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Outline

Brief reminder on the conjectured instability of AdS

Some questions this conjecture has raised

”...in most cases where we seek in vain the answer to a question, the
cause of the failure lies in the fact that problems simpler and easier than
the one in hand have been either not at all or incompletely solved. All
depends, then, on finding out these easier problems, and on solving them
by means of devices as perfect as possible and of concepts capable of
generalization.” (David Hilbert)

Toy models: nonlinear waves on compact manifolds

I Cubic wave equation on a torus

I Yang-Mills equation on the Einstein universe

I Wave map equation on the Einstein universe

Conclusions
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Anti-de Sitter spacetime in d+1 dimensions

Manifold M = {t ∈ R,x ∈ [0,π/2),ω ∈ Sd−1} with metric

g =
`2

cos2x

(
−dt2 +dx2 + sin2xdω

2
Sd−1

)
Spatial infinity x = π/2 is the timelike cylinder I = R×Sd−1 with the
boundary metric ds2

I =−dt2 +dΩ2
Sd−1

Null geodesics get to infinity in finite time
(but infinite affine length)

AdS is not globally hyperbolic -
to make sense of evolution one needs to
choose boundary conditions at I

Asymptotically AdS spacetimes by
definition have the same conformal
boundary as AdS

?t

x = 0 x = π

2
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Is AdS stable?

By the positive energy theorem AdS space is the unique ground state
among asymptotically AdS spacetimes (much as Minkowski space is the
unique ground state among asymptotically flat spacetimes)

Basic question for any equilibrium solution: do small perturbations of it
at t = 0 remain small for all future times?

Minkowski spacetime was proved to be asymptotically stable by
Christodoulou and Klainerman (1993)

The question of stability of AdS has not been explored until recently
(notable exceptions: Friedrich 1995, Anderson 2006, Dafermos 2006)

Key difference between Minkowski and AdS: the main mechanism of
stability of Minkowski - dissipation of energy by dispersion - is
absent in AdS (for no flux boundary conditions I acts as a mirror)
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AdS gravity with a spherically symmetric scalar field

Conjecture (B-Rostworowski 2011, Jałmużna-Rostworowski-B 2011)
AdSd+1 (for d ≥ 3) is unstable against the formation of a black hole for a large
class of arbitrarily small perturbations

Evidence:

Perturbative: resonant interactions between harmonics give rise to
secular terms at higher orders of the formal perturbation expansion. This
shifts the energy spectrum to higher frequencies. The same happens
for vacuum Einstein equations (Dias-Horowitz-Santos 2011).

Heuristic: the transfer of energy to higher frequencies (or equivalently,
concentration of energy on finer and finer spatial scales) is expected to be
eventually cut off by horizon formation.

Numerical: perturbation analysis breaks down when ε ∼ tε3 ⇒
perturbations of size ε start growing after time O(ε−2). Subsequent
nonlinear evolution leads to the black hole formation (confirmed
independently by Buchel-Lehner-Liebling 2012).
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Follow-up studies and questions
Turbulent instability is absent for some initial data: one-mode data
(B-Rostworowski 2011), fat gaussians (Buchel-Lehner-Liebling 2013),
time-periodic solutions in vacuum (Dias-Horowitz-Santos 2011) and for
the Einstein-scalar (Maliborski-Rostworowski 2013), standing waves
(Buchel-Liebling-Lehner 2013, Maliborski-Rostworowski 2014).

How big are these stability islands on the turbulent ocean?

Is the fully resonant linear spectrum necessary for the turbulent
instability? (Dias, Horowitz, Marolf, Santos 2012). Is it sufficient?

Energy cascade has the power-law spectrum Ek ∼ k−α with a universal
exponent α (B-Rostworowski 2012). What determines α?

