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Equivariant wave maps
Wave map equation for φ : R×Rd 7→ Sd ↪→ Rd+1

φtt−∆φ +
(
|φt|2−|∇φ |2

)
φ = 0

Our motivation: toy model of critical behavior for Einstein’s equation.

For equivariant maps of the form (where r = |x|)

φ(t,x) =
(x

r
sinu(t,r),cosu(t,r)

)
the wave map equation reduces to

utt = urr +
d−1

r
ur−

d−1
2r2 sin(2u)

We want to understand global dynamics for smooth initial data (u,ut)|t=0.

Basic question: do solutions remain smooth for all future times? If not,
what is the mechanism of singularity formation (”blowup”)?
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Preliminaries
Conservation of energy

E(u) =
∞∫

0

(
u2

t +u2
r +

d−1
r2 sin2 u

)
rd−1dr

Smoothness at r = 0 implies that u(t,0) = mπ (we choose m = 0)

Finiteness of energy implies that u(t,∞) = kπ (k ∈ Z). The degree k is
preserved in evolution as long as the solution remains smooth.

Scaling invariance: u(t,r)→ uλ (t,r) = u(t/λ ,r/λ )

E(uλ ) = λ d−2E(u), hence d = 2 is critical and d ≥ 3 are supercritical

The critical dimension is well understood: B-Chmaj-Tabor ’01, Struwe ’03,
Krieger-Schlag-Tataru ’06, Sterbenz-Tataru ’10, Ovchinnikov-Sigal ’11,
Raphaël-Rodnianski ’12, Côte-Kenig-Lawrie-Schlag ’12.

Supercritical dimensions are underexplored. Few results for d = 3:
Shatah ’88, B-Chmaj-Tabor ’00, Donninger ’11, Donninger-Schörkhuber
and, until recently, almost no results for d ≥ 4.
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Self-similar solutions

Self-similar solutions are invariant under scaling u(t/λ ,r/λ ) = u(t,r).
Thus

u(t,r) = f (y) where y =
r

T− t

This gives an ODE

f ′′+
(

d−1
y

+
(d−3)y
1− y2

)
f ′− d−1

2y2(1− y2)
sin(2f ) = 0

We want smooth solutions on 0≤ y≤ 1, the past light cone of (T,0).

For such solutions

ur(t,0) =
f ′(0)
T− t

→ ∞ as t↗ T

Remark: in order to participate in dynamics, self-similar solutions need to
be smooth outside the light cone (y > 1) as well.
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Self-similar solutions

One-parameter family of local smooth solutions near the origin

f (y) = cy+O(y3)

Local solutions extend smoothly to the whole interval 0≤ y < 1.
For what values of c these solutions are smooth at y = 1?

For c0 =
2√
d−2

the solution is known is closed form

f0(y) = 2arctan
(

y√
d−2

)
d = 3: Shatah ’88, Turok-Spergel ’90, d ≥ 4: B-Biernat ’15

Conjecture: f0 is the only self-similar solution for d ≥ 7.

Aside: harmonic map flow has no self-similar solutions for d ≥ 7.
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How f0 was found?

Let ε = d−2 and change variables y =
√

ε x and f (y) = f̃ (x). Then

(1− y2) f ′′+
(

d−1
y
−2y

)
f ′− d−1

2y2 sin(2f ) = 0

can be written in the form

f̃ ′′+
1
x

f̃ ′− sin(2f̃ )
2x2︸ ︷︷ ︸

= 0 for f̃0 = 2arctan(x)

= ε

(
x2 f̃ ′′−

(
1
x
−2x

)
f̃ ′+

sin(2f̃ )
2x2

)
︸ ︷︷ ︸

Miracle: = 0 for f̃0 !

Note that f0(1)< π/2 for d > 3.
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Self-similar solutions for 3≤ d ≤ 6
If f (y) is smooth at y = 1, then

(d−3)f ′(1)− d−1
2

sin(2f (1)) = 0

(d−5)f ′′(1)+(d−7− (d−1)cos(2f (1))) f ′(1) = 0

This implies that
For d = 3

f (y) =
π

2
− f ′(1)(1− y)+ ....

For d = 5, either

f (y) =
π

2
+

1
2

f ′′(1)(1− y)2 + ...

or

f (y) =
π

3
−
√

3
2

(1− y)+
1
2

f ′′(1)(1− y)2 + ....

For d = 4,6

f (y) = f (1)− d−1
2(d−3)

sin(2f (1))(1− y)+ ...
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Self-similar solutions for 3≤ d ≤ 6

Theorem
For each d ∈ {3,4,5,6} there is an infinite sequence (cn)n∈N such that the
corresponding solutions, denoted by fn(y), are smooth at y = 1.

