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Critical Behavior in Vacuum Gravitational Collapse in 4� 1 Dimensions
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We show that the (4� 1)-dimensional vacuum Einstein equations admit gravitational waves with radial
symmetry. The dynamical degrees of freedom correspond to deformations of the three-sphere orthogonal
to the �t; r� plane. Gravitational collapse of such waves is studied numerically and shown to exhibit
discretely self-similar type II critical behavior at the threshold of black hole formation.
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Introduction and setup.—The gravitational collapse to a
black hole is a subject of intensive studies in general
relativity. One of the main goals of these studies is to prove
the cosmic censorship conjecture, which says that a physi-
cally realistic generic gravitational collapse cannot result
in a naked singularity. It would be most interesting to assert
that this conjecture is true in vacuum; however, with cur-
rent analytical techniques the problem seems tractable only
in spherical symmetry, and in this case there is no vacuum
collapse because of Birkhoff’s theorem. Thus, in order to
generate spherically symmetric dynamics one has to
couple matter fields. A simple choice, which has led to
important insights, is a real massless scalar field. For this
matter model Christodoulou showed that for small initial
data the fields disperse to infinity [1], while for large data
black holes are formed [2]. The transition between these
two outcomes of evolution was explored numerically by
Choptuik [3], leading to the discovery of critical phe-
nomena at the threshold of black hole formation. Similar
phenomena were later observed in many other matter
models in spherical symmetry (see [4] for a comprehensive
review) but, because of numerical difficulties, only once in
vacuum for axially symmetric gravitational waves [5].

The aim of this Letter is to show that—at the price of
going to (4� 1) dimensions—one can evade Birkhoff’s
theorem and have gravitational collapse of pure gravita-
tional waves in radial symmetry. The idea is very simple
and is based on the fact that the geometry of the three-
sphere S3 has the property that one can break the isotropy
but still have a homogeneous space. This happens as
follows. The group of rotations acting on S3 in Euclidean
space has a subgroup G3 acting simply transitively on the
three-sphere. This subgroup is isomorphic to the universal
covering group of the connected component of the rotation
group in three dimensions. The action of G3 is generated
by the simultaneous rotations in the �x-y; z-w� planes, the
�x-z; y-w� planes and �x-w; z-y� planes [this action on S3

defines also the Bianchi IX homogeneous cosmological
05=95(7)=071102(4)$23.00 07110
model in the (3� 1)-dimensional general relativity].
Thus, in (4� 1) dimensions it is consistent to consider
spacetimes with the metric of the form

ds2 � �U�t; r�dt2 � V�t; r�dr2 �
X3
k�1

L2
k�t; r��

2
k; (1)

where�k are three one-forms invariant underG3 satisfying
the commutation relations d�i �

1
2 �ijk�j ^ �k. In terms

of Euler angles (0 � � � �, 0 � �,  � 2�)

�1 � i�2 � ei �cos�d�� id��;

�3 � d � sin�d�: (2)

The metric functions Lk�t; r� are the three principal curva-
ture radii of the squashed three-sphere. The case when all
three Lk are equal corresponds to the standard spherically
symmetric ansatz for which the Birkhoff theorem applies
and the only solutions are Minkowski and Schwarzschild.
However, if Lk are different we will obtain nontrivial
vacuum solutions with gravitational radiation. In this
Letter we restrict ourselves to a special case of the ansatz
(1) in which L1 � L2. Using the coordinate freedom in the
two-space orthogonal to the group orbit of G3, we choose
the volume radial coordinate r � �vol�S3�=2�2�1=3, and
write the metric as

ds2 � �Ae�2�dt2 � A�1dr2 � 1
4r
2�e2B��2

1 � �2
2�

� e�4B�2
3	; (3)

where A, �, and B are functions of t and r. Note that for this
ansatz the three-sphere has a residual isotropy of the
twisted product S2 
 S1 (as in the Taub universe).