Weakly turbulent instability of AdS3: small smooth perturbations of AdS3
remain smooth for all times but their radius of analyticity shrinks to zero
as t→ ∞ (B-Jałmużna 2013)

What happens outside spherical symmetry? It is not clear at all if the
natural candidate for the endstate of instability - Kerr-AdS black hole - is
stable itself (Holzegel-Smulevici 2013)
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Nonlinear waves on bounded domains

To gain insight into the dynamics of asymptotically AdS spacetimes it
seems instructive to look at much simpler nonlinear wave equations on
spatially bounded domains

Example: utt−∆u+u3 = 0 for u(t,x) with x ∈M (compact manifold)

Due to the lack of dispersion the long-time dynamics is much more
complex and mathematically challenging than in the non-compact setting

Is the ground state u = 0 stable (say in H2 norm)?

This is an open problem even for utt−uxx +u3 = 0 on S1 !

Key enemy: weak turbulence - transfer of energy to progressively smaller
scales (gradual loss of smoothness as t→ ∞)

Over the past few years the study of nonlinear wave equations on
compact domains has become an active research direction in PDEs. The
main goal is to understand out-of-equilibrium dynamics of small solutions.
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General strategy for small initial data

Let ek(x) and ω2
k be the eigenfunctions and eigenvalues of −∆ on M

Decompose u(t,x) = ε ∑k ak(t)ek(x) and rewrite the equation on the
Fourier side as an infinite dimensional dynamical system

än +ω
2
n an = ε

2
∑cn

jkmajakam, cn
jkm = (ejekem,en)

The entire information about the dynamics is contained in the frequencies
ωn and the interaction coefficients cn

jkm

Are there non-trivial resonances?
I If not: try to construct the solutions perturbatively (for example, using the

method of normal forms). Main difficulty: small divisors.
I If yes: drop all non-resonant terms and hope that the remaining resonant

system is amenable to mathematical analysis

Key object of interest: evolution of the energy spectrum
En(t) = ȧ2

n +ω2
n a2

n. The transfer of energy to high fequencies can be

measured by Sobolev norms ‖u(t)‖s =
(
∑ω2s

n a2
n
)1/2

with s > 1.
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Example: cubic Klein-Gordon equation on S1

Plugging u(t,x) = ε ∑
n∈Z

an(t)einx into utt−uxx +µ2u+ |u|2u = 0 gives

än +ω
2
n an =−ε

2
∑

j−k+m=n
ajākam

Interaction picture (variation of constants)

an = a+n (t)e
iωnt +a−n (t)e

−iωnt, ȧn = iωn
(
a+n (t)e

iωnt−a−n (t)e
−iωnt)

leads to the first order system (Ω =±ωj±ωk±ωm∓ωn)

±2in ȧ±n = ε
2

∑
j−k+m=n

permutations of ±

a±j ā±k a±m eiΩt

Resonant terms correspond to Ω = 0 and j− k+m = n. For nonzero
mass µ there are no exact resonances (ωn =

√
n2 +µ2). For µ = 0,

after dropping all non-resonant terms, one gets the resonant system

±2in ȧ±n = ε
2

∑
j−k+m=n

a±j ā±k a±m +2ε
2

(
∑
k
|a∓k |2

)
a±n
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Numerical results

We solve numerically utt−uxx +µ2u+u3 = 0 on the interval −1≤ x≤ 1
with periodic boundary conditions for different initial data Start movie

For (small) initial data, after a very short time we observe the formation of
a coherent structure with the exponentially decaying energy spectrum
Ek(t)∼ e−α(t)k. The radius of analyticity α(t) quickly stabilizes at some
(approximately) constant value (the Sobolev norms stop growing)

Suprisingly, the dynamics for µ = 0 and µ 6= 0 are similar Start movie

Analogous behaviour in higher dimensions Start movie

It is conceivable that this coherent structure is a transient metastable
state with an extremely long lifetime (as in the Fermi-Pasta-Ulam system)

What is the mechanism of the saturation of the energy transfer?
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Yang-Mills on the Einstein universe

Manifold M = R×S3 with the metric

g =−dt2 +dx2 + sin2x(dϑ
2 + sin2

ϑ dϕ
2)

Equivariant (magnetic) ansatz for the SU(2) Yang-Mills connection

A = W(t,x)τ1dϑ +(cotϑ τ3 +W(t,x)τ2)sinϑ dϕ

The YM equations ∇µFµν +[Aµ ,Fµν ] = 0 reduce to

Wtt = Wxx +
W(1−W2)

sin2x

For smooth initial data the solutions remain smooth for all times
(Choquet-Bruhat 1989, Chruściel-Shatah 1997)
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The conserved energy E =
∫

π

0

(
W2

t +W2
x +

(1−W2)2

2sin2x

)
dx

W(t,0) =±1 and W(t,π) =±1⇒ two topological sectors N = 0,1.

