Dimensional analysis (physics made easy)

Piotr Bizoń

Jagiellonian University Kraków, Poland

Bangkok, 6 March 2017

 $t = cm^{\overline{3}}$ constant determined from a single measurement

It happens not infrequently that results in the form of 'laws' are put forward as novelties on the basis of elaborate experiments, which might have been predicted a priori after a few minutes' consideration..

Lord Rayleigh, 1915
The principle of similitude

BASIC IDEA OF DIMENSIONAL ANALYSIS

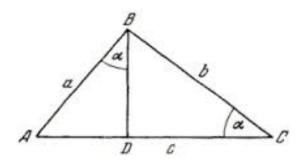
The laws of physics should not depend on the choice of physical units.

Every law can be written in a dimensionless form.

Check your units!

"Now that desk looks better. Everything's squared away, yessir, squaaaaaared away."

Pythagoras theorem

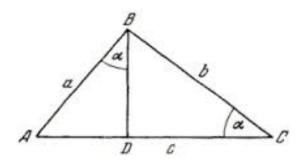


Area of the right triangle = hypotenuse² × $f(\alpha)$

$$a^{2}f(\alpha) + b^{2}f(\alpha) = c^{2}f(\alpha)$$

This 'proof' fails in a non-Euclidean space!

Pythagoras theorem

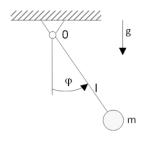


Area of the right triangle = hypotenuse² × $f(\alpha)$

$$a^2 f(\alpha) + b^2 f(\alpha) = c^2 f(\alpha)$$

This 'proof' fails in a non-Euclidean space!

Pendulum



Variables:

- frequency $[\omega] = T^{-1}$
- mass [m] = M
- length [l] = L

• gravity
$$[g] = LT^{-2}$$

• angle
$$[\phi] = 1$$

• Two dimensionless quantities: $\frac{\omega^2 l}{g}$ and ϕ

• Thus,
$$\frac{\omega^2 l}{g} = f(\phi) \Longrightarrow \boxed{\omega^2 = \frac{g}{l} f(\phi)}$$

For small angles

$$\omega^2 \approx \frac{g}{l} f(0)$$

assuming that $\lim_{x\to 0} f(x) \neq 0$ exists.

Dimensional analysis - instruction manual

- Make a list of *n* physical variables relevant for the problem (*n* = 5 for the pendulum: ω, *m*, *l*, *g*, φ)
- Establish the number of independent dimensions k (k = 3 for the pendulum: L, M, T)
- Write down n k dimensionless combinations $\alpha_1, ..., \alpha_{n-k}$ $(n-k=2 \text{ for the pendulum: } \alpha_1 = \omega^2 l/g, \alpha_2 = \phi)$
- The solution of your problem can be written in the form

$$F(\alpha_1,...,\alpha_{n-k})=0$$

 Use physics (intuition) to get rid of irrelevant quantities (consider limiting cases α_i → 0 or α_i → ∞)

Terminal velocity

Variables:

- drag $[F] = MLT^{-2}$
- size [R] = L,
- density of air $[\rho] = ML^{-3}$
- velocity $[\upsilon] = LT^{-1}$
- viscosity $[\mu] = ML^{-1}T^{-1}$

• Dimensionless quantities: $\alpha_1 = \frac{\rho \upsilon R}{\mu}$ (Reynolds number), $\alpha_2 = \frac{F}{\rho R^2 \upsilon^2}$

• Thus
$$\frac{F}{\rho R^2 v^2} = f(\alpha_1) \Longrightarrow F = \rho R^2 v^2 f(\alpha_1)$$

- Assuming that $\lim_{\alpha_1 \to \infty} f(\alpha_1) \neq 0$ exists, we get $F \sim \rho R^2 v^2$ for large α_1
- Balance between the gravitational force and the drag

 $\rho R^2 v^2 \sim mg = \rho_0 R^3 g$ gives the terminal velocity $v \sim \left(\frac{g R \rho_0}{2}\right)^{1/2}$

Speed of the rowing boats

 $\begin{bmatrix} s_{n} \\ s_{n} \\ t_{n} \\ t_$

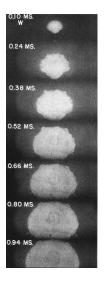
- Drag $F \sim \rho v^2 \ell^2$
- Submerged volume $\sim \ell^3 \sim N$
- Power $P \sim N$
- From Fv = P it follows

$$\upsilon \sim N^{1/9}$$

• For coxed boat $\ell^3 \sim (N+1/2)$

$$\upsilon \sim rac{N^{1/3}}{(N+1/2)^{2/3}}$$

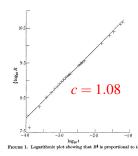
Speed of the shock wave

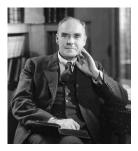


Life Magazine 1945

- Radius $r = f(E, \rho, t, ...)$
- Dimensionless quantity $\frac{Et^2}{\rho r^5}$

• Thus
$$r = c \left(\frac{E}{\rho}\right)^{\frac{1}{5}} t^{2/5}$$





G.I. Taylor

Cooking the turkey

Heat equation $\partial_t u = \kappa \Delta u$

- temperature inside the turkey [u] = K
- temperature in the oven $[u_0] = K$
- mass [m] = M
- density $[\rho] = ML^{-3}$
- time [t] = T

• Dimensionless quantities: $\frac{u}{u_0}$ and $\frac{\rho(\kappa t)^{3/2}}{m}$

•
$$\frac{u}{u_0} = f\left(\frac{\rho(\kappa t)^{3/2}}{m}\right) \Longrightarrow t \sim m^{2/3}$$

• Note that *K* is treated as an independent dimension!

Limitations of dimensional analysis

Speed of water waves

$$v^2 = \frac{g\lambda}{2\pi} \tanh\left(\frac{2\pi h}{\lambda}\right)$$

- For $h \gg \lambda$ (deep water): $v^2 \sim g\lambda$
- For $h \ll \lambda$ (shallow water): $\upsilon^2 \sim gh$
- Suppose that dimensional analysis predicts that

 $w \sim r^{\alpha} f(h/r),$

where *h* and *r* are two length scales. Let $h \ll r$.

- If f(x) has a nonzero limit at x = 0, then $w \sim r^{\alpha}$
- ► If $f(x) \sim x^{\delta}$ for small x, then $w \sim r^{\alpha \delta}$ (anomalous scaling)