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Anti-de Sitter spacetime in d+1 dimensions

Manifold M = {t ∈ R,x ∈ [0,π/2),ω ∈ Sd−1} with metric

g =
L2

cos2x

(
−dt2 +dx2 + sin2xdω

2
Sd−1

)

Solution of vacuum Einstein’s equations Rαβ = λgαβ with λ =−d/L2.

Spatial infinity x = π/2 is the timelike
cylinder I = R×Sd−1 with the
boundary metric ds2

I =−dt2 +dΩ2
Sd−1

Null geodesics get to infinity in finite time

AdS is not globally hyperbolic

Asymptotically AdS spacetimes by
definition have the same conformal
boundary as AdS

?t

x = 0 x = π

2
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Brief history of AdS

AdS metric: A. Friedmann, On the possibility of a world with a constant
negative curvature of space, Zeitschrift für Physik 21, 326 (1924)

“de Sitter space with negative K involves ideas of altogether too
revolutionary a character for physics as it exists today.”
J.L. Synge in Relativity: The General Theory (1960)

Proof of linear stability : P. Breitenlohner and D.Z. Freedman, Stability of
gauge extended supergravity, Annals of Physics 14, 249 (1982)

Proof of local well-posedness of the initial-boundary value problem
for 4D vacuum Einstein’s equations with AdS asymptotics:
H. Friedrich, Einstein equations and conformal structure: existence of
anti-de Sitter-type space-times, J. Geom. Phys. 17, 125 (1995)

AdS/CFT duality: J. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998)
(cited 11235 times)
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Is AdS stable?

By the positive energy theorem AdS space is the unique ground state
among asymptotically AdS spacetimes (much as Minkowski space is
the unique ground state among asymptotically flat spacetimes).

Basic question for any equilibrium solution: do small perturbations of it
at t = 0 remain small for all future times?

Minkowski space is asymptotically stable (Christodoulou-Klainerman ’93)

Key difference between Minkowski and AdS: the main mechanism of
stability of Minkowski - dissipation of energy by dispersion - is
absent in AdS (for no-flux boundary conditions I acts as a mirror).

Stability of AdS has not been explored until ’11; notable exceptions:
local well-posedness (Friedrich ’95), boundedness of linearized
perturbations (Ishibashi-Wald ’04), rigidity (Anderson ’06).

The problem seems tractable only in spherical symmetry so one needs to
add matter to generate dynamics. Simple choice: a scalar field.
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AdS gravity coupled to a spherically symmetric scalar field

Rαβ −
1
2

gαβ R+Λgαβ = 8πTαβ , Λ =−d(d−1)
2L2

Tαβ = ∂αφ ∂β φ − 1
2
(
(∂φ)2 +m2

φ
2) gαβ

�gφ −m2
φ = 0

All fields are assumed to be spherically symmetric. Asymptotics near I :

φ(t,x)∼ c+(t)(π/2− x)
d
2+ν + c−(t)(π/2− x)

d
2−ν , ν

2 =
d2

4
+m2L2

”Reflective” boundary conditions: Dirichlet (c− = 0) or Robin (c++bc− = 0).

For ν2 ≥ 1 the initial-boundary value is locally well-posed only for the
Dirichlet boundary conditions (Holzegel-Smulevici ’11)

For ν2 = 1/4 the system is conformally well-behaved at I and more
general boundary conditions (both reflective and dissipative) are allowed
(Holzegel-Warnick ’13, Holzegel-Luk-Smulevici-Warnick ’15).
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AdS gravity with a spherically symmetric scalar field

Conjecture (B-Rostworowski ’11)
AdSd+1 (for d ≥ 3) is unstable under arbitrarily small perturbations

Key numerical evidence:
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Gaussian perturbations of size ε collapse in time O(ε−2).
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Heuristic picture
The linear spectrum is fully resonant. Nonlinear interactions between
harmonics give rise to transfer of energy from low to high frequencies.

The turbulent cascade leads to concentration of energy on finer and finer
spatial scales so eventually a black hole is expected to form.
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Some follow-up studies and open questions

Turbulent instability is absent for some initial data (stability islands).
In particular, there exist stable time-periodic solutions bifurcating from
the eigenmodes (Maliborski-Rostworowski ’13).

Similar phenomenology found for the vacuum Einstein equations in 4+1
dimensions within the biaxial Bianchi IX ansatz (B-Rostworowski ’14).

