From AdS to BEC
 (dynamics in spatially confined Hamiltonian systems)

Piotr Bizoń

Jagiellonian University
Kraków

Based on joint works with: A. Biasi, B. Craps, O. Evnin, F. Ficek, D. Hunik, V. Luyten, M. Maliborski, D. Pelinovsky, A. Rostworowski

Cambridge, 7 March 2018

Unbounded domain

System settles down to equilibrium via dissipation of energy by dispersion

Understanding of long-time behavior of nonlinear waves in spatially confined systems is challenging. Key questions:

- How the energy injected into the system gets distributed over the degrees of freedom during the evolution?
- Can the energy flow to arbitrarily high frequencies (weak turbulence)?

Examples of spatially confined systems

- Nonlinear string

$$
\phi_{t t}-\phi_{x x}+\phi^{3}=0, \quad \phi(t, 0)=\phi(t, \pi)=0
$$

- Cubic Klein-Gordon equation on $\mathbb{R} \times S^{3}$

$$
\square_{g} \phi-m^{2} \phi-\phi^{3}=0, \quad g=-d t^{2}+d \omega_{S^{3}}^{2}
$$

- Einstein-massless-scalar system with negative cosmological constant

$$
R_{\mu \nu}+\lambda g_{\mu \nu}=\partial_{\mu} \phi \partial_{\nu} \phi, \quad \lambda=\frac{d}{l^{2}}
$$

- 2d Gross-Pitaevskii equation with isotropic harmonic potential

$$
i \partial_{t} \Psi=\frac{1}{2}\left(-\partial_{x}^{2}-\partial_{y}^{2}+x^{2}+y^{2}\right) \Psi+g|\Psi|^{2} \Psi
$$

General strategy

- For a spatially confined system, the associated linearized system has a purely discrete spectrum of frequencies
- Expanding solutions in the basis of linear eigenstates one transforms the original PDE into an infinite-dimensional dynamical system with discrete degrees of freedom ('modes').
- The nonlinearity generates new frequencies that may lead to resonances between the modes. The resonances dominate the transfer of energy.
- Dropping all nonresonant terms from the Hamiltonian one obtains a simplified infinite-dimensional dynamical system, called the resonant system, which accurately approximates the dynamics of small amplitude solutions of the original PDE on long time scales
- Strategy: try to understand the dynamics of the resonant system and then export this knowledge to the original PDE.

Example

- Background geometry: the Einstein cylinder $\mathscr{M}=\mathbb{R} \times \mathbb{S}^{3}$ with metric

$$
g=-d t^{2}+d x^{2}+\sin ^{2} x d \omega^{2}, \quad(t, x, \omega) \in \mathbb{R} \times[0, \pi] \times \mathbb{S}^{2}
$$

This spacetime has constant scalar curvature $R(g)=6$.

- On \mathscr{M} we consider a real scalar field ϕ satisfying

$$
\left(\square_{g}-\frac{1}{6} R(g)\right) \phi-\phi^{3}=\square_{g} \phi-\phi-\phi^{3}=0 .
$$

- We assume that $\phi=\phi(t, x)$. Then, $v(t, x)=\sin (x) \phi(t, x)$ satisfies

$$
v_{t t}-v_{x x}+\frac{v^{3}}{\sin ^{2} x}=0
$$

with Dirichlet boundary conditions $v(t, 0)=v(t, \pi)=0$.

- Linear eigenstates: $e_{n}(x)=\sqrt{\frac{2}{\pi}} \sin \left(\omega_{n} x\right)$ with $\omega_{n}=n+1(n=0,1,2, \ldots)$

Time averaging

- Expanding $v(t, x)=\sum_{n=0}^{\infty} c_{n}(t) e_{n}(x)$ we get

$$
\frac{d^{2} c_{n}}{d t^{2}}+\omega_{n}^{2} c_{n}=-\sum_{j k l} C_{n j k l} c_{j} c_{k} c_{l}, \quad C_{j k l n}=\int_{0}^{\pi} \frac{d x}{\sin ^{2} x} e_{n}(x) e_{j}(x) e_{k}(x) e_{l}(x)
$$

- Using variation of constants

$$
c_{n}=\beta_{n} e^{i \omega_{n} t}+\bar{\beta}_{n} e^{-i \omega_{n} t}, \quad \frac{d c_{n}}{d t}=i \omega_{n}\left(\beta_{n} e^{i \omega_{n} t}-\bar{\beta}_{n} e^{-i \omega_{n} t}\right)
$$

we factor out fast oscillations

$$
2 i \omega_{n} \frac{d \beta_{n}}{d t}=-\sum_{j k l} C_{n j k l} c_{j} c_{k} c_{l} e^{-i \omega_{n} t}
$$

