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Spatially confined Hamiltonian systems

Evolution of nonlinear waves on unbounded domains is stabilized
by the dissipation of energy by radiation

For spatially confined systems this stabilizing mechanism is absent and
the nonlinear self-interactions of waves remain important for all times,
inducing complicated energy transfer patterns.

How the energy injected into the system gets distributed over the degrees
of freedom during the evolution?

Can the energy flow to arbitrarily high frequencies (weak turbulence)?

Despite recent progress, the question of weak turbulence remains
unanswered even for very simple confined Hamiltonian systems

I will discuss systems with three different types of confinement:
compactness of the domain, trapping potential, and the time-like
boundary at infinity.
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General strategy

For a spatially confined system, the associated linearized system has a
purely discrete spectrum of frequencies

Expanding solutions in the basis of linear eigenstates one transforms the
original PDE into an infinite-dimensional dynamical system with discrete
degrees of freedom (‘modes’).

The nonlinearity generates new frequencies that may lead to resonances
between the modes. The resonances dominate the transfer of energy.

Dropping all nonresonant terms from the Hamiltonian one obtains a
simplified infinite-dimensional dynamical system, called the resonant
system, which accurately approximates the dynamics of small amplitude
solutions of the original PDE on long time scales

Strategy: try to understand the dynamics of the resonant system and then
export this knowledge to the original PDE.
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Example
Background geometry: the Einstein cylinder M = R×S3 with metric

g =−dt2 +dx2 + sin2xdω
2, (t,x,ω) ∈ R× [0,π]×S2

This spacetime has constant scalar curvature R(g) = 6.

On M we consider a real scalar field φ satisfying
(
�g−

1
6

R(g)
)

φ −φ
3 =�gφ −φ −φ

3 = 0 .

We assume that φ = φ(t,x). Then, v(t,x) = sin(x)φ(t,x) satisfies

vtt− vxx +
v3

sin2 x
= 0

with Dirichlet boundary conditions v(t,0) = v(t,π) = 0.

Linear eigenstates: en(x) =
√

2
π

sin(ωnx) with ωn = n+1 (n = 0,1,2, ...)
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Time averaging
Expanding v(t,x) =

∞

∑
n=0

cn(t)en(x) we get

d2cn

dt2 +ω
2
n cn =−∑

jkl
Snjkl cjckcl, Sjkln =

∫
π

0

dx
sin2 x

en(x)ej(x)ek(x)el(x)

Using variation of constants

cn = βneiωnt + β̄ne−iωnt,
dcn

dt
= iωn

(
βneiωnt− β̄ne−iωnt)

we factor out fast oscillations

2iωn
dβn

dt
=−∑

jkl
Snjkl cjckcl e−iωnt

Each term in the sum has a factor e−iΩt, where Ω = ωn±ωj±ωk±ωl.
The terms with Ω = 0 correspond to resonant interactions.

Let τ = ε2t and βn(t) = εαn(τ). For ε → 0 the non-resonant terms
∝ e−iΩτ/ε2

are highly oscillatory and therefore negligible.
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Resonant system
Keeping only the resonant terms (and rescaling), we obtain
(B-Craps-Evnin-Hunik-Luyten-Maliborski, 2016)

iωn
dαn

dτ
=

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k ,

where Snjk,n+j−k = min{n, j,k,n+ j− k}+1.

This system (called the conformal flow) provides an accurate
approximation to the cubic wave equation on the timescale ∼ ε−2.

This is a Hamiltonian system

iωn
dαn

dτ
=

1
2

∂H
∂ ᾱn

with

H =
∞

∑
n=0

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−kᾱnᾱjαkαn+j−k
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Other Hamiltonian systems of the form

iωn
dαn

dτ
=

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k

Cubic Szegő equation

ωn = 1, Snjk,n+j−k = 1

designed and studied by Gérard-Grellier (2010-2016)

LLL equation (resonant system for the Gross-Pitaevskii equation)

ωn = 1, Snjk,n+j−k =
(n+ j)!

