole history of pre-
vious switchings. This was the case illustrated in Eqn (1.1). We start with the
statistics of such a simple process and then present the slightly more general case
in which the residence times are drawn from two arbitrary probability densities.
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1.3.1 Markovian telegraph noise (dichotomous noise)

Simulation algorithm A simple algorithm for simulating a two-state Markov
process with rates r+ (for leaving the state x = σ+) and r− (for leaving the state
x = σ−) would consist of the following steps:
1. draw a uniformly distributed random number aj ∈ [0, 1];
2. for x(t) = σ±: if aj < r±∆t ⇒ x(t+∆t) = σ∓

else ⇒ x(t+∆t) = σ±

update time t→ t+∆t and return to 1.
Here we have to use a time step ∆t � r−1

± in order to keep the probability of
multiple transitions within one time step negligibly small.
Probability density and master equation For the telegraph noise above with
states x ∈ {±1} the ‘density’ in this case reduces to

P (X, t) = p+(t)δ(X − σ+) + p−(t)δ(X − σ−) (1.40)

where p±(t) are governed by the master equation

∂tp±(t) = r∓p∓ − r±p±. (1.41)

On the right-hand side we have two terms for gain and loss of probability or in
other words, for influx and efflux of probability. These fluxes are proportional to
the switching rate and the probability of the state that is left. The term r+p+,
for instance, gives the efflux of probability from the plus state (the trajectories
switching from σ+ to σ−) and is, of course, equal to the influx to the minus state.
Residence times Before we come to the full solution of Eqn (1.41) we may
answer a simple question: What is the distribution of residence times in one of
the states? To answer this we just have to set the initial probability say in the
σ+ state to 1 and the influx term in the master equation to zero; then the efflux
of probability describes the fraction of realizations that leave σ+ at time t for
the first time (leaving the gain term in the equation the same efflux term would
describe the fraction of all the realizations that leave σ+ at time t). Without the
gain term, the equations reduce to only one and we obtain for the residence time
density ρ+(t)

ṗ+ = −r+p+ with p+(0) = 1 ⇒ p+(t) = e−r+t ⇒ ρ+(t) = r+e−r+t (1.42)

and by a completely equivalent calculation ρ−(t) = r−e−r−t. The mean res-
idence time is easily calculated and reads τ± :=

∫ ∞
0 dt t ρ±(t) = r−1

± . The
waiting time densities permit an alternative simulation algorithm: instead of
drawing random numbers in each time step and asking whether a transition has
occurred, we can draw random residence times from the respective exponential
distribution – in between these switching times, the process is simply a constant
(for the generation of exponentially distributed random numbers see Section 1.6).
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Probability density Turning again to the two-state process, we can use
Eqn (1.41) to calculate the time-dependent probability density and from it any
desired statistics. Since Eqn (1.41) is a simple linear differential equation, we
obtain by standard methods an exponential solution that can (for arbitrary initial
conditions p+(0), p−(0) = 1− p+(0)) be written as

p±(t) = p0± ± [
p+(0)− p0+

]
e−(r++r−)t. (1.43)

The first term is the steady-state solution that is approached for long times

p0± = lim
t→∞ p±(t) =

r∓
r+ + r−

. (1.44)

The other terms in Eqn (1.43) describe the decay of the initial condition. In
particular, from p+(0) = 1 and p+(0) = 0 we can obtain the four conditional
probabilities to be in two specific states at time zero and at time t, i.e. the
transition probabilities of the random telegraph noise

p±|+ = p0± ± p0−e−(r−+r+)t, (1.45)

p±|− = p0± ∓ p0+e−(r−+r+)t. (1.46)

These conditional probabilities multiplied by the respective steady-state proba-
bility give the two-times probability needed for calculating the autocorrelation
function via Eqn (1.14).
Correlation function As for the OU process there are different ways to calcu-
late the correlation function. Here we use Eqn (1.14) (but for the discrete-state
process the integrals turn into sums over the two states). We obtain

C(τ) =
∑

i,j=+,−
σiσjp

0
j [pi|j(τ)− p0i ]. (1.47)

It is a simple exercise to calculate from Eqns (1.44)–(1.47) the autocorrelation
function

C(τ) =
r−r+(σ+ − σ−)2

(r− + r+)2
e−(r−+r+)|τ |. (1.48)

So, as for the Ornstein–Uhlenbeck process, we obtain a purely exponential cor-
relation function for the Markovian telegraph noise. Hence the power spectrum
is again a Lorentzian as for the OU process:

