Sine-Gordon on a Wormhole

Piotr Bizoń and Michał Kahl
Jagiellonian University
joint work with M. Dunajski, G.W. Gibbons, and M. Kowalczyk
Cambridge, 6 March 2018

Soliton resolution conjecture

Solutions of dispersive wave equations asymptotically resolve into a superposition of a coherent structure (soliton, black hole,...) and radiation.

- Mathematical understanding of this conjecture is rather limited, especially in the non-perturbative regime (for initial data far from an equilibrium).
- The simplest setting for studying this conjecture:
(1) evolution is globally regular
(2) there is a unique stable (nontrivial) stationary equilibrium
(3) the equilibrium solution is rigid
(4) there are no internal oscillation modes
- Such a model (wave map on a wormhole) was proposed by B-Kahl (2016) and later the soliton resolution conjecture was proven by Rodriguez
- In this talk we consider a similar model but without the property 4

Stability of kink in the ϕ^{4} model

- For $\phi: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$

$$
\phi_{t t}=\phi_{x x}+\phi\left(1-\phi^{2}\right)
$$

- Kink: $\phi(t, x)=H(x)=\tanh (x / \sqrt{2})$
- Is the kink asymptotically stable?
- Let $\phi(t, x)=H(x)+u(t, x)$. Then $u_{t t}+L u+f(u, x)=0$, where

$$
L=-\partial_{x x}+V(x)+2, \quad V(x)=3 H^{2}(x)-3=-3 \operatorname{sech}^{2}(x / \sqrt{2})
$$

- Spectrum: $\sigma(L)=\{0,3 / 2\} \cup[2,+\infty)$
- Key difficulties: internal mode and slow dispersive decay
- For odd perturbations Kowalczyk-Martel-Muñoz (2017) proved that $\lim _{t \rightarrow \pm \infty}\|u(t)\|_{E}=0$ but the decay estimate is not optimal (which is conjectured to be $t^{-1 / 2}$; see e.g. Manton-Merabet 1996)

Sine-Gordon equation

- For $\phi: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$

$$
\phi_{t t}=\phi_{x x}-\sin (2 \phi)
$$

- Sine-Gordon equation is completely integrable
- Kink: $\phi(t, x)=H(x)=2 \arctan \left(e^{\sqrt{2} x}\right)$
- Let $\phi(t, x)=H(x)+u(t, x)$. Then $u_{t t}+L u+f(u, x)=0$, where

$$
L=-\partial_{x x}+V(x)+2, \quad V(x)=-4 \sin ^{2} H(x)=-4 \operatorname{sech}^{2}(\sqrt{2} x)
$$

- Spectrum: $\sigma(L)=\{0\} \cup[2,+\infty)$
- Absence of internal modes seems to be intimately tied with integrability
- In the neighbourhood of the SG kink there exists a one-parameter family of wobbling kinks, therefore the SG kink is not asymptotically stable
- Here we shall consider a non-integrable deformation of SG equation

Wormhole

- Domain $M=\left\{t \in \mathbb{R},(r, \vartheta, \varphi) \in \mathbb{R} \times \mathbb{S}^{2}\right\}$ with metric

$$
g=-d t^{2}+d r^{2}+\left(r^{2}+a^{2}\right)\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)
$$

- Hypersurfaces $t=$ const have two asymptotically flat ends at $r \rightarrow \pm \infty$ connected by a neck of area $4 \pi a^{2}$ at $r=0$.

Sine-Gordon on the wormhole: $\square_{g} \phi=\sin (2 \phi)$

$$
\phi_{t t}=\phi_{r r}+\frac{2 r}{r^{2}+a^{2}} \phi_{r}-\sin (2 \phi)
$$

- The length scale a plays two roles:
- removes the singularity at $r=0 \Rightarrow$ global-in-time regularity
- breaks scale invariance \Rightarrow allows for kinks
- The equation is truly $1+1$ dimensional $(-\infty<r<\infty)$, yet it inherits strong dispersive decay from the original $3+1$ dimensional problem.
- Conserved energy

$$
E(\phi)=\int_{-\infty}^{\infty}\left(\frac{1}{2} \phi_{t}^{2}+\frac{1}{2} \phi_{r}^{2}+\sin ^{2} \phi\right)\left(r^{2}+a^{2}\right) d r
$$

- Finiteness of energy requires that $\phi(t,-\infty)=m \pi, u(t, \infty)=n \pi$. We choose $m=0$ so n determines the topological degree of the map.

