QM foundations seminar: Okolice podstaw mechaniki kwantowej
Godzina 14-16, Wydział Matematyki i
Informatyki UJ, sala 1146
Organizers: Paweł Błasiak, Jarosław Duda
Data |
Temat spotkania |
2018-11-09 |
Born rules, Bell violation and Anderson localization from statistical
path ensembles, Jarosław Duda (UJ) Trying to decompose electric conductance into local currents down to
atomic level, we are asking for diffusion model for electrons – this natural
looking question has turned out problematic: predicting nearly uniform
probability density for defected lattice – for example wrongly predicting
that semiconductor is a conductor. It turns out that these standard diffusion
models only approximate the crucial in statistical physics: (Jaynes) maximal entropy
principle. Repairing this approximation, Maximal Entropy Random Walk (MERW)
turns out to lead to the same stationary probability distribution as quantum ground
state – with Anderson localization, for example preventing electron
conductance in semiconductor. MERW equivalently is uniform (or Boltzmann)
distribution among possible paths – getting mathematical agreement with
quantum predictions thanks to resemblance to Euclidean path ensembles. Such
idealized path ensembles also lead to Born rule and consequent violation of
Bell inequalities – offering a simple explanation of quantum nonlocality. Slides |
2018-06-22 |
Review of book "The universe in helium droplet" by G. Volovik, Krzysztof Pomorski
(AGH) There are
fundamental relations between three vast areas of physics: particle physics,
cosmology, and condensed matter physics. The fundamental links between the
first two areas — in other words, between micro- and macro-worlds — have been
well established. There is a unified system of laws governing the scales from
subatomic particles to the cosmos and this principle is widely exploited in
the description of the physics of the early universe. This book aims to establish
and define the connection of these two fields with condensed matter physics.
According to the modern view, elementary particles (electrons, neutrinos,
quarks, etc.) are excitations of a more fundamental medium called the quantum
vacuum. This is the new ‘aether’ of the 21st
century. Electromagnetism, gravity, and the fields transferring weak and
strong interactions all represent different types of the collective motion of
the quantum vacuum. Among the existing condensed matter systems, a quantum
liquid called superfluid 3He-A most closely represents the quantum vacuum.
Its quasiparticles are very similar to the elementary particles, while the
collective modes are analogues of photons and gravitons. The fundamental laws
of physics, such as the laws of relativity (Lorentz invariance) and gauge
invariance, arise when the temperature of the quantum liquid decreases. Slides |
2018-06-21 |
Monopoles as
topological solitons, Manfried Faber (TU Wien) We define a Lagrangian
for a scalar SO(3)-field in Minkowski
space and derive the equations of motion. We determine the topological
excitations of these fields. The three degrees of freedom of the SO(3)-field are sufficient to get long-range Coulomb
forces, mass as field energy, spin as a topological quantum number and 4-Pi
rotations as characteristic of fermions. Due to a spontaneous breaking of
symmetry two massless degrees of freedom appear which can be compared with
the two polarisations of electromagnetic waves. A U(1) gauge symmetry is emerging. |
2018-06-06 |
Is single-particle
interference the mystery?, Paweł Błasiak (IFJ) A great deal of
effort in quantum foundations research goes into identification of distinctive
features which make the theory unique and effective at the same time.
So, was Feynman right describing single-particle interference as “a
phenomenon which is impossible, absolutely impossible to
explain in any classical way, and which has in it the heart of quantum
mechanics. In reality, it contains the only mystery.” ? And
does it have anything to do with contextuality, or non-locality of the
collapse of the wave function? This
observation sets the bar higher for quantum discussions based on an
ostensible weirdness of single-particle effects. In particular, it shows that
claiming non-locality in the single-particle regime is unwarranted, and
thereby the real mystery is pushed to the genuine multi-particle behavior. Slides |
2018-05-22 |
Dyskusja – kauzalność w
eksperymencie Wheelera, z opóźnionym wyborem, algorytmie Shora? Zostanie przedstawione i poddane dyskusji
kilka eksperymentów naiwnie sugerujących wpływ późniejszych
zdarzeń na wcześniejsze: eksperyment Wheelera szczególnie w
realizacji grupy Aspecta, eksperyment z pracy grupy
Vaidmana "Asking photons where they have been",
delayed choice quantum erasure
w realizacji grupy Walborna oraz grupy Zeilingera, oraz algorytm Shora.