S(f) =
2(σ+ − σ−)2/(r−1

+ + r−1
− )

(r+ + r−)2 + (2πf)2
. (1.49)
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Noise intensity and correlation time The intensity of the two-state fluctuations
is given by

Ddicho =
S(0)
2

=
(σ+ − σ−)2

(r−1
+ + r−1

− )(r+ + r−)2
. (1.50)

The noise intensity vanishes, in particular, if one of the rates goes to infinity or
zero (with the other rate and the amplitudes σ± being fixed). In the symmetric
case (r+ = r− = r), the intensity is Ddicho = (σ+ − σ−)2/(8r) = 〈∆σ2〉/(2r).

The decay rate of the correlation function (1.48) is simply the sum of the two
transition rates r±. The correlation time of the process is

τcorr =
1

r− + r+
=

1
1/τ+ + 1/τ−

. (1.51)

Here we have used the residence (or waiting) times τ± = r−1
± in the two states.

It is amusing to note that the correlation time τcorr is dominated by the smaller
of the two times. So if we have a very asymmetric two-state process, i.e. a pulse
train, then the correlation time will be close to the pulse width rather than to
the interpulse interval. This makes sense: for very small pulse width this two-
state process approaches the limit of a Poisson spike train which has no temporal
correlations at all.

1.3.2 Renewal two-state processes

In general two-state processes do not follow Markovian dynamics. Switching
rates, for instance, do depend on the past and not only on the current state
of the system. In some comparably simple cases we can still relate statistics
of different kinds. For instance, if the system is ergodic and stationary, we can
relate by time-averaging the mean residence times τ± of the two states and the
steady-state probabilities

p0± =
τ±

τ+ + τ−
(1.52)

which is true in particular for the random telegraph noise as can be checked by
Eqn (1.44). Also, the mean and variance of the process can be expressed in a
simple way using τ± and σ±:

〈σ〉 = τ+σ+ + τ−σ−
τ+ + τ−

, 〈∆σ2〉 = τ+τ−
(τ+ + τ−)2

(σ+ − σ−)2. (1.53)

In the following we consider a comparably simple kind of non-Markovian process:
the renewal state process. For such a process the switching probability depends
only on the time that has passed since the last switching event. The Markovian
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telegraph noise is included as a special case for which the residence time densities
are purely exponential.
Simulation of a renewal two-state process If we know that the residence times
in each of the two states are independent of each other and distributed according
to two waiting time densities w+(t), w−(t) with mean waiting times τ±, we can
simulate the process by simulating alternating piecewise constant parts of the
process x(t) = σ±, the lengths of which are drawn from w±(t − ti) (here ti
denotes the instant of last switching).
Power spectrum and residence time densities Knowing the Fourier transforms
of the residence time densities w̃±, we can calculate the power spectrum of the
two-state process with the Stratonovich formula (cf. Stratonovich 1967, Vol. I,
Eqn (6.121)):

S(f) =
2(σ+ − σ−)2

(τ+ + τ−)(2πf)2
Re

[
(1− w̃+)(1− w̃−)

1− w̃−w̃+

]
. (1.54)

For the special case of Markovian telegraph noise, the waiting times are expo-
nential w±(t) = τ−1

± exp[−t/τ±] and their Fourier transforms read w̃± =
1/(1− 2πifτ±) from which we obtain the Lorentzian spectrum (1.49).

More interestingly is a non-Markovian case that is more regular (more peri-
odic) than random telegraph noise. Suppose, for instance, equal residence time
statistics in both states with the single time being a sum of a fixed dead time
τD in which no transition is possible and an exponentially distributed time τ .
Clearly, this setup contains a symmetric random telegraph noise as the limit
case τD = 0. Dead times, also known as refractory periods, are quite common
in neural systems, for instance, as the finite duration of the spike (∼1 ms). The
Fourier transform of the residence time is now w̃ = exp(2πifτD)/[1−2πifτ ] and
the power spectrum according to Eqn (1.54) reads

S(f) =
1
2

× (σ+ − σ−)2τ2/(τ + τD)
1 + cos(2πfτD)− 2πfτ sin(2πfτD) + 2(πfτ)2

. (1.55)

For τD → 0 this agrees with the Markovian case in Eqn (1.49). In the other
limiting case of very small exponential waiting time τ , the process becomes
very regular and consequently the spectrum approaches a series of δ peaks at
f = (2τD)−1 + n/τD (n = 0, 1, . . .). Sample trajectories, waiting time densities
of the two states, and the power spectrum of the resulting two-state processes
are illustrated in Fig. 1.4. As the refractory period increases we start seeing
oscillatory features in the power spectrum (bottom panels).