Substituting the ansatz (3) into the vacuum Einstein
equations, we get the equations of motion for the functions
A�t; r�, ��t; r� and B�t; r�. In the following we use overdots
and primes to denote @t and @r, respectively. The
Hamiltonian and momentum constraints are
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A0 ��
2A
r
�

1

3r
�8e�2B�2e�8B��2r�e2�A�1 _B2�AB02�;

(4)

_A � �4rA _BB0: (5)

The evolution equation for B has a form of the quasilinear
wave equation

�e�A�1r3 _B�� � �e��Ar3B0�0 � 4
3e

��r�e�2B � e�8B� � 0:

(6)

In addition, we have a slicing condition for �

�0 � �2r�e2�A�2 _B2 � B02�: (7)

It is clear from the above equations that the only dynamical
degree of freedom is the field B which plays a role similar
to the spherically symmetric scalar field in (3� 1) dimen-
sions. If B � 0, it is easy to verify (Birkhoff’s theorem)
that the only solution is Schwarzschild �0 � 0, A0 � 1�
r2h=r

2 (or Minkowski if rh � 0). As we shall see below
these two static solutions play the role of attractors. Note
that Eqs. (4)–(7) are scale invariant, which excludes the
existence of regular asymptotically flat static solutions.

It is convenient to introduce the mass function m�t; r�
defined by A � 1�m�t; r�=r2. Then, the Hamiltonian
constraint (4) takes a simple form

m0 �2r3�e2�A�1 _B2�AB02�� 2
3r�3�e

�8B�4e�2B�: (8)

Note that the right-hand side of Eq. (8) is manifestly
positive so m�t; r� is monotone increasing with r. For
asymptotically flat spacetimes m1 � limr!1m�t; r� exists
and is constant in time. The total mass is given by M �
�3�=8G�m1.
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FIG. 1. Formation of a black hole for highly supercritical
initial data. We plot the mass function m�t; r� at the initial
time and at four late times. The total mass (measured in units
3�=8G) is 0.67 (see the plateau of the initial profile). During the
evolution the function m�t; r� develops a second inner plateau
that indicates formation of the Schwarzschild black hole with
mass MBH � 0:33.
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We consider the initial value problem for the above
equations. To ensure regularity at the center, we impose
the boundary conditions

B�t; r� � b�t�r2; 1� A�t; r� � a�t�r4: (9)

We normalize time by the condition ��t; 0� � 0, which
means that t is the proper time at the center.

Numerical results.—We have solved the above equa-
tions using the free evolution scheme in which A�t; r� is
updated using the momentum constraint (5). The
Hamiltonian constraint (4) was solved at t � 0 and then
monitored only to check the accuracy of the code. The
wave Eq. (6) was rewritten as the pair of two first order
equations for B and an auxiliary variable P � e� _B=A.
Integration in time was done by a modified predictor-
corrector McCormack method on a uniform spatial grid.
The ordinary differential Eq. (7) was solved with the fourth
order Runge-Kutta method. The whole procedure has an
accuracy of second order in time and fourth order in space.

The numerical results presented below were produced
for the initial data of the form of an ‘‘ingoing’’ generalized
Gaussian

B�0;r��p
�
r
r0

�
4
e��r�r0�4=s4 ; P�0;r�� rB0�0;r�=r0;

(10)

where the parameter p was varied and the parameters r0
and s were fixed. To check the universality of the critical
behavior, we have verified that the results are independent
of the specific choice of initial data.

We have found that for all families of initial data the
same picture, similar to the massless scalar field collapse,
emerges. For small values of the control parameter p the
fields disperse, leaving behind the flat spacetime. For large
initial data a Schwarzschild black hole is formed, as shown
in Figs. 1 and 2.
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FIG. 2. The plot of B�t; r� for the same data as in Fig. 1.
Outside the horizon developing at rh � 0:57, B tends to zero.
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FIG. 3. Quasinormal ringing of the Schwarzschild black hole.
We plot the time series lnjB�t; r0�j at r0 � 5 for the same data as
in Fig. 2 but using the proper time at infinity. The horizon forms
at rh � 0:575; hence according to [6], the least damped quasi-
normal mode has eigenvalue k � 2:62� 0:62i. The linear per-
turbation regime sets in at t� 11. The fit of an exponentially
damped sinusoid to the data on the time interval 13< t < 18
gives k � 2:56� 0:61i, which is in good agreement with the
theoretical prediction.