- Each term in the sum has a factor $e^{-i \Omega t}$, where $\Omega=\omega_{n} \pm \omega_{j} \pm \omega_{k} \pm \omega_{l}$. The terms with $\Omega=0$ correspond to resonant interactions.
- Let $\tau=\varepsilon^{2} t$ and $\beta_{n}(t)=\varepsilon \alpha_{n}(\tau)$. For $\varepsilon \rightarrow 0$ the non-resonant terms $\propto e^{-i \Omega \tau / \varepsilon^{2}}$ are highly oscillatory and therefore negligible.

Resonant system

- Keeping only the resonant terms and rescaling $\alpha_{n} \rightarrow \alpha_{n} / \sqrt{\omega_{n}}$, we obtain (B-Craps-Evnin-Hunik-Luyten-Maliborski, 2016)

$$
i \frac{d \alpha_{n}}{d \tau}=\sum_{j=0}^{\infty} \sum_{k=0}^{n+j} S_{n j k, n+j-k} \bar{\alpha}_{j} \alpha_{k} \alpha_{n+j-k}
$$

where $S_{n j k, n+j-k}=\frac{\min \{n, j, k, n+j-k\}+1}{\sqrt{(n+1)(j+1)(k+1)(n+j-k+1)}}$.

- This system (called the conformal cubic flow) provides an accurate approximation to the cubic wave equation on the timescale $\sim \varepsilon^{-2}$.
- This is a Hamiltonian system

$$
i \frac{d \alpha_{n}}{d \tau}=\frac{\partial H}{\partial \bar{\alpha}_{n}}
$$

with

$$
H=\frac{1}{2} \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{n+j} S_{n j k, n+j-k} \bar{\alpha}_{n} \bar{\alpha}_{j} \alpha_{k} \alpha_{n+j-k}
$$

Other Hamiltonian systems of the form

$$
i \frac{d \alpha_{n}}{d \tau}=\sum_{j=0}^{\infty} \sum_{k=0}^{n+j} S_{n j k, n+j-k} \bar{\alpha}_{j} \alpha_{k} \alpha_{n+j-k}
$$

- Cubic Szegő equation $S_{n j k l}=1$ (Gérard-Grellier, 2010)
- Lowest Landau Level (LLL) equation: resonant system for the maximally rotating Bose-Einstein condensate (Germain-Hani-Thomann, 2015)

$$
S_{n j k l}=\frac{(n+j)!}{2^{n+j} \sqrt{n!j!k!!!}}
$$

- Resonant system for radial scalar perturbations of AdS_{d+1} spacetime (Balasubramanian et al., Craps-Evnin-Vanhoof, 2014)
- Schrödinger-Newton-Hooke (SNH) system: resonant system for a non-relativistic self-gravitating condensate (B-Evnin-Ficek, 2017)

Basic properties of the systems of the form

$$
i \frac{d \alpha_{n}}{d \tau}=\sum_{j=0}^{\infty} \sum_{k=0}^{n+j} S_{n j k, n+j-k} \bar{\alpha}_{j} \alpha_{k} \alpha_{n+j-k}
$$

- Symmetries

Scaling: $\quad \alpha_{n}(t) \rightarrow \varepsilon \alpha_{n}\left(\varepsilon^{2} t\right)$
Global phase shift: $\quad \alpha_{n}(t) \rightarrow e^{i \theta} \alpha_{n}(t)$
Local phase shift: $\quad \alpha_{n}(t) \rightarrow e^{i n \theta} \alpha_{n}(t)$

- Conserved quantities

$$
N=\sum_{n=0}^{\infty}\left|\alpha_{n}\right|^{2}, \quad Q=\sum_{n=0}^{\infty}(n+1)\left|\alpha_{n}\right|^{2}
$$

- The Szegő, conformal, and LLL flows are locally (and therefore also globally) well-posed for initial data with finite J.
- For Einstein-scalar-AdS resonant system there is evidence that solutions may become singular in finite time.

Finite-dimensional invariant manifolds

- For one-mode initial data $\alpha_{n}(0)=\delta_{n N}$, the solution is $\alpha_{n}(\tau)=\delta_{n N} e^{-i \lambda_{N} \tau}$
- Three-dimensional invariant manifolds: $\alpha_{0}=b$ and for $n \geq 1$

$$
\alpha_{n}= \begin{cases}a p^{n} & \text { Szegő flow } \\ \sqrt{n+1}(b p+a n) p^{n-1} & \text { cubic conformal flow } \\ \frac{1}{\sqrt{n!}}(b p+a n) p^{n-1} & \text { LLL flow }\end{cases}
$$

where the functions $a(\tau), b(\tau), p(\tau)$ are complex-valued.