We note that a trajectory with strong oscillatory component, as indicated by
a pronounced spectral peak, will generally result in a correlation function with
damped oscillations (not shown). Correlation time and noise intensity defined by
integrals of the correlation function can no longer be used in such a case.
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Fig. 1.4: Example of a two-state renewal process that is more regular than
the Markovian telegraph process. The left column shows sample trajectories
for the three different values of the refractory period τD (indicated at the
left side): with increasing τD (top to bottom) the trajectory looks more reg-
ular. Middle column: probability densities which are exponential functions
shifted to the right by the increasing values of the refractory period. Right
column: power spectrum according to Eqn (1.55) which develops from an
almost Lorentzian shape (top panel) to a pronounced peak roughly at the
inverse of twice the refractory period (bottom panel). The peak in the power
spectrum at a finite frequency indicates an almost regular, i.e. oscillatory,
behaviour as also seen in the trajectory on the left. Parameters: σ± = ±1,
τ = 1.

1.4 Point processes

Here we start with considerations that apply to general stationary point pro-
cesses, continue with the simplest process, the Poisson process, and finally discuss
renewal processes.

1.4.1 General spike train and interval statistics
Probability density as spike rate Consider the δ spike train

x(t) =
∑
ti

δ(t− ti) (1.56)

associated with a point process {ti}, e.g. as illustrated in Fig. 1.1. Does it make
sense to study probability densities for this object? At first glance it does not,
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since this pulse train attains only zero (with probability one) or infinity (with
probability zero since the spike lasts only an infinitesimal period). However, this
is not true in more than one sense. First of all, we can identify the probability of
observing at least one spike in [t−∆t/2, t+∆t/2] which gives us, after dividing
by ∆t, a probability density2 – the well-known spike rate (of neural firing, for
instance).

For a specific realization xi(t) we would get an indicator function over the
interval by simply integrating xi(t) over the short interval ∆t. In order to esti-
mate the firing probability density we have to sum over an ensemble and divide
by the number of realizations and by the interval, yielding

r(t) = lim
∆t→0

1
N∆t

N∑
i=1

∫ t+∆t/2

t−∆t/2
dt′xi(t′) = 〈x(t)〉. (1.57)

The spike rate is thus the mean value of the spike train.
Another interpretation of a probability density can be achieved by considering

the number of spikes in an interval (0, t) given by the spike count

N(t) =
∫ t

0
dt′x(t′) (1.58)

with respect to which we may ask for a probability density P (N, t). The latter is
defined on a discrete space as is the telegraph noise. However, in the case of the
spike count there are infinitely many discrete states and there is apparently no
steady state (for a stationary spike train, the spike count never stops growing in
time).

The third aspect in which probability density may be important for spike
train statistics is when the spike train is passed through a linear filter and instead
of the δ peaks we have a series of exponentially decaying pulses also referred to
as shot noise. Synaptic noise is very often modelled in this way; in this case the
variable y is proportional to a conductance change and obeys the dynamics

τFẏ = −y + εx ⇒ y(t) =
ε

τF

∑
Θ(t− ti) exp

[
− (t− ti)

τF

]
. (1.59)

The probability density P (y, t) for this continuous variable is an important char-
acteristics of the shot noise. In the problem of synaptic conductance it is essential
in order to understand the membrane fluctuations which are caused by synaptic
input.

2We emphasize that this probability density is a density with respect to time which was
only a parameter in the previous cases.
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Correlation function Higher order probability densities (always with respect to
time!) are obtained from averaged products of the spike train. These in turn are
related to correlation functions of the spike train:

r2(t1, t2) = lim
∆t→0

1
N∆t

N∑
i=1

∫ t+∆t/2

t−∆t/2
dt′1

∫ t+∆t/2

t−∆t/2
dt′2xi(t′1)xi(t′2) = 〈x(t1)x(t2)〉.

