Wave Maps on a Wormhole

Piotr Bizoń

Jagiellonian University and A. Einstein Institute

joint work with Michał Kahl

Bonn, 14 March 2016

Introduction

- Part of a long-term project on global dynamics of nonlinear wave equations (wave maps, Yang-Mills equations, Einstein equations).
- Our approach is not rigorous what we do can be described as: the physics of the mathematics of the physics (M. Berry)
- Goal: understanding of relaxation to a stationary equilibrium on an unbounded domain through the dissipation of energy by dispersion.
- The emitted radiation encodes information about an attractor.
- Example: the mass and spin of a stationary black hole can be read off from characteristic frequencies of gravitational waves emitted in the process relaxation to the equilibrium (so called ringdown).

Soliton resolution conjecture

Solutions of dispersive wave equations asymptotically resolve into a superposition of a coherent structure (soliton, black hole,...) and radiation.

- Mathematical understanding of this conjecture is rather limited, especially in the nonperturbative regime (for initial data far from the equilibrium).
- We want to design a simple playground for studying this conjecture.
- The desired properties of a toy model:
 - evolution is globally regular
 - there is a unique stable (nontrivial) stationary equilibrium
 - the equilibrium solution is rigid
 - there are no oscillatory modes
- To construct such a model we consider equivariant wave maps into the 3-sphere with a suitably chosen curved manifold as a domain.

Equivariant wave maps

- Let $U: M \mapsto N$ be a map from a Lorentzian manifold (M, g) into a Riemannian manifold (N, G).
- Domain M: ultrastatic spherically symmetric spacetime with the metric

$$g = -dt^2 + dr^2 + R^2(r) \left(d\vartheta^2 + \sin^2 \vartheta d\varphi^2 \right)$$

- Target: $N = \mathbb{S}^3$ with the round metric $G = du^2 + \sin^2 u (d\theta^2 + \sin^2 \theta d\phi^2)$.
- Equivariant ansatz: $u = u(t,r), (\theta, \phi) = \chi_{\ell}(\theta, \phi)$, where $\chi_{\ell} : S^2 \mapsto S^2$ is an eigenmap map with eigenvalue $\ell(\ell+1)$ ($\ell \in \mathbb{N}$).
- Let $W_{lphaeta}=\partial_{lpha}U^A\partial_{eta}U^BG_{AB}.$ The wave map action is

$$S = \int_M g^{\alpha\beta} W_{\alpha\beta} \, dv_M = 4\pi \int \left(-u_t^2 + u_r^2 + \ell(\ell+1) \, \frac{\sin^2 u}{R^2} \right) R^2 \, dr \, dt$$

which gives the equivariant wave map equation

$$u_{tt} = u_{rr} + \frac{2R'(r)}{R^2(r)} u_r - \frac{\ell(\ell+1)}{2} \frac{\sin(2u)}{R^2(r)}$$

Minkowski background

$$u_{tt} = u_{rr} + \frac{2}{r}u_r - \frac{\ell(\ell+1)}{2}\frac{\sin(2u)}{r^2}$$

- Scaling symmetry $u(t,r) \mapsto u_{\lambda}(t,r) = u(t/\lambda, r/\lambda)$.
- Supercritical scaling of energy $E(u_{\lambda}) = \lambda E(u)$.
- No static solutions (harmonic maps) with finite nonzero energy.
- Small data: solutions are global in time and decay (nonlinearly) to zero

$$u(t,r) \sim rac{Ar^\ell}{\langle t-r
angle^{\ell+1} \langle t+r
angle^{\ell+1}} \quad {
m for} \quad t o \infty$$

Large data: self-similar blowup in finite time

$$u(t,r) \sim S\left(\frac{r}{T-t}\right)$$
 for $t \nearrow T$

Wormhole background

• Domain $M=\{t\in\mathbb{R},(r,artheta,oldsymbol{arphi})\in\mathbb{R} imes\mathbb{S}^2\}$ with metric

$$g = -dt^2 + dr^2 + (r^2 + a^2) \left(d\vartheta^2 + \sin^2 \vartheta d\varphi^2 \right)$$

• Hypersurfaces t = const have two asymptotically flat ends at $r \to \pm \infty$ connected by a neck of area $4\pi a^2$ at r = 0.

Equivariant wave map equation on the wormhole

$$u_{tt} = u_{rr} + \frac{2r}{r^2 + a^2} u_r - \frac{\ell(\ell+1)}{2} \frac{\sin(2u)}{r^2 + a^2}$$

• The length scale *a* plays two roles:

- removes the singularity at $r = 0 \Rightarrow$ global-in-time regularity
- breaks scale invariance \Rightarrow allows for harmonic maps
- The equation is truly 1+1 dimensional (-∞ < r < ∞), yet it inherits strong dispersive decay from the original 3+1 dimensional problem.
- There are close analogies between this equation and the exterior wave map equation (B-Chmaj-Maliborski, Kenig-Lawrie-Liu-Schlag).
- Conserved energy

$$E(u) = \frac{1}{2} \int_{-\infty}^{\infty} \left[u_t^2 + u_r^2 + \frac{\ell(\ell+1)}{r^2 + a^2} \sin^2 u \right] (r^2 + a^2) dr$$

Finiteness of energy requires that u(t, -∞) = mπ, u(t,∞) = nπ.
 We choose m = 0 so n determines the topological degree of the map.