- The dynamics of these invariant manifolds is described by the reduced Hamiltonian systems

$$
\frac{d a}{d \tau}=f_{1}(a, b, p), \quad \frac{d b}{d \tau}=f_{2}(a, b, p), \quad \frac{d p}{d \tau}=f_{3}(a, b, p)
$$

- Since there are three conserved quanities N, Q, and H (that are in involution), the reduced systems are completely integrable.

Anti-de Sitter spacetime in $d+1$ dimensions

 Manifold $\mathscr{M}=\left\{t \in \mathbb{R}, x \in[0, \pi / 2), \omega \in S^{d-1}\right\}$ with metric$$
g=\frac{l^{2}}{\cos ^{2} x}\left(-d t^{2}+d x^{2}+\sin ^{2} x d \omega_{S^{d-1}}^{2}\right)
$$

Solution of the vacuum Einstein equations $R_{\alpha \beta}=\lambda g_{\alpha \beta}$ with $\lambda=-d / l^{2}$.

- Spatial infinity $x=\pi / 2$ is the timelike cylinder $\mathscr{I}=\mathbb{R} \times S^{d-1}$ with the boundary metric $d s_{\mathscr{I}}^{2}=-d t^{2}+d \Omega_{S^{d-1}}^{2}$
- Null geodesics get to infinity in finite time
- Asymptotically AdS spacetimes by definition have the same conformal boundary as AdS
- AdS space is the unique ground state among asymptotically AdS spacetimes.

Conjecture (B-Rostworowski 2011)

AdS ${ }_{d+1}$, as the solution of the Einstein-massless-scalar field equations with negative cosmological constant in $d+1$ dimensions (for $d \geq 3$), is unstable under arbitrarily small generic perturbations.

Arguments:

- The linear spectrum is fully resonant. Nonlinear interactions between harmonics give rise to transfer of energy from low to high frequencies.
- The turbulent cascade leads to concentration of energy on finer and finer spatial scales so eventually a black hole is expected to form.
- Numerical evidence: perturbations of size ε collapse in time $\mathscr{O}\left(\varepsilon^{-2}\right)$.

The shadow of a doubt: is extrapolation to $\varepsilon \rightarrow 0$ justified?
Resonant approximation (B-Maliborski-Rostworowski, 2015):

- Using mixed numerical/analytical methods we constructed solutions of the resonant system that become singular in finite time.

τ
- Instability on timescale $1 / \varepsilon^{2}$ is captured by the resonant approximation!
- On the other hand, resonances appear to play no role in the recent proof of instability of AdS for the Einstein-null dust system (Moschidis, 2017)

From Klein-Gordon on AdS to Gross-Pitaevskii

- AdS metric $(r=l \tan x)$

$$
g=-\left(1+\frac{r^{2}}{l^{2}}\right) d t^{2}+\frac{d r^{2}}{1+\frac{r^{2}}{l^{2}}}+r^{2} d \omega_{\mathbb{S}}^{2}-1
$$

- Cubic Klein-Gordon equation on AdS

$$
\square_{g} \phi-\frac{m^{2} c^{2}}{\hbar^{2}} \phi-g|\phi|^{2} \phi=0
$$

- Substituting $\phi=e^{-i \frac{m c^{2}}{\hbar} t} \Psi+$ c.c. and taking the limits $l \rightarrow \infty$ and $c \rightarrow \infty$ such that $c / l \rightarrow \omega$, one gets the Gross-Pitaevskii equation

$$
i \hbar \partial_{t} \Psi=-\frac{\hbar^{2}}{2 m} \Delta \Psi+\frac{1}{2} m \omega^{2} r^{2} \Psi+\frac{g \hbar^{2}}{2 m}|\Psi|^{2} \Psi
$$

(O. Evnin and G.W. Gibbons, private communication)

Lowest Landau Level equation

- 2d Gross-Pitaevskii equation with isotropic harmonic potential

$$
i \partial_{t} \Psi=\frac{1}{2}\left(-\partial_{x}^{2}-\partial_{y}^{2}+x^{2}+y^{2}\right) \Psi+g|\Psi|^{2} \Psi
$$

- General solution of the linear problem $(g=0)$

$$
\Psi(t, r, \phi)=\sum_{n m} \alpha_{n m} e^{-i E_{n} t} e^{i m \phi} \chi_{n m}(r)
$$

where $e^{i m \phi} \chi_{n m}(r)$ are normalized eigenstates of energy $E_{n}=n+1$ and angular momentum $m \in\{-n,-n+2, \ldots, n-2, n\}$.