(1.60)

Furthermore, r2(t1|t0) = r2(t0, t1)/r(t0) gives us the probability of observing a
spike at t1 if we know that we had a spike at t = t0. The correlation function of
a stationary spike train with constant rate r can be expressed as

C(τ) = r[r2(τ |0)− r]. (1.61)

Interval statistics and its general relation to the power spectrum We can also
base our characterization of the point process on the intervals between events
(spikes) see Fig. 1.5. The best known is the interspike interval (ISI), the interval
between adjacent spikes. Intervals that consist of the sum of n adjacent ISIs are
known as nth-order intervals Tn. If we know the probability densities ρn(Tn) of
all nth-order intervals, the statistics of the associated stationary spike train is
completely determined. For instance, the conditional probability density can be
expressed as follows (see, for instance, Holden, 1976)

r2(τ |0) = δ(τ) +
∞∑

n=1

ρn(τ). (1.62)

The first term reflects the sure event that we have a spike at τ = 0 (which is our
condition); the other terms sum over the probabilities to have the nth spike at
finite τ . Using Eqn (1.62) in Eqn (1.61) relates the correlation function to the
nth-order interval density, i.e. relates spike train statistics to interval statistics.

Ii–1
Ii

T3,i

T2,i

T1,i

ti–2 ti–1 ti+1 ti+2 tti

Ii+1 Ii+2 Ii+3

Fig. 1.5: Interval statistics. A spike train indicated by arrows (pointing up);
the intervals between adjacent spikes, i.e. the interspike intervals ({Ii}) are
shown with solid lines; the sum of n adjacent ISIs form the nth order intervals
Tn,i (dashed lines).
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More useful is this relation in the Fourier domain relating the power spectrum to
the Fourier transform of the nth-order interval density ρ̃n as follows (see Holden,
1976)

S(f) = 2Re
∫ ∞

0
dτ e2πifτr

[
δ(τ) +

∞∑
n=1

ρn(τ)− r
]

⇒ S(f) = r

[
1− rδ(f) +

∞∑
n=1

ρ̃n(f) + ρ̃∗
n(f)

]
. (1.63)

A general remark on the characteristics of the shot noise in Eqn (1.56) is
that since a δ spike train has infinite variance, the correlation time defined by
Eqn (1.21) is always zero. This is so even if there is some memory in the spiking,
i.e. for firing with a strong refractory period.

1.4.2 Poisson process

The simplest process is obtained if we say that the spiking depends only on the
spike rate r(t) and not on the past. Let us assume that this rate is a constant.
Three different simulation algorithms The Poisson statistics suggest three
approaches. (i) In each time step we draw a random number ai ∈ [0, 1]; if
ai < r∆t a spike is assigned to this time step, i.e. xi(ti) = 1/(∆t); (ii) starting
at time t0, we draw exponentially distributed intervals Ii with mean 〈I〉 = 1/r
and obtain the spike times recursively from ti = ti−1 + Ii; (iii) we take a large
interval [0, T ] and distribute N ≈ rT points randomly and uniformly on this
interval; for a much shorter interval T ′ � T , the points form a Poisson process
in [0, T ′].
Probability density The probability density P (N, t) =

∑
pn(t)δ(N − n) of the

spike count N(t) obeys the master equation

ṗn = rpn−1 − rpn, p0(0) = 1. (1.64)

Again we deal with a gain term (from realizations with n− 1 spikes up to time t
and one additional spike occurring with probability r∆t) and a loss term (having
spiked n times, an additional spike will result in leaving the state x = n). We
can determine the interspike interval density by asking what the fraction of
probability is that leaves n = 0 at t by determining the probability current rp0
(the efflux out of the state). With p−1(t) ≡ 0 we obtain – not surprisingly – a
simple exponential decay ρ(I) = r exp[−rI] as we did for the two-state residence
time density of one single state. The mean is given by the inverse rate (〈I〉 = 1/r)
and the coefficient of variation CV of the ISI (which is the relative standard
deviation of the ISI and a measure for the randomness of the interval) is one,
CV=

√〈∆I2〉/〈I〉 = 1.
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We can also determine the general solution of the spike count’s probability
(using pn(0) = 0 for n ≥ 1):

pn(t) = r
∫ t

0
dt′e−r(t−t′)pn−1(t′) + δn,0e

−rt =
(rt)n

n!
e−rt (1.65)

(the latter relation can be proven by induction). This is the famous Poisson
distribution. We obtain from it the nth-order interval density by calculating the
current from the (n− 1)th to the nth state:

ρn(Tn) = rpn−1(Tn) = r
(rTn)(n−1)

(n− 1)!
e−rTn ⇒ ρ̃n(f) =

1
(1− 2πif/r)n

.