Proof:

Shooting argument for solutions with f (1) = π/2 in d = 3,5 [B ’00]. Key
ingredient: linearization around the singular solution f = π/2.
In d = 4,6 the proof requires a minor modification (because f (1) 6= π/2).

Self-similar solutions are (formally) critical points of the functional

E (f ) =
1∫

0

(
f ′2 +

d−1
2

sin2 f − sin2 f (1)
y2(1− y2)

)
yd−1dy

(1− y2)
d−3

2

For d = 5 the variational proof of existence of f1(y) was given by
Cazenave-Shatah-Tahvildar-Zadeh ’98.
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Spectral stability
In terms of slow time s =− ln(T− t) and U(s,y) = u(t,r) we have

Uss +Us +2y Usy = (1− y2)Uyy +

(
d−1

y
−2y

)
Uy−

d−1
2y2 sin(2U)

Inserting U(s,y) = fn(y)+ eλ sv(y) and linearizing we get the quadratic
eigenvalue problem

(1− y2)v′′+
(

d−1
y
−2(λ +1)y

)
v′−λ (λ +1)v− d−1

y2 cos(2fn)v = 0,

We demand that v ∈ C∞[0,1]⇒ quantization of eigenvalues λ
(n)
k

We conjecture that for each n the spectrum has the form

· · ·< λ
(n)
−2 < λ

(n)
−1︸ ︷︷ ︸

∞ many stable modes

< 0 < λ
(n)
0 = 1︸ ︷︷ ︸

gauge mode

< λ
(n)
1 < · · ·< λ

(n)
n︸ ︷︷ ︸

n unstable modes

The eigenvalue λ
(n)
0 = 1 corresponds to the gauge mode v(n)0 (y) = y f ′n(y)

generated by the shift of the blowup time T .
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Spectral stability of f0

In terms of new variables x = (d−1)y2

y2+d−2 and v(y) = x1/2 (d−1− x)
λ

2 w(x)
the eigenvalue equation takes the form of the Heun equation

w′′+
(

γ

x
+

δ

x−1
+

ε

x−d+1

)
w′+

αβx−q
x(x−1)(x−d+1)

w = 0

where the coefficients γ,δ ,ε,α,β ,q depend on d and λ .

The analytic solution at x = 0 is w(x) =
∞

∑
n=0

anxn, where

an ∼ c1(λ )nλ− d+1
2︸ ︷︷ ︸

bad

+c2(λ )(d−1)−nn−
3
2︸ ︷︷ ︸

good

for n→ ∞

The quantization condition c1(λ ) = 0 can be solved using continued
fractions [B ’05]. Recently, Costin-Donninger-Glogić ’16 proved that
c1(λ ) = 0 has no positive roots (apart from λ = 1).
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Self-adjoint formulation
Let ψ(y) = (1− y2)λ/2 y

d−1
2 v(y). Then, the eigenvalue problem becomes

Anψ = µψ, µ = λ (d−1−λ )

where the operator An =−(1− y2)
d+1

2 ∂y

(
(1− y2)

d−3
2 ∂y

)
+V(fn(y)) is

self-adjoint on the Hilbert space X = L2
(
[0,1],(1− y2)−

d+1
2 dy

)
.

For λ > d−1
2 , the eigenvalues of our problem (i.e. v ∈ C∞[0,1]) and the

eigenvalues of An (i.e. ψ ∈ X) coincide.

Using this correspondence and applying the Sturm oscillation theorem to
the gauge mode ψ

(n)
0 = (1− y2)1/2y

d+1
2 f ′n(y) with µ = d−2, we conclude

that fn has n (for d = 3,4) or n−1 (for d = 5,6) eigenvalues λ > d−2.

In addition, for d = 5 the gauge mode is the eigenfunction, hence
λ
(n)
1 = 3 is the eigenvalue for each n 6= 0.

Numerical calculations indicate that for d = 3,4,5 there are no additional
eigenvalues with positive real part, while for d = 6 there is exactly one
such eigenvalue (which is not an eigenvalue of An).
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Spectrum of eigenvalues for f0 and f1

λ
(0)
k k = 0 k =−1 k =−2 k =−3 k =−4

d = 3 1 −0.542466 −2.000000 −3.398381 −4.765079
d = 4 1 −0.563612 −2.109131 −3.603718 −5.061116
d = 5 1 −0.572315 −2.163011 −3.711951 −5.216059
d = 6 1 −0.577089 −2.195673 −3.780281 −5.306294
d = 7 1 −0.580109 −2.217711 −3.827722 −5.354120
d = 8 1 −0.582193 −2.233621 −3.862716 −5.367078

λ
(1)
k k = 1 k = 0 k =−1 k =−2 k =−3

d = 3 6.333625 1 −0.518609 −1.743834 −2.867543
d = 4 3.998831 1 −0.390210 −1.585419 −2.714684
d = 5 3 1 −0.281770 −1.447552 −2.574483
d = 6 2.426239 1 −0.179962 −1.308475 −2.419907
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Self-similar solutions as attractors
Conjecture (for all d ≥ 3)
The self-similar solution f0 is a universal attractor for generic blowup, i.e.
if a solution u(t,r) blows up at time T , then lim

t↗T
u(t,(T− t)r) = f0(r).