Kinks

$$
H^{\prime \prime}+\frac{2 r}{r^{2}+a^{2}} H^{\prime}-\sin (2 H)=0
$$

Theorem

For any given $a>0$ there exists a unique smooth solution H_{n} of degree n.
Proof: elementary shooting argument

Analytic approximations for kinks

- For $n=1$ and large a

$$
H_{1}(r) \approx H_{S G}(r)+\frac{1}{a^{2}} h_{1}(r), \quad h_{1}^{\prime \prime}-2 \cos \left(2 H_{S G}\right) h_{1}=-2 r H_{S G}^{\prime}
$$

- For $n \geq 2$ and large a the kink $H_{n}(r)$ is well approximated by a superposition of n sine-Gordon kinks. For example

$$
\begin{aligned}
& H_{2}(r) \approx H_{S G}\left(r+\frac{\ln a}{\sqrt{2}}\right)+H_{S G}\left(r-\frac{\ln a}{\sqrt{2}}\right) \\
& H_{3}(r) \approx H_{S G}(r+\sqrt{2} \ln a)+H_{S G}(r)+H_{S G}(r-\sqrt{2} \ln a)
\end{aligned}
$$

- For small a

$$
H_{n}(r) \approx n\left(\frac{\pi}{2}+\arctan (r / a)\right)
$$

Linear perturbations

- Let $\phi(t, r)=H_{n}(r)+\frac{u(t, r)}{\sqrt{r^{2}+a^{2}}}$. Then $u_{t t}+L_{n} u+f(u, r)=0$, where

$$
L_{n}=-\partial_{r r}+V_{n}(r)+2, \quad V_{n}(r)=-4 \sin ^{2} H_{n}(r)+\frac{a^{2}}{\left(r^{2}+a^{2}\right)^{2}}
$$

Spectrum of L_{n}

- Consider the eigenvalue problem $L_{1} \psi=\omega^{2} \psi$. For large a

$$
\psi=\psi_{0}+\frac{1}{a^{2}} \psi_{1}+\mathscr{O}\left(\frac{1}{a^{4}}\right), \quad \omega^{2}=\xi \frac{1}{a^{2}}+\mathscr{O}\left(\frac{1}{a^{4}}\right)
$$

where $\psi_{0}(r)=2^{-3 / 4} H_{S G}^{\prime}(r)$ is the zero mode of sine-Gordon kink

- At order $\mathscr{O}\left(1 / a^{2}\right)$ we get

$$
\xi=1-4 \int_{-\infty}^{\infty} \sin \left(2 H_{S G}(r)\right) h_{1}(r) \psi_{0}^{2}(r) d r=2
$$

- As a decreases, the eigenvalue ω^{2} migrates through the gap $(0,2)$ and disappears into the continuous spectrum for $a<a^{*} \approx 0.536$.
- For $n \geq 2$ and sufficiently large a there are n gap eigenvalues. As a decreases they disappear one by one into the continuous spectrum at certain critical values $a_{1}^{*}<a_{2}^{*}<\ldots .<a_{n}^{*}$. For example, for $n=2$ we find $a_{1}^{*} \approx 0.39$ and $a_{2}^{*} \approx 0.81$.

Conjecture

For any smooth finite-energy initial data of degree n there exists a unique smooth global solution which converges asymptotically to the kink H_{n}.

- If there are no internal modes, then $|u(t)| \sim t^{-3 / 2}$ for $t \rightarrow \infty$
- The decay of internal modes is due to their resonant interactions with radiation (Soffer-Weinstein 1999)
- Consider the case $n=1$ and let P_{ψ} be a projector on the internal mode ψ. Decomposing $u(t, r)=a(t) \psi(r)+\eta(t, r)$ and projecting, we get

$$
a_{t t}+\omega^{2} a+P_{\psi} f(a \psi+\eta, r)=0, \quad \eta_{t t}+L_{1} \eta+P_{\psi}^{\perp} f(a \psi+\eta, r)=0
$$

- Solving for η and substituting $a=A e^{i \omega t}+\bar{A} e^{-i \omega t}$, we get $(\Gamma>0)$

$$
\partial_{t}|A| \simeq-\Gamma|A|^{2 N+1}, \quad N \omega<\sqrt{2}<(N+1) \omega
$$

hence $|A| \sim t^{-\frac{1}{2 N}}$ for $t \rightarrow \infty$

Hyperboloidal initial value problem

- We define new "hyperboloidal" coordinates

$$
s=\frac{t}{a}-\sqrt{\frac{r^{2}}{a^{2}}+1}, \quad y=\arctan \left(\frac{r}{a}\right)
$$

- Our equation for $f(s, y)=\phi(t, r)$ takes the form

$$
f_{s s}+2 \sin y f_{s y}+\frac{1+\sin ^{2} y}{\cos y} f_{s}=\cos ^{2} y f_{y y}-a^{2} \frac{\sin (2 f)}{\cos ^{2} y}
$$

- There are no ingoing characteristics at the boundaries, hence no boundary conditions are required (or allowed).
- We solve equation (\star) for smooth initial data $\phi(0, y), \phi_{s}(0, y)$ that are compactly supported perturbations of the kink.

Numerical evidence

Numerical evidence