PRL 95, 071102 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
12 AUGUST 2005
The process of settling down to the Schwarzschild black
hole can be described in more detail using linear perturba-
tion theory. Linearizing Eqs. (4)–(7) around the
Schwarzschild solution, we obtain the linear wave equation
for the perturbation �B�t; r�,

� �B�
1

r3
A0�r

3A0�B
0�0�

8A0

r2
�B�0; A0�1�

1

r2
; (11)
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FIG. 4. The late time profile of B for a near-critical solution.
We easily get many echoes even for a moderate fine-tuning
because the product of the eigenvalue + of the growing mode
about the critical solution and the echoing period � is relatively
small, +� � 2:86 (for comparison, this product is about 3 times
greater for the massless scalar field critical collapse [3]).
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where we have used the scaling freedom to set the radius of
the horizon rh � 1. Introducing the tortoise coordinate x �
r� 1

2 ln
r�1
r�1 and substituting �B�t; r� � e�iktu�x� into (11)

we get the Schrödinger equation on the real line �1<
x<1,

�
d2u

dx2
� V�r�x��u � k2u; (12)

where

V�r� �
1

4

�
1�

1

r2

��
35

r2
�

9

r4

�
: (13)

Quasinormal modes [i.e., solutions of Eq. (12) satisfying
the outgoing wave conditions u� e�ikx for x! �1] for
potentials of this type have been computed in [6] via the
method of continued fractions. The potential (13) corre-
sponds to the gravitational tensor perturbation with l � 2,
and in this case the least damped mode (see Table III in [6])
has eigenvalue k � 1:51� 0:36i (in units r�1

h ). This mode
is expected to dominate the intermediate asymptotics of
local convergence to Schwarzschild. In Fig. 3 we show
evidence confirming this expectation.

We turn now to the description of critical behavior at the
threshold of black hole formation. In a now routine proce-
dure for bistable systems, using bisection we have deter-
mined a critical parameter value p� that separates black
hole formation from dispersion. The behavior of near-
critical solutions clearly indicates the existence of a dis-
cretely self-similar critical solution with the echoing pe-
riod �� 0:47. The profile of a near-critical solution and
evidence for discrete self-similarity are shown in Figs. 4
and 5.
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FIG. 5. Evidence for discrete self-similarity of the critical
solution. For a near-critical evolution we plot the profile of B
at some arbitrary central proper time T0 and superimpose the
next three echoes that subsequently develop. The times T1; T2; T3
and the echoing period � were chosen to minimize B� ln�r� �
n�; Tn�� B� ln�r�; T0�.
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FIG. 6. Black hole mass scaling. For supercritical solutions the
logarithm of black hole mass MBH (measured in units 3�=8G) is
plotted versus the logarithmic distance to criticality. The slope of
the linear fit yields , � 0:3289. The wiggles, which are imprints
of discrete self-similarity, are shown in more detail in Fig. 7.
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FIG. 7. Fine structure of black hole mass scaling. The linear fit
from Fig. 6 is subtracted from the data. The period of the wiggles
agrees to two decimal places with the theoretical prediction
�=, � 1:43.
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As expected, the mass of the black holeMBH�p� changes
continuously with p and tends to zero for p! p� accord-
ing to the power law

MBH � �p� � p�,; (14)

where the scaling exponent ,� 0:3289 is universal (i.e.,
independent of initial data). This is shown in Figs. 6 and 7.
Note that, in four space dimensions, mass has the dimen-
sion of length2; hence , � 2=+, where + is an eigenvalue
of the growing mode of the critical solution.

To summarize, we have studied gravitational collapse of
pure gravitational waves in (4� 1) dimensions and have
found strong evidence for the type II discretely self-similar
critical behavior at the threshold of black hole formation.
As far as we know, besides the notable paper [5], this is the
only example of critical behavior without matter.

Concluding, let us mention some natural extensions of
the study presented here. One interesting possibility is to
investigate the general ansatz (1) with two dynamical
degrees of freedom—the studies in this direction are in
progress and will be reported elsewhere. It is also natural to
look for similar models in higher dimensions. If one insists
that the subgroup of the orthogonal group acts simply
07110
transitively, the only possibility is the one discussed in
our Letter. However, if one allows multiply transitive sub-
groups of the orthogonal groups, the results given in Besse
[7] show that there are models similar to the one considered
here on any odd-dimensional sphere.
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