2n+j
√

n!j!k!(n+ j− k)!

Germain-Hani-Thomann (2015)

Resonant system for scalar perturbations of AdSd+1 spacetime

ωn = 2n+d, Snjk,n+j−k are very complicated

Balasubramanian et al., Craps-Evnin-Vanhoof (2014)
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Basic properties of the systems of the form

iωn
dαn

dτ
=

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k

Symmetries

Scaling: αn(t)→ εαn(ε
2t)

Global phase shift: αn(t)→ eiθ
αn(t)

Local phase shift: αn(t)→ einθ
αn(t)

Conserved quantities

Q =
∞

∑
n=0

ωn|αn|2, J =
∞

∑
n=0

nωn|αn|2

The Szegő, conformal, and LLL flows are locally (and therefore also
globally) well-posed for initial data with finite J.

For Einstein-scalar-AdS resonant system there is evidence that solutions
may become singular in finite time.
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Finite-dimensional invariant manifolds

For one-mode initial data αn(0) = δnN , the solution is αn(τ) = δnNe−iλNτ

Three-dimensional invariant manifolds: α0 = b and for n≥ 1

αn =





(bp+a)pn−1 Szegő flow

(bp+an)pn−1 conformal flow
1√
n!
(bp+an)pn−1 LLL flow

where a,b,p are functions of τ .

The dynamics of these invariant manifolds is described by the reduced
Hamiltonian system

da
dτ

= f1(a,b,p),
db
dτ

= f2(a,b,p),
dp
dτ

= f3(a,b,p)

Since there are three conserved quanities Q, J, and H (that are in
involution), the reduced systems are completely integrable.
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Example 1: reduced system for the conformal flow

The reduced system reads (using y =
|p|2

1−|p|2
)

ṗ
(1+ y)2 =

p
6
(
2y|a|2 + b̄a

)

ȧ
(1+ y)2 =

a
6
(
5|b|2 +(18y2 +4y)|a|2 +(6y−1)b̄a+10āb

)

ḃ
(1+ y)2 = b

(
|b|2 +(6y2 +2y)|a|2 +bā

)
+a
(
|b|2 +(4y+2)y2|a|2 + y2b̄a

)

Solution

y(t) = B+Asin(Ωt+ψ), Ω =
1
6
(
7Q2−6H

)1/2

The turning points y± = B±A provide lower and upper bounds for the
inverse and direct cascades of energy, respectively.

It is easy to show that y+ is uniformly bounded from above.
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Example 2: two-mode initial data for the cubic Szegő flow

The two-mode initial data ~α(0) = (ε,1,0, ...) correspond to

b(0) = ε, a(0) = 1, p(0) = 0

For the conformal and LLL flows the solution stays close to the stationary
state ~α(τ) = (0,1,0, ...)e−iλτ

For cubic Szegő equation

p(τ)=− i√
1+ ε2/4

sin(ωτ)e−
1
2 iε2τ

with ω = ε
√

1+ ε2/4.

Thus, |p(τn)| ∼ 1− ε2/8 for a
sequence of times τn =

(2n+1)π
2ω

. Gérard-Grellier daisy

This instability provided a hint for the existence of unbounded orbits
(Gérard-Grellier, 2015)
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Lowest Landau Level equation
2d Gross-Pitaevskii equation with isotropic harmonic potential

i∂tΨ =
1
2
(
−∂

2
x −∂

2
y + x2 + y2)

Ψ+g|Ψ|2Ψ

is a mean field model for the Bose-Einstein condensate.