(1.66)

Correlation function and power spectrum of the spike train From the inde-
pendence of the spike generation on the past it follows that the conditional
distribution is simply p(τ |0) = δ(τ) + r and thus we obtain (using Eqn (1.61))
for the Poisson process’ correlation function and its Fourier transform, i.e. the
power spectrum

C(τ) = rδ(τ) ⇒ S(f) = r. (1.67)

The spectrum is flat and does not depend on frequency at all. The same result
is obtained when using the Fourier transform of the nth-order interval density
(1.66) in Eqn (1.63).

1.4.3 More general renewal process

Non-Poissonian firing is observed for many neurons. One reason is the refractory
period of neural firing which makes neural firing more regular than Poissonian
and results in an unimodal ISI density with a peak at finite ISI. Some other neu-
rons show bursting, which can lead to a bimodal ISI density (indicating the most
probable interburst and intraburst intervals) and correlations among interspike
intervals. Ignoring the latter, we can describe and model more experimental data
by just assuming independent intervals given by a (generally non-exponential)
density ρ(I).
Simulation algorithm Such a renewal process can be simulated by drawing inde-
pendent random numbers Ii according to the given ISI density ρ(I). The spiking
times are then ti = ti−1 + Ii.
Formula for the power spectrum For a renewal spike train, the nth-order interval
density is just the probability for a sum of identically distributed independent
random numbers which is given by the n-fold convolution of the ISI density.
Even more convenient, its Fourier transform turns into the n-fold product of
the Fourier transform ρ̃(f) of the ISI density ρ(T ). In Eqn (1.63) we then get a
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Fig. 1.6: Different renewal spike trains as indicated. ISI densities (a) and power
spectra of spike trains (b). Symbols in (b) indicate results of numerical
simulations. Both spike trains have a rate of r = 1.

simple geometric series that can be summed and yields

S(f) = r
1− |ρ̃(f)|2
|1− ρ̃(f)|2 . (1.68)

A simple example As the ISI density we choose a so-called alpha function

ρ(I) = 4r2I exp(−2rI) (1.69)

which has the realistic feature of having a relative refractory period, as also
observed in the firing of many neurons: very short intervals are unlikely. The
ISI density starts at zero and attains its maximum at a finite ISI, unlike the
exponential ISI density in the Poissonian case. We can generate intervals by
adding up two exponentially distributed numbers3 with mean (2r)−1. Samples
of a Poissonian and an α-function spike train together with the ISI probability
densities of these two processes are shown in Fig. 1.6(a); the respective power
spectra are displayed in Fig. 1.6(b). An increased regularity in the spiking is
already visible in the α-function spike train. This increased regularity leads to
a drop of power at low frequencies in the power spectrum. The power spectrum
can be calculated from the Fourier transform of the ISI density via Eqn (1.68)
and reads

S(f) = r
[
1− 2r2

4r2 + (πf)2

]
. (1.70)

3The density (1.69) is the convolution of two exponential densities each with a rate 2r; it
agrees with the nth-order interval density of the Poisson process (1.66) for n = 2 and r replaced
by 2r.
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Choosing an even more peaked ISI density, the spectrum will show even more
reduced power at low frequencies and, additionally, a finite width peak around
the inverse mean ISI and possibly smaller peaks at multiples of this frequency.
Clustering of spikes, at the other extreme, will result in increased power at low
frequency.

1.5 Relating the three processes

It is instructive to see formal mathematical relations between the three pro-
cesses we have studied in this chapter. This also gives good intuition about
many approximation schemes for stochastic systems.
Two-state process → spike train Consider an asymmetric two-state process with
σ− = 0, σ+ = τ−1

+ , and fixed pulse width, i.e. w+(τ)=δ(τ−τ+) (w̃+ = exp(iωτ+));
let the pulse width τ+ go to zero. Then we obtain a spike train that clearly has
an associated point process. If we neglect one of the time-scales in the two-state
problem, we obtain the simpler point process. In this limit the formula for the
power spectrum of the two-state process (Eqn (1.55)) turns into that for the
spectrum of a renewal spike train (Eqn (1.68)).
Two-state process → Ornstein–Uhlenbeck process It is also possible to obtain
the Ornstein–Uhlenbeck process by means of the telegraph noise. If we add up
many independent symmetric processes (〈σi(t)〉 = 0)

yN =
1
N

N∑
i=1

σi(t) (1.71)

then for large N (as a consequence of the central limit theorem) the resulting sum
will have approximately Gaussian (normal) statistics. A little more surprising
perhaps is that the temporal structure of the correlations is maintained as the
following simple calculation shows