- The lowest Landau level (LLL) consists of modes with $m=n$

$$
\chi_{n}(z)=\frac{z^{n}}{\sqrt{\pi n!}} e^{-\frac{1}{2}|z|^{2}}, \quad z=x+i y
$$

- The general LLL wavefunction in the frame rotating with angular velocity 1 (where centrifugal and harmonic forces are balanced) is (here $\tau=g t$)

$$
\psi(\tau, z):=e^{i t} \Psi\left(t, e^{i t} z\right)=\sum_{n=0}^{\infty} \alpha_{n}(\tau) \chi_{n}(z)
$$

Vortices in BEC

- A remarkable feature of BEC is the nucleation of quantized vortices when the condensate is stirred above a certain critical angular velocity
- The 3-dimensional invariant manifold of the LLL flow corresponds to single-vortex configurations

$$
\psi(\tau, z)=(b(\tau)+a(\tau) z) e^{p(\tau) z} e^{-\frac{1}{2}|z|^{2}}
$$

- The generic explicit solution represents periodically modulated precession of the vortex
- Motions of this type have been seen in experiments
- It would be very interesting to extend this approach to multi-vortex configurations

Biasi-B-Craps-Evnin, 2017

Schrödinger-Newton-Hooke system

- Einstein-Klein-Gordon system in $3+1$ dimensions with negative cosmological constant $\Lambda=-3 / l^{2}$

$$
G_{\alpha \beta}+\Lambda g_{\alpha \beta}=\frac{8 \pi G}{c^{4}} T_{\alpha \beta}, \quad\left(\square_{g}-\frac{m^{2} c^{2}}{\hbar^{2}}\right) \phi=0
$$

where

$$
T_{\alpha \beta}=\partial_{\alpha} \phi \partial_{\beta} \phi-\frac{1}{2}\left(g^{\mu v} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{m^{2} c^{2}}{\hbar^{2}} \phi^{2}\right) g_{\alpha \beta}
$$

- Substituting $\phi=e^{-i \frac{m c^{2}}{\hbar} t} \psi+c . c$. and taking the limits $c \rightarrow \infty$ and $l \rightarrow \infty$ so that $c / l \rightarrow \omega$, we get the SNH system

$$
i \hbar \partial_{t} \psi=-\frac{\hbar^{2}}{2 m} \Delta \psi+\frac{1}{2} m \omega^{2}|x|^{2} \psi+V \psi, \quad \Delta V=4 \pi G m^{2}|\psi|^{2}
$$

which is equivalent to the Hartree equation with the external harmonic potential (below we set $\hbar=m=G=1$)

$$
i \partial_{t} \psi=-\frac{1}{2} \Delta \psi+\frac{1}{2} \omega^{2}|x|^{2} \psi-\left(|x|^{-1} *|\psi|^{2}\right) \psi
$$

- In higher dimensions $d \geq 3$ the SNH equation reads

$$
i \partial_{t} \psi=-\frac{1}{2} \Delta \psi+\frac{1}{2} \omega^{2}|x|^{2} \psi-\left(|x|^{-(d-2)} *|\psi|^{2}\right) \psi
$$

- Under scaling $\psi(t, x) \mapsto \psi_{\lambda}(t, x)=\lambda^{-2} \psi\left(t / \lambda^{2}, x / \lambda\right)$

$$
\|\psi \lambda\|_{L^{2}}=\lambda^{\frac{d-4}{2}}\|\psi\|_{L^{2}} \quad \text { and } \quad\left\|\nabla \psi_{\lambda}\right\|_{L^{2}}=\lambda^{\frac{d-6}{2}}\|\nabla \psi\|_{L^{2}}
$$

hence the system is L_{2}-critical for $d=4$ and energy critical for $d=6$

- For $d=4$ the associated resonant system has a three-dimensional invariant manifold on which the dynamics is completely integrable
- In supercritical dimensions $d \geq 7$ we expect a weakly turbulent instability of the zero solution (analogue of AdS instability)
- This expectation is consonant with the ultraviolet asymptotics of the interaction coefficients $S_{n n n n} \sim n^{d-6}$ for $n \rightarrow \infty$

Conclusions

- Dynamics of spatially confined Hamiltonian systems is an interesting meeting point of fundamental problems in PDEs and various areas of nonlinear physics
- Despite recent progress, this research area remains largely unexplored

Thank you for your attention