General solution of the linear problem (g = 0)

Ψ(t,r,φ) = ∑
nm

αnm e−iEnteimφ
χnm(r)

where eimφ χnm(r) are normalized eigenstates of energy En = n+1
and angular momentum m ∈ {−n,−n+2, ...,n−2,n}.
The lowest Landau level (LLL) consists of modes with m = n:

χn(z) =
zn
√

n!
e−

1
2 |z|

2
, z = x+ iy

The general LLL wavefunction in the frame rotating with angular velocity 1
(where centrifugal and harmonic forces are balanced) is (here τ = gt)

ψ(τ,z) := eit
Ψ(t,eitz) =

∞

∑
n=0

αn(τ)χn(z),
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Vortices in BEC

A remarkable feature of BEC is the nucleation of quantized vortices when
the condensate is stirred above a certain critical angular velocity

The 3-dimensional invariant manifold of the LLL flow corresponds to
single-vortex configurations

ψ(τ,z) = (b(τ)+a(τ)z)ep(τ)z e−
1
2 |z|

2

The generic explicit solution
represents periodically modulated
precession of the vortex

Such solutions have been seen in
experiments!

It would be very interesting to
extend this approach to
multi-vortex configurations

-2 -1 0 1 2
-2

-1

0

1

2

Biasi-B-Craps-Evnin, 2017
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Anti-de Sitter spacetime in d+1 dimensions

Manifold M = {t ∈ R,x ∈ [0,π/2),ω ∈ Sd−1} with metric

g =
l2

cos2x

(
−dt2 +dx2 + sin2xdω

2
Sd−1

)

Solution of vacuum Einstein’s equations Rαβ = λgαβ with λ =−d/l2.

Spatial infinity x = π/2 is the timelike
cylinder I = R×Sd−1 with the
boundary metric ds2

I =−dt2 +dΩ2
Sd−1

Null geodesics get to infinity in finite time

Asymptotically AdS spacetimes by
definition have the same conformal
boundary as AdS

AdS space is the unique ground state
among asymptotically AdS spacetimes.

?t

x = 0 x = π

2
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Conjecture (B-Rostworowski 2011)
AdSd+1, as the solution of the Einstein-massless-scalar field equations with
negative cosmological constant in d+1 dimensions (for d ≥ 3), is unstable
under arbitrarily small generic perturbations.

Arguments:
The linear spectrum is fully resonant. Nonlinear interactions between
harmonics give rise to transfer of energy from low to high frequencies.

The turbulent cascade leads to concentration of energy on finer and finer
spatial scales so eventually a black hole is expected to form.

Numerical evidence: perturbations of size ε collapse in time O(ε−2).

Resonant approximation (B-Maliborski-Rostworowski, 2015):

For large n we have |αn(τ)| ∼ e−ρ(τ)n, where ρ is the analyticity radius.
If limτ→τ∗ ρ(τ) = 0 for some τ∗ < ∞ then the solution becomes singular
(analyticity strip method Sulem-Sulem-Frisch ’83).

Using mixed analytic-numerical methods we showed that for two-mode

initial data ρ(τ) hits zero in finite time τ∗ and
d

dτ
arg(αn)∼ ln(τ∗− τ).
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lo
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0)
/
ε2
)
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φ(0,x) = 2−p
(1

4 e0(x)+ 1
6 e1(x)

)

The instability is captured by the resonant approximation!

Recently, Moschidis proved instability of AdS for the Einstein-null dust
with the inner mirror. In his proof resonances appear to play no role.
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From Klein-Gordon on AdS to Gross-Pitaevskii

AdS metric

g =−(1+ r2

l2
)dt2 +

dr2

1+ r2

l2
+ r2dω

2
Sd−1

Cubic Klein-Gordon equation on AdS

(�g−1)φ −|φ |2φ = 0

Substituting

φ(t,r,ω) =
1√

l
e−it

Ψ

(
t
l
,

r√
l
,ω

)

and taking the limit l→ ∞ we get the Gross-Pitaevskii equation

i∂tΨ =−1
2

∆Rd Ψ+
1
2

r2
Ψ+ |Ψ|2Ψ,

(O. Evnin, private communication)

17 / 17