Harmonic maps

$$U'' + \frac{2r}{r^2 + a^2} U' - \frac{\ell(\ell+1)}{2(r^2 + a^2)} \sin(2U) = 0.$$

Theorem

For any given ℓ there exists a unique smooth harmonic map U_n of degree n.

Proof: elementary shooting argument

Linear perturbations

• Substituting $u(t,r) = U_n(r) + e^{\lambda t}(r^2 + a^2)^{-\frac{1}{2}}v(r)$ into the wave map equation and linearizing, we obtain the eigenvalue problem

$$L_n v := (-\partial_{rr} + V_n) v = -\lambda^2 v, \qquad V_n(r) = \frac{a^2}{(r^2 + a^2)^2} + \ell(\ell + 1) \frac{\cos(2U_n)}{r^2 + a^2}$$

• The operator L_n has no negative eigenvalues. Proof: $v_n = (r^2 + a^2) U'_n(r)$ is the zero mode of the operator $L_n - a^2/(r^2 + a^2)^2$.

- Quasinormal modes: 'outgoing' solutions v(r) ~ exp(∓λr) for r→±∞ and ℜ(λ) < 0
- ℜ(λ) tends rapidly to zero as ℓ grows (metastable trapping)

Hyperboloidal initial value problem

• We define a new ("hyperboloidal") time coordinate

$$s = t - \sqrt{r^2 + a^2}$$

• The wave map equation takes the form (hereafter, we set a = 1)

$$u_{ss} + 2r\sqrt{r^2 + 1} u_{sr} + \frac{2r^2 + 1}{\sqrt{r^2 + 1}} u_s = \left((r^2 + 1)u_r \right)_r - \frac{\ell(\ell + 1)}{2} \sin(2u)$$

The associated energy

$$\mathscr{E}(u) = \frac{1}{2} \int_{-\infty}^{\infty} \left(u_s^2 + (r^2 + 1) u_r^2 + \ell(\ell + 1) \sin^2 u \right) dr$$

is radiated away through null infinities

$$\frac{d\mathscr{E}}{ds} = -\dot{c}_-^2(s) - \dot{c}_+^2(s) \,,$$

where

$$c_{-} = \lim_{r \to -\infty} ru(s, r), \quad c_{+} = \lim_{r \to \infty} r(u(s, r) - n\pi)$$

are the radiation coefficients.

Hyperboloidal soliton resolution conjecture

The energy *E*(*s*) is positive and non-increasing, hence it has a limit for *s* → ∞. It is natural to expect that this limit is given by the energy of the harmonic map.

Conjecture

For any smooth initial data of degree n there exists a unique smooth global solution which converges asymptotically to the harmonic map U_n .

- An analogous result was proven for equivariant wave maps exterior to a ball by Kenig-Lawrie-Liu-Schlag (without the rate of convergence).
- The hyperboloidal approach (due to Friedrich and Zenginoğlu) seems ideally suited for this purpose. Key advantages:
 - dissipation of energy by radiation through null infinity is inherently incorporated in this formulation
 - pointwise convergence to the attractor on the entire spatial domain
 - easy to implement numerically (no artificial boundary conditions)

However, the evolution is only semi-global in space and forward in time.

Numerical solutions

• We compactify the spatial domain $-\infty < r < \infty$ to the interval $[-\pi/2, \pi/2]$ by the transformation $y = \arctan(r)$. Then

$$u_{ss} + 2\sin y \, u_{sy} + \frac{1 + \sin^2 y}{\cos y} \, u_s = \cos^2 y \, u_{yy} - \frac{\ell(\ell+1)}{2} \sin(2u) \qquad (\star)$$

- There are no ingoing characteristics at the boundaries, hence no boundary conditions are required (or allowed).
- We solve equation (\star) for smooth initial data u(0, y), $u_s(0, y)$.
- Quasinormal modes are honest eigenfunctions of the quadratic eigenvalue problem

$$(A_n+\lambda B+\lambda^2 I)v=0,$$

$$A = -\cos^2 y \,\partial_{yy} + \ell(\ell+1)\cos(2U_n), \quad B = 2\sin y \,\partial_y + \frac{1+\sin^2 y}{\cos y}$$

Numerical evidence

Snaphots from the evolution of 'generic' initial data for n = 1 and $\ell = 1$.

Numerical evidence - rate of convergence

Quasinormal modes: $\lambda_0 = -0.53 + 1.57i$ $\lambda_2 = -0.11 + 0.51i$

$$c_{\pm}(s) \sim s^{-3}$$

Quasinormal modes: $\lambda_0 = -0.51 + 2.55i$ $\lambda_2 = -0.013 + 0.68i$

 $c_{\pm}(s) \sim s^{-3}$

Conclusion

- The hyperboloidal approach to the initial value problem is ideally suited for studying the relaxation processes due to dispersive dissipation of energy.
- I hope that this approach will attract more attention in the PDE community.