Link do slajdów. |
2018-05-08 |
Nie ma świata klasycznego, czyli
interpretacja Everetta mechaniki kwantowej – część II: dekohrencja i prawdopodobieństwo, Paweł Jochym (IFJ) |
2018-04-24 |
Nie ma świata klasycznego, czyli
interpretacja Everetta mechaniki kwantowej, Paweł
Jochym (IFJ) Przedstawię podstawowe
założenia interpretacji Everetta, oraz
ich konsekwencje dla obrazu świata. Interpretacja ta, zwana
często interpretacją “wielu światów” jest
często posądzana o brak ekonomii, czy
łamanie zasady Ockhama. Często nazywa się ją
też nieortodoksyją czy skrajną. Postaram się
pokazać, że w istocie jest to jedna z najbardziej
konserwatywnych interpretacji mechaniki kwantowej. Przedstawię
także najważniejsze trudności jakie napotyka
jej zastosowanie. |
2018-04-06 |
Równanie Abrahama-Lorentza, czyli o paradoksach klasycznej teorii
cząstek naładowanych, Marcin
Markiewicz (UJ) Słynne równanie Abrahama-Lorentza to równanie ruchu dla punktowej
cząstki naładowanej poddanej działaniu sił
zewnętrznych. Ponieważ występuje w nim jawnie trzecia pochodna
położenia cząstki (drugie przyspieszenie), równanie to ma
paradoksalne własności, takie jak sygnalizowanie z
przyszłości. W krótkim wystąpieniu omówię to
słynne równanie, jego konsekwencje, oraz
sposoby aby uniknąć jego paradoksalnych konsekwencji. |
2018-03-30 |
Topological charge as electric charge – particles as topological
solitons, Jarosław Duda (UJ) Maxwell's
equations have two weaknesses: field of electric charge has infinite energy,
and lack of charge quantization: Gauss law allows for charge being any real
number. In contrast, Gauss-Bonnet theorem allows to conclude that integrating
field's curvature over a closed surface, we get topological charge inside -
which has to be integer. Hence defining electric field as curvature of some
more fundamental field leads to topological solitons with long-range
Coulomb-like interaction, and magnetism resulting from Lorentz invariance.
Such simple model of electron (by Manfried Faber)
also regularizes charge to finite energy thanks to Higgs-like potential:
allowing to leave the topologically nontrivial minimum in the center of
charge. I will also briefly discuss its extensions to obtain further
particles as topological excitations of a single field. Slides. |
2018-03-16 |
On classical
electrodynamics with distribution-valued sources. In particular, the problem
of point charge will be discussed, Edward Kapuścik (IFJ) |
2018-03-02 |
Kwantowa nielokalność bez nierówności, Paweł Błasiak (IFJ) Zacznę od krótkiego przypomnienia sporu
o kompletność mechaniki kwantowej jaki toczyli Einstein i Bohr
(1935) oraz fundamentalnego wkładu Johna Bella (1964) w
dyskusję lokalnego realizmu teorii. Oryginalne rozumowanie Bella oparte
o łamanie statystycznych nierówności na korelacje wyników
pomiarów w teoriach lokalnych można obecnie
zastąpić silniejszym argumentem prowadzącym do logicznej
sprzeczności. Podczas seminarium opowiem o trzech
różnych dowodach na nielokalność mechaniki kwantowej:
oryginalnych nierównościach Bella-CHSH (1969) oraz
dwóch paradoksach logicznych Hardy’ego (1992) i GHZ (1990). Link do slajdów. |
2018-02-14 |
Hydrodynamical
analogues of a few quantum phenomena, Jarosław
Duda (UJ) There are recently popular
experiments started by Couder’s group with
classical objects: “walking droplets” having wave-particle duality. In the
best journals there are shown for them: interference patterns in double-slit
statistics, tunneling, orbit quantization in a few ways: including Zeeman effect and double
quantization (of separately radius and angular momentum), and recreating
wavefunction with path statistics. I will also mention about hydrodynamical
analogues of Casimir and Aharonov-Bohm effects, and
some connections with quantum mechanics. Slides. |
2018-01-31 |
Spotkanie organizacyjne |