Evidence:
For d = 3 Donninger ’11 proved that the spectral stability of f0 implies its
linear and nonlinear stability. An extension of this result to higher
dimensions seems feasible but the non-perturbative regime seems hard.

Numerical studies: first done for d = 3 [B-Chmaj-Tabor ’00], recently have
been extended to higher dimensions [Biernat-B-Maliborski ’16]. They
confirm the above conjecture and verify that the rate and profile of
convergence to f0 are determined by the least damped mode

u(t,r)− f0

(
r

T− t

)
∼ C (T− t)−λ−1 v−1

(
r

T− t

)
,

where the coefficient C and blowup time T depend on initial data.
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∂yU(0, s)− f ′

0(0)
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∂yU(0, s)− f ′
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λ−1 = −0.562

C = 0.122
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0

10−4

U(y, s)− f0 (y)

Ceλ−1sv−1 (y)
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Rate Profile

Excellent quantitative agreement with the linear approximation

U(s,y) = f0(y)+C eλ−1 v−1(y)+ . . .
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Threshold of blowup
Small solutions disperse and large solutions blow up. What is the
borderline between these two generic outcomes of evolution?

Basic numerical technique: consider a curve of initial data that
interpolates between small and large data, say a gaussian with
amplitude A. Using bisection, one can fine tune to critical amplitude A∗.

In dimensions 3≤ d ≤ 6 the evolution of marginally critical data exhibits
a typical saddle-point behavior for intermediate times

U(s,y)' f1(y)+ c1(A−A∗)eλ1s v1(y)+ c−1eλ−1s v−1(y)+ . . .

where λ1 > 0 and λ−1 < 0.

For dispersive solutions this implies that max |ur(t,0)| ∼ |A∗−A|−1/λ1

Conjecture (for 3≤ d ≤ 6)
The self-similar solution f1 plays the role of the critical solution whose
codimension-one stable manifold separates blowup from dispersion.
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Schematic picture of evolution near the threshold.
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Threshold of blowup in d ≥ 7 (à la Herrero-Velazquez)
For d ≥ 7 the singular solution f = π/2 has spectrum (k = 0,1, ...)

λk = γ− k, γ =
1
2

(
d−2−

√
d2−8d+8

)
λ0 > 0 is the gauge mode, λ1 > 0, and λk ≤ 0 for k ≥ 2.

Outer solution: fout = π/2+���
���XXXXXXa1eλ1sv1(y)+a2eλ2sv2(y)+ . . .

Inner solution: fin = F(r/α(t)), where F(r) is the smooth static solution,
i.e. F′′+ d−1

r F′− d−1
2r2 sin(2F) = 0 with F(r)∼ r for r→ 0.

Since v2(y)∼ y−γ for y→ 0 and F(r)−π/2∼ r−γ for r→ ∞, we can
match fout and fin in the intermediate region. This yields

α(t)∼ (T− t)β , β = 1−λ2/γ = 2/γ > 1

For d = 7 the above analysis breaks down because λ2 = 0.

New approach to Type II blowup due to Merle-Raphaël-Rodnianski ’14
in the context of supercritical NLS (adapted to the supercritical wave
equation by Collot ’14) seems applicable here (Biernat, in progress).
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Selected open problems
Threshold of blowup in d = 2: blowup has a universal form of shrinking

harmonic map u(t,r)∼2arctan
(

r
α(t)

)
with α(t)→ 0 for t↗T [Struwe’03].

For stable blowup α(t)∼ C(T− t)e−
√
| ln(T−t)| [Ovchinnikov-Sigal ’11,

Raphaël-Rodnianski ’12]. What is the speed of blowup at the threshold?

Continuation beyond blowup: we expect that a solution that blows up
along f0 at time T1 immediately recovers smoothness for T > T1 and
remains smooth until (possibly) the next blowup occurs.

Blowup for wave maps on confined geometries: blowup does not depend
on the geometry of domain but the very occurrence of blowup does.
Our preliminary results for wave maps from AdS4 to S3 suggest that for
’generic’ small smooth initial data of size ε the time of blowup T ∼ ε−2.

Supercritical Einstein-wave-map system: Extremely rich phenomenology
depending on the dimensionless parameter κ = Gβ 2. Generic self-similar
blowup (for small κ) disappears for large κ (gravitational regularization)
and there appears a codimension-one discretely-self similar solution.
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