In each sector there is a unique static solution:
W0 = 1 (vacuum) with E = 0 and W1 = cosx (kink) with E = 3π/4.

Linearized perturbations u = W−WN around the static solutions satisfy

utt +Lu = 0 , L =− d2

dx2 +
3W2

N−1
sin2 x

The operator L is essentially self-adjoint on L2([0,π],dx).

The eigenvalues and (orthonormal) eigenfunctions of L are (k = 0,1, ...)

ω
2
k = (2+ k)2 for N = 0 and ω

2
k = (2+ k)2−3 for N = 1

e0 =
√

8
3π

sin2x, e1 =
√

16
π

sin2xcosx, e2 =
√

32
15π

sin2x(6cos2x−1), ....
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Numerical results

Transfer of energy to high frequencies is much more effective in the fully
resonant case, yet (in both cases) the energy spectrum gets frozen after
some time Start movie

Sobolev norms (s = 1, ...,7) for a gaussian perturbation of W0
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Evidence for (meta)stability of W0
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The scaling of ||u(t)||5 with respect to the amplitude ε of the gaussian.
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Comment on AdS boundary conditions for Yang-Mills
AdS is conformal to half of the Einstein universe (0≤ x≤ π

2 ). Since the
YM equations are conformally invariant in four dimensions, they are the
same on AdS and the Einstein universe

Restricting the solution of YM equations on the Einstein universe to the
northern hemisphere one gets the solution of YM equations in AdS
(with some complicated time-dependent boundary conditions)

The AdS boundary x = π

2 is regular for the YM equations and
consequently there is a huge freedom of prescribing the boundary
conditions (cf. Friedrich 2014): not only Dirichlet, Neumann, and Robin,
but also energy non-conserving boundary conditions.

For example, one can impose the ”outgoing wave condition” Wt +Wx = 0
at x = π

2 . Then dE
dt =−W2

t (t,
π

2 ), hence the energy leaks out from AdS.

For the same reason it is very easy to grow YM hair on AdS (and AdS
black holes) in four dimensions: almost any static solution that is good
at the origin (or at the horizon) is good at x = π

2 as well. The question of
linear stability of such solutions is inherently ambiguous.
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Equivariant wave maps from R×S3 into S3

Utt = Uxx +2cotxUx−
`(`+1)

2
sin(2U)

sin2x

Infinitely many static solutions (harmonic maps between 3-spheres)

Blowup for large data is governed by self-similar wave maps from
Minkowski space into S3 (blowup does not see the curvature)

Is there a threshold for blowup? One may speculate that the lack of
dispersion combined with the supercritical scaling of energy can lead to
blowup for arbitrarily small perturbations (as in the case of AdS)

Numerical simulations for initial data U(0,x) = εf (x) indicate that there is
a decreasing sequence of critical amplitudes εn for which the solution
blows up at one of the poles (along the unstable self-similar solution),
however this sequence accumulates strictly above zero.

This toy model has one drawback: the linear spectrum is not resonant
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Conclusions

Dynamics of asymptotically AdS spacetimes is an interesting meeting
point of basic problems in general relativity and PDE theory.

Understanding of the out-of-equilibrium dynamics of small solutions is
mathematically challenging even for the simplest nonlinear wave
equations on compact manifolds, let alone Einstein’s equations.

The above simple models exhibit a qualitatively different behaviour than
Einstein-AdS equations - in this sense they are not good toy models.

Yet, such studies are instructive as they help us to understand how
special Einstein’s equations are (and they are interesting on their own).

Keep searching for better toy models: supercritical semilinear wave
equations with a fully resonant linear spectrum, quasilinear equations?
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