CY (τ) = 〈yN (t+ τ)yN (t)〉 = 1
N2

N∑
i,j=1

〈σi(t)σj(t+ τ)〉

=
1
N2

N∑
i=1

〈σi(t)σi(t+ τ)〉 = 1
N
C(τ) (1.72)

where we have used the fact that σi(t) and σj(t) are independent and thus uncor-
related (〈σi(t)σj(t+τ)〉 = 0 if i �= j). Thus, the correlation function of the sum is
just 1/N times the single process’ correlation function. The resulting process has
Gaussian statistics and has exponential correlation – it also approximates more
and more accurately a continuous process since a single step changes the sum
by only 1/N . The only continuous process with Gaussian density and exponen-
tial correlation function is the Ornstein–Uhlenbeck process according to Doob’s
theorem. Numerical studies show that for many purposes N ∼ 12 already yields
statistics quite close to normal.
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Poisson spike train → white Gaussian noise Increasing the number of spikes
and subtracting the mean of the spike train, we obtain a rapidly oscillating
‘spiky’ function, which is largely similar to that of Gaussian white noise. So if we
take the original Ornstein–Uhlenbeck process and drive it with white Poissonian
noise instead of white Gaussian noise we find

v̇ = −γv + ε
(∑

δ(t− ti)− r
)

(1.73)

where we have subtracted the mean of the spike train, which is the steady-state
spike rate (〈∑ δ(t − ti)〉 = r), and ε is an amplitude. We may interpret the
equation by imagining that the particle is kicked around at random times ti
with each kick having the same impact ε. The density equation for this problem
approaches the Fokker–Planck equation of an Ornstein–Uhlenbeck process if we
set ε =

√
2D/r and let r go to infinity. In this sense, the Poissonian shot noise

with high rate and white Gaussian noise are very similar. Since the Fokker–
Planck equation is a generalized diffusion equation, replacing the shot noise at a
finite rate by Gaussian white noise is called the diffusion approximation. This is
employed in neuroscience when dealing with subthreshold membrane fluctuations
that are caused by synaptic shot noise. The latter can be, to a certain extent,
approximated by white Gaussian noise.

1.6 Generation of random numbers

General idea Suppose we have a simple random number generator that provides
uniformly distributed numbers xi between 0 and 1 with puni(x) = 1 and we
want to generate numbers yi according to a distribution p(y) (in general on
(−∞,∞)). It should be possible to substitute the xi into a nonlinear function,
the corresponding values of which are then distributed with density p(y). To get
this function we first find a relationship between the two densities puni and p(y)
via the normalization integral

1 =
∫ 1

0
dxpuni =

∫ ∞

−∞
dy

∣∣∣∣dxdy
∣∣∣∣ puni(x(y)) =

∫ ∞

−∞
dyp(y) (1.74)

from which we get

dx

dy
= p(y) ⇒ x(y) = F (y) =

∫ y

−∞
dzp(z) (1.75)

where F (y) is the cumulative distribution telling us how probable a value below
y is. By inverting (either numerically or analytically) the latter relation we
obtain a way to generate the random numbers yi from the uniformly distributed
numbers xi

y(x) = F−1(x). (1.76)
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Exponentially distributed numbers Suppose we want to generate numbers
according to p(y) = r exp(−ry). In this case it is easy to obtain F (y) =
1− exp(−ry) and furthermore to invert this relation to obtain

y = −r−1 ln(1− x). (1.77)

Equivalently, we could use y = −r−1 ln(x) because of the symmetry of x.
Gaussian numbers The formulas above can be generalized to multidimen-
sional densities, which is particularly useful for generating Gaussian numbers.
In this case we need two independent uniformly distributed random numbers x1
and x2 in order to obtain two independent Gaussian numbers y1 and y2. The
transformation is called the Box–Müller formula and reads

y1 =
√
2 ln(x1) cos(2πx2) (1.78)

y2 =
√
2 ln(x1) sin(2πx2). (1.79)

If these variables are normally distributed, the Jacobian (which replaces the
simple derivative in the normalization integral) should yield a two-dimensional
Gaussian, as can be checked by inserting∣∣∣∣∂(x1, x2)

∂(y1, y2)

∣∣∣∣ = 1√
2π
e−y2

1/2 1√
2π
e−y2

2/2 = p(y1, y2). (1.80)
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