What happens outside spherical symmetry? It is not clear at all if the
putative endstate of instability - Kerr-AdS black hole - is stable itself.
Key issue: stable trapping of waves with large angular momentum `:
I quasinormal modes decay as e−Γ`t where Γ` ∼ e−c` (Gannot 2011)
I linear perturbations decay as 1/ log(t) for t→∞ (Holzegel-Smulevici 2013)

Is extrapolation of numerical results to arbitrarily small perturbations
justified? Recently, we (B-Maliborski-Rostworowski ’15) validated this
extrapolation using so called resonant approximation, newly proposed
by Balasubramanian et al. and Craps-Evnin-Vanhoof ’14. This result hints
at a possible route to proving the AdS instability conjecture.
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Nonlinear waves in confined geometries

Consider a nonlinear wave equation for φ(t,x) with (t,x) ∈ R×M,
where M is a compact Riemannian manifold with metric g.

Example: φtt−∆gφ +φ
3 = 0 for M = Td or Sd.

Goal: understand out-of-equilibrium dynamics of small solutions.

Due to the lack of dispersion the long-time dynamics is much more
complex and mathematically challenging than in the non-compact setting.

Is the ground state φ = 0 stable (say in H2 norm)?

This is an open problem even for φtt−φxx +φ 3 = 0 on S1 !

Key enemy: wave turbulence - transfer of energy to progressively
smaller spatial scales.

Turbulent solutions: limsup
t→∞

‖φ(t, ·)‖Hs = ∞ for some s > 1.
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Example: conformal cubic Klein-Gordon on R×S3

∂ttφ +Lφ +φ
3 = 0, L =− 1

sin2x
∂x(sin2x∂x)+1 (?)

Linear spectrum: Len = ω2
n en where en = sin(nx)/sinx, ωn = n (n ∈ N)

Plugging the mode expansion φ(t,x) = ∑n cn(t)en(x) into (?) we get

d2cn

dt2 +ω
2
n cn = ∑

jkl
Ijkln cjckcl, Ijkln =−

π∫

0

ej(x)ek(x)el(x)en(x)sin2xdx

In the interaction picture, defined by variation of constants,

cn = βneiωnt + β̄ne−iωnt,
dcn

dt
= iωn

(
βneiωnt− β̄ne−iωnt)

this becomes

2iωn
dβn

dt
= ∑

jkl
Ijkln cjckcl e−iωnt

Each term in the sum has a factor e−iΩt, where Ω = ωn±ωj±ωk±ωl.
Two kinds of terms: Ω = 0 (resonant) and Ω 6= 0 (non-resonant).
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Resonant approximation
We define the slow time τ = ε2t and rescale βn(t) = εαn(τ).

The non-resonant terms ∝ e−iΩτ/ε2
are highly oscillatory for small ε

and therefore negligible (at least for some time).

Keeping only the resonant terms (which is equivalent to time-averaging),
we obtain the infinite autonomous dynamical system (resonant system)

2iωn
dαn

dτ
= ∑

jkl
Ijkln αjαkᾱl ,

where the summation runs over the set of indices {jkl} for which Ω = 0
and Ijkln 6= 0. This set reduces to {jkl | j+ k− l = n}.

The resonant system is invariant under scaling αn(τ)→ ε−1αn(τ/ε2)

The resonant approximation is valid on the timescale O(ε−2). Thus,
on this timescale the dynamics of solutions of the conformal cubic
Klein-Gordon equation is dominated by resonant interactions.
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Resonant approximation for the AdS Einstein-scalar system

At the lowest order the resonant system has the same form as above

2iωn
dαn

dτ
= ∑

j+k−l=n
Cjkln αjαkᾱl , (RS)

but the interaction coefficients Cjkln are very complicated
(Balasubramanian et al., Craps-Evnin-Vanhoof ’14).

Let αn = Aneiφn . For large n we have An(τ)∼ n−α(τ)e−ρ(τ)n, where ρ is
the “analyticity radius”. If limτ→τ∗ ρ(τ) = 0 for some τ∗ then the solution
becomes singular (analyticity strip method Sulem-Sulem-Frisch ’83).

Using mixed analytic-numerical methods we showed that for typical initial

data ρ(τ) hits zero in finite time τ∗ and
dφn

dτ
∼ ln(τ∗− τ).

This indicates that the corresponding solutions of the full system collapse
on the timescale O(ε−2).
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How good is the resonant approximation?

0 0.25 0.5

τ

5

10

lo
g
( Π

2
(τ
,x

=
0
)/
ε2
)

p = 1

p = 2

p = 3
N = 172
N = 60
N = 30

Initial data: φ(0,x) = ε
(1

4 e0(x)+ 1
6 e1(x)

)
with ε = 2−p

13 / 14



Conclusions

Dynamics of asymptotically AdS spacetimes is an interesting meeting
point of fundamental problems in general relativity, PDE theory, and
theory of turbulence. Understanding of these connections is at its infancy.

There is good evidence that the AdS spacetime is unstable against
arbitrarily small perturbations (for no-flux boundary conditions at I ).

Understanding of the out-of-equilibrium dynamics of small solutions is
mathematically challenging even for the simplest nonlinear wave
equations on compact manifolds, let alone Einstein’s